/* * * (C) COPYRIGHT 2010-2016 ARM Limited. All rights reserved. * * This program is free software and is provided to you under the terms of the * GNU General Public License version 2 as published by the Free Software * Foundation, and any use by you of this program is subject to the terms * of such GNU licence. * * A copy of the licence is included with the program, and can also be obtained * from Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ /** * @file mali_kbase_mem.h * Base kernel memory APIs */ #ifndef _KBASE_MEM_H_ #define _KBASE_MEM_H_ #ifndef _KBASE_H_ #error "Don't include this file directly, use mali_kbase.h instead" #endif #include #ifdef CONFIG_KDS #include #endif /* CONFIG_KDS */ #ifdef CONFIG_UMP #include #endif /* CONFIG_UMP */ #include "mali_base_kernel.h" #include #include "mali_kbase_pm.h" #include "mali_kbase_defs.h" #if defined(CONFIG_MALI_GATOR_SUPPORT) #include "mali_kbase_gator.h" #endif /* Required for kbase_mem_evictable_unmake */ #include "mali_kbase_mem_linux.h" /* Part of the workaround for uTLB invalid pages is to ensure we grow/shrink tmem by 4 pages at a time */ #define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_8316 (2) /* round to 4 pages */ /* Part of the workaround for PRLAM-9630 requires us to grow/shrink memory by 8 pages. The MMU reads in 8 page table entries from memory at a time, if we have more than one page fault within the same 8 pages and page tables are updated accordingly, the MMU does not re-read the page table entries from memory for the subsequent page table updates and generates duplicate page faults as the page table information used by the MMU is not valid. */ #define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_9630 (3) /* round to 8 pages */ #define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2 (0) /* round to 1 page */ /* This must always be a power of 2 */ #define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES (1u << KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2) #define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_HW_ISSUE_8316 (1u << KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_8316) #define KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_HW_ISSUE_9630 (1u << KBASEP_TMEM_GROWABLE_BLOCKSIZE_PAGES_LOG2_HW_ISSUE_9630) /** * A CPU mapping */ struct kbase_cpu_mapping { struct list_head mappings_list; struct kbase_mem_phy_alloc *alloc; struct kbase_context *kctx; struct kbase_va_region *region; int count; int free_on_close; }; enum kbase_memory_type { KBASE_MEM_TYPE_NATIVE, KBASE_MEM_TYPE_IMPORTED_UMP, KBASE_MEM_TYPE_IMPORTED_UMM, KBASE_MEM_TYPE_IMPORTED_USER_BUF, KBASE_MEM_TYPE_ALIAS, KBASE_MEM_TYPE_TB, KBASE_MEM_TYPE_RAW }; /* internal structure, mirroring base_mem_aliasing_info, * but with alloc instead of a gpu va (handle) */ struct kbase_aliased { struct kbase_mem_phy_alloc *alloc; /* NULL for special, non-NULL for native */ u64 offset; /* in pages */ u64 length; /* in pages */ }; /** * @brief Physical pages tracking object properties */ #define KBASE_MEM_PHY_ALLOC_ACCESSED_CACHED (1ul << 0) #define KBASE_MEM_PHY_ALLOC_LARGE (1ul << 1) /* physical pages tracking object. * Set up to track N pages. * N not stored here, the creator holds that info. * This object only tracks how many elements are actually valid (present). * Changing of nents or *pages should only happen if the kbase_mem_phy_alloc is not * shared with another region or client. CPU mappings are OK to exist when changing, as * long as the tracked mappings objects are updated as part of the change. */ struct kbase_mem_phy_alloc { struct kref kref; /* number of users of this alloc */ atomic_t gpu_mappings; size_t nents; /* 0..N */ phys_addr_t *pages; /* N elements, only 0..nents are valid */ /* kbase_cpu_mappings */ struct list_head mappings; /* Node used to store this allocation on the eviction list */ struct list_head evict_node; /* Physical backing size when the pages where evicted */ size_t evicted; /* * Back reference to the region structure which created this * allocation, or NULL if it has been freed. */ struct kbase_va_region *reg; /* type of buffer */ enum kbase_memory_type type; unsigned long properties; struct list_head zone_cache; /* member in union valid based on @a type */ union { #ifdef CONFIG_UMP ump_dd_handle ump_handle; #endif /* CONFIG_UMP */ #if defined(CONFIG_DMA_SHARED_BUFFER) struct { struct dma_buf *dma_buf; struct dma_buf_attachment *dma_attachment; unsigned int current_mapping_usage_count; struct sg_table *sgt; } umm; #endif /* defined(CONFIG_DMA_SHARED_BUFFER) */ struct { u64 stride; size_t nents; struct kbase_aliased *aliased; } alias; /* Used by type = (KBASE_MEM_TYPE_NATIVE, KBASE_MEM_TYPE_TB) */ struct kbase_context *kctx; struct { unsigned long address; unsigned long size; unsigned long nr_pages; struct page **pages; unsigned int current_mapping_usage_count; struct mm_struct *mm; dma_addr_t *dma_addrs; } user_buf; } imported; }; static inline void kbase_mem_phy_alloc_gpu_mapped(struct kbase_mem_phy_alloc *alloc) { KBASE_DEBUG_ASSERT(alloc); /* we only track mappings of NATIVE buffers */ if (alloc->type == KBASE_MEM_TYPE_NATIVE) atomic_inc(&alloc->gpu_mappings); } static inline void kbase_mem_phy_alloc_gpu_unmapped(struct kbase_mem_phy_alloc *alloc) { KBASE_DEBUG_ASSERT(alloc); /* we only track mappings of NATIVE buffers */ if (alloc->type == KBASE_MEM_TYPE_NATIVE) if (0 > atomic_dec_return(&alloc->gpu_mappings)) { pr_err("Mismatched %s:\n", __func__); dump_stack(); } } void kbase_mem_kref_free(struct kref *kref); int kbase_mem_init(struct kbase_device *kbdev); void kbase_mem_halt(struct kbase_device *kbdev); void kbase_mem_term(struct kbase_device *kbdev); static inline struct kbase_mem_phy_alloc *kbase_mem_phy_alloc_get(struct kbase_mem_phy_alloc *alloc) { kref_get(&alloc->kref); return alloc; } static inline struct kbase_mem_phy_alloc *kbase_mem_phy_alloc_put(struct kbase_mem_phy_alloc *alloc) { kref_put(&alloc->kref, kbase_mem_kref_free); return NULL; } /** * A GPU memory region, and attributes for CPU mappings. */ struct kbase_va_region { struct rb_node rblink; struct list_head link; struct kbase_context *kctx; /* Backlink to base context */ u64 start_pfn; /* The PFN in GPU space */ size_t nr_pages; /* Free region */ #define KBASE_REG_FREE (1ul << 0) /* CPU write access */ #define KBASE_REG_CPU_WR (1ul << 1) /* GPU write access */ #define KBASE_REG_GPU_WR (1ul << 2) /* No eXecute flag */ #define KBASE_REG_GPU_NX (1ul << 3) /* Is CPU cached? */ #define KBASE_REG_CPU_CACHED (1ul << 4) /* Is GPU cached? */ #define KBASE_REG_GPU_CACHED (1ul << 5) #define KBASE_REG_GROWABLE (1ul << 6) /* Can grow on pf? */ #define KBASE_REG_PF_GROW (1ul << 7) /* VA managed by us */ #define KBASE_REG_CUSTOM_VA (1ul << 8) /* inner shareable coherency */ #define KBASE_REG_SHARE_IN (1ul << 9) /* inner & outer shareable coherency */ #define KBASE_REG_SHARE_BOTH (1ul << 10) /* Space for 4 different zones */ #define KBASE_REG_ZONE_MASK (3ul << 11) #define KBASE_REG_ZONE(x) (((x) & 3) << 11) /* GPU read access */ #define KBASE_REG_GPU_RD (1ul<<13) /* CPU read access */ #define KBASE_REG_CPU_RD (1ul<<14) /* Index of chosen MEMATTR for this region (0..7) */ #define KBASE_REG_MEMATTR_MASK (7ul << 16) #define KBASE_REG_MEMATTR_INDEX(x) (((x) & 7) << 16) #define KBASE_REG_MEMATTR_VALUE(x) (((x) & KBASE_REG_MEMATTR_MASK) >> 16) #define KBASE_REG_SECURE (1ul << 19) #define KBASE_REG_DONT_NEED (1ul << 20) #define KBASE_REG_ZONE_SAME_VA KBASE_REG_ZONE(0) /* only used with 32-bit clients */ /* * On a 32bit platform, custom VA should be wired from (4GB + shader region) * to the VA limit of the GPU. Unfortunately, the Linux mmap() interface * limits us to 2^32 pages (2^44 bytes, see mmap64 man page for reference). * So we put the default limit to the maximum possible on Linux and shrink * it down, if required by the GPU, during initialization. */ /* * Dedicated 16MB region for shader code: * VA range 0x101000000-0x102000000 */ #define KBASE_REG_ZONE_EXEC KBASE_REG_ZONE(1) #define KBASE_REG_ZONE_EXEC_BASE (0x101000000ULL >> PAGE_SHIFT) #define KBASE_REG_ZONE_EXEC_SIZE ((16ULL * 1024 * 1024) >> PAGE_SHIFT) #define KBASE_REG_ZONE_CUSTOM_VA KBASE_REG_ZONE(2) #define KBASE_REG_ZONE_CUSTOM_VA_BASE (KBASE_REG_ZONE_EXEC_BASE + KBASE_REG_ZONE_EXEC_SIZE) /* Starting after KBASE_REG_ZONE_EXEC */ #define KBASE_REG_ZONE_CUSTOM_VA_SIZE (((1ULL << 44) >> PAGE_SHIFT) - KBASE_REG_ZONE_CUSTOM_VA_BASE) /* end 32-bit clients only */ unsigned long flags; size_t extent; /* nr of pages alloc'd on PF */ struct kbase_mem_phy_alloc *cpu_alloc; /* the one alloc object we mmap to the CPU when mapping this region */ struct kbase_mem_phy_alloc *gpu_alloc; /* the one alloc object we mmap to the GPU when mapping this region */ /* non-NULL if this memory object is a kds_resource */ struct kds_resource *kds_res; /* List head used to store the region in the JIT allocation pool */ struct list_head jit_node; }; /* Common functions */ static inline phys_addr_t *kbase_get_cpu_phy_pages(struct kbase_va_region *reg) { KBASE_DEBUG_ASSERT(reg); KBASE_DEBUG_ASSERT(reg->cpu_alloc); KBASE_DEBUG_ASSERT(reg->gpu_alloc); KBASE_DEBUG_ASSERT(reg->cpu_alloc->nents == reg->gpu_alloc->nents); return reg->cpu_alloc->pages; } static inline phys_addr_t *kbase_get_gpu_phy_pages(struct kbase_va_region *reg) { KBASE_DEBUG_ASSERT(reg); KBASE_DEBUG_ASSERT(reg->cpu_alloc); KBASE_DEBUG_ASSERT(reg->gpu_alloc); KBASE_DEBUG_ASSERT(reg->cpu_alloc->nents == reg->gpu_alloc->nents); return reg->gpu_alloc->pages; } static inline size_t kbase_reg_current_backed_size(struct kbase_va_region *reg) { KBASE_DEBUG_ASSERT(reg); /* if no alloc object the backed size naturally is 0 */ if (!reg->cpu_alloc) return 0; KBASE_DEBUG_ASSERT(reg->cpu_alloc); KBASE_DEBUG_ASSERT(reg->gpu_alloc); KBASE_DEBUG_ASSERT(reg->cpu_alloc->nents == reg->gpu_alloc->nents); return reg->cpu_alloc->nents; } #define KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD ((size_t)(4*1024)) /* size above which vmalloc is used over kmalloc */ static inline struct kbase_mem_phy_alloc *kbase_alloc_create(size_t nr_pages, enum kbase_memory_type type) { struct kbase_mem_phy_alloc *alloc; size_t alloc_size = sizeof(*alloc) + sizeof(*alloc->pages) * nr_pages; size_t per_page_size = sizeof(*alloc->pages); /* Imported pages may have page private data already in use */ if (type == KBASE_MEM_TYPE_IMPORTED_USER_BUF) { alloc_size += nr_pages * sizeof(*alloc->imported.user_buf.dma_addrs); per_page_size += sizeof(*alloc->imported.user_buf.dma_addrs); } /* * Prevent nr_pages*per_page_size + sizeof(*alloc) from * wrapping around. */ if (nr_pages > ((((size_t) -1) - sizeof(*alloc)) / per_page_size)) return ERR_PTR(-ENOMEM); /* Allocate based on the size to reduce internal fragmentation of vmem */ if (alloc_size > KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD) alloc = vzalloc(alloc_size); else alloc = kzalloc(alloc_size, GFP_KERNEL); if (!alloc) return ERR_PTR(-ENOMEM); /* Store allocation method */ if (alloc_size > KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD) alloc->properties |= KBASE_MEM_PHY_ALLOC_LARGE; kref_init(&alloc->kref); atomic_set(&alloc->gpu_mappings, 0); alloc->nents = 0; alloc->pages = (void *)(alloc + 1); INIT_LIST_HEAD(&alloc->mappings); alloc->type = type; INIT_LIST_HEAD(&alloc->zone_cache); if (type == KBASE_MEM_TYPE_IMPORTED_USER_BUF) alloc->imported.user_buf.dma_addrs = (void *) (alloc->pages + nr_pages); return alloc; } static inline int kbase_reg_prepare_native(struct kbase_va_region *reg, struct kbase_context *kctx) { KBASE_DEBUG_ASSERT(reg); KBASE_DEBUG_ASSERT(!reg->cpu_alloc); KBASE_DEBUG_ASSERT(!reg->gpu_alloc); KBASE_DEBUG_ASSERT(reg->flags & KBASE_REG_FREE); reg->cpu_alloc = kbase_alloc_create(reg->nr_pages, KBASE_MEM_TYPE_NATIVE); if (IS_ERR(reg->cpu_alloc)) return PTR_ERR(reg->cpu_alloc); else if (!reg->cpu_alloc) return -ENOMEM; reg->cpu_alloc->imported.kctx = kctx; INIT_LIST_HEAD(®->cpu_alloc->evict_node); if (kbase_ctx_flag(kctx, KCTX_INFINITE_CACHE) && (reg->flags & KBASE_REG_CPU_CACHED)) { reg->gpu_alloc = kbase_alloc_create(reg->nr_pages, KBASE_MEM_TYPE_NATIVE); reg->gpu_alloc->imported.kctx = kctx; INIT_LIST_HEAD(®->gpu_alloc->evict_node); } else { reg->gpu_alloc = kbase_mem_phy_alloc_get(reg->cpu_alloc); } INIT_LIST_HEAD(®->jit_node); reg->flags &= ~KBASE_REG_FREE; return 0; } static inline int kbase_atomic_add_pages(int num_pages, atomic_t *used_pages) { int new_val = atomic_add_return(num_pages, used_pages); #if defined(CONFIG_MALI_GATOR_SUPPORT) kbase_trace_mali_total_alloc_pages_change((long long int)new_val); #endif return new_val; } static inline int kbase_atomic_sub_pages(int num_pages, atomic_t *used_pages) { int new_val = atomic_sub_return(num_pages, used_pages); #if defined(CONFIG_MALI_GATOR_SUPPORT) kbase_trace_mali_total_alloc_pages_change((long long int)new_val); #endif return new_val; } /* * Max size for kbdev memory pool (in pages) */ #define KBASE_MEM_POOL_MAX_SIZE_KBDEV (SZ_64M >> PAGE_SHIFT) /* * Max size for kctx memory pool (in pages) */ #define KBASE_MEM_POOL_MAX_SIZE_KCTX (SZ_64M >> PAGE_SHIFT) /** * kbase_mem_pool_init - Create a memory pool for a kbase device * @pool: Memory pool to initialize * @max_size: Maximum number of free pages the pool can hold * @kbdev: Kbase device where memory is used * @next_pool: Pointer to the next pool or NULL. * * Allocations from @pool are in whole pages. Each @pool has a free list where * pages can be quickly allocated from. The free list is initially empty and * filled whenever pages are freed back to the pool. The number of free pages * in the pool will in general not exceed @max_size, but the pool may in * certain corner cases grow above @max_size. * * If @next_pool is not NULL, we will allocate from @next_pool before going to * the kernel allocator. Similarily pages can spill over to @next_pool when * @pool is full. Pages are zeroed before they spill over to another pool, to * prevent leaking information between applications. * * A shrinker is registered so that Linux mm can reclaim pages from the pool as * needed. * * Return: 0 on success, negative -errno on error */ int kbase_mem_pool_init(struct kbase_mem_pool *pool, size_t max_size, struct kbase_device *kbdev, struct kbase_mem_pool *next_pool); /** * kbase_mem_pool_term - Destroy a memory pool * @pool: Memory pool to destroy * * Pages in the pool will spill over to @next_pool (if available) or freed to * the kernel. */ void kbase_mem_pool_term(struct kbase_mem_pool *pool); /** * kbase_mem_pool_alloc - Allocate a page from memory pool * @pool: Memory pool to allocate from * * Allocations from the pool are made as follows: * 1. If there are free pages in the pool, allocate a page from @pool. * 2. Otherwise, if @next_pool is not NULL and has free pages, allocate a page * from @next_pool. * 3. Return NULL if no memory in the pool * * Return: Pointer to allocated page, or NULL if allocation failed. */ struct page *kbase_mem_pool_alloc(struct kbase_mem_pool *pool); /** * kbase_mem_pool_free - Free a page to memory pool * @pool: Memory pool where page should be freed * @page: Page to free to the pool * @dirty: Whether some of the page may be dirty in the cache. * * Pages are freed to the pool as follows: * 1. If @pool is not full, add @page to @pool. * 2. Otherwise, if @next_pool is not NULL and not full, add @page to * @next_pool. * 3. Finally, free @page to the kernel. */ void kbase_mem_pool_free(struct kbase_mem_pool *pool, struct page *page, bool dirty); /** * kbase_mem_pool_alloc_pages - Allocate pages from memory pool * @pool: Memory pool to allocate from * @nr_pages: Number of pages to allocate * @pages: Pointer to array where the physical address of the allocated * pages will be stored. * * Like kbase_mem_pool_alloc() but optimized for allocating many pages. * * Return: 0 on success, negative -errno on error */ int kbase_mem_pool_alloc_pages(struct kbase_mem_pool *pool, size_t nr_pages, phys_addr_t *pages); /** * kbase_mem_pool_free_pages - Free pages to memory pool * @pool: Memory pool where pages should be freed * @nr_pages: Number of pages to free * @pages: Pointer to array holding the physical addresses of the pages to * free. * @dirty: Whether any pages may be dirty in the cache. * @reclaimed: Whether the pages where reclaimable and thus should bypass * the pool and go straight to the kernel. * * Like kbase_mem_pool_free() but optimized for freeing many pages. */ void kbase_mem_pool_free_pages(struct kbase_mem_pool *pool, size_t nr_pages, phys_addr_t *pages, bool dirty, bool reclaimed); /** * kbase_mem_pool_size - Get number of free pages in memory pool * @pool: Memory pool to inspect * * Note: the size of the pool may in certain corner cases exceed @max_size! * * Return: Number of free pages in the pool */ static inline size_t kbase_mem_pool_size(struct kbase_mem_pool *pool) { return ACCESS_ONCE(pool->cur_size); } /** * kbase_mem_pool_max_size - Get maximum number of free pages in memory pool * @pool: Memory pool to inspect * * Return: Maximum number of free pages in the pool */ static inline size_t kbase_mem_pool_max_size(struct kbase_mem_pool *pool) { return pool->max_size; } /** * kbase_mem_pool_set_max_size - Set maximum number of free pages in memory pool * @pool: Memory pool to inspect * @max_size: Maximum number of free pages the pool can hold * * If @max_size is reduced, the pool will be shrunk to adhere to the new limit. * For details see kbase_mem_pool_shrink(). */ void kbase_mem_pool_set_max_size(struct kbase_mem_pool *pool, size_t max_size); /** * kbase_mem_pool_grow - Grow the pool * @pool: Memory pool to grow * @nr_to_grow: Number of pages to add to the pool * * Adds @nr_to_grow pages to the pool. Note that this may cause the pool to * become larger than the maximum size specified. * * Returns: 0 on success, -ENOMEM if unable to allocate sufficent pages */ int kbase_mem_pool_grow(struct kbase_mem_pool *pool, size_t nr_to_grow); /** * kbase_mem_pool_trim - Grow or shrink the pool to a new size * @pool: Memory pool to trim * @new_size: New number of pages in the pool * * If @new_size > @cur_size, fill the pool with new pages from the kernel, but * not above the max_size for the pool. * If @new_size < @cur_size, shrink the pool by freeing pages to the kernel. */ void kbase_mem_pool_trim(struct kbase_mem_pool *pool, size_t new_size); /* * kbase_mem_alloc_page - Allocate a new page for a device * @kbdev: The kbase device * * Most uses should use kbase_mem_pool_alloc to allocate a page. However that * function can fail in the event the pool is empty. * * Return: A new page or NULL if no memory */ struct page *kbase_mem_alloc_page(struct kbase_device *kbdev); int kbase_region_tracker_init(struct kbase_context *kctx); int kbase_region_tracker_init_jit(struct kbase_context *kctx, u64 jit_va_pages); void kbase_region_tracker_term(struct kbase_context *kctx); struct kbase_va_region *kbase_region_tracker_find_region_enclosing_address(struct kbase_context *kctx, u64 gpu_addr); /** * @brief Check that a pointer is actually a valid region. * * Must be called with context lock held. */ struct kbase_va_region *kbase_region_tracker_find_region_base_address(struct kbase_context *kctx, u64 gpu_addr); struct kbase_va_region *kbase_alloc_free_region(struct kbase_context *kctx, u64 start_pfn, size_t nr_pages, int zone); void kbase_free_alloced_region(struct kbase_va_region *reg); int kbase_add_va_region(struct kbase_context *kctx, struct kbase_va_region *reg, u64 addr, size_t nr_pages, size_t align); bool kbase_check_alloc_flags(unsigned long flags); bool kbase_check_import_flags(unsigned long flags); /** * kbase_update_region_flags - Convert user space flags to kernel region flags * * @kctx: kbase context * @reg: The region to update the flags on * @flags: The flags passed from user space * * The user space flag BASE_MEM_COHERENT_SYSTEM_REQUIRED will be rejected and * this function will fail if the system does not support system coherency. * * Return: 0 if successful, -EINVAL if the flags are not supported */ int kbase_update_region_flags(struct kbase_context *kctx, struct kbase_va_region *reg, unsigned long flags); void kbase_gpu_vm_lock(struct kbase_context *kctx); void kbase_gpu_vm_unlock(struct kbase_context *kctx); int kbase_alloc_phy_pages(struct kbase_va_region *reg, size_t vsize, size_t size); int kbase_mmu_init(struct kbase_context *kctx); void kbase_mmu_term(struct kbase_context *kctx); phys_addr_t kbase_mmu_alloc_pgd(struct kbase_context *kctx); void kbase_mmu_free_pgd(struct kbase_context *kctx); int kbase_mmu_insert_pages_no_flush(struct kbase_context *kctx, u64 vpfn, phys_addr_t *phys, size_t nr, unsigned long flags); int kbase_mmu_insert_pages(struct kbase_context *kctx, u64 vpfn, phys_addr_t *phys, size_t nr, unsigned long flags); int kbase_mmu_insert_single_page(struct kbase_context *kctx, u64 vpfn, phys_addr_t phys, size_t nr, unsigned long flags); int kbase_mmu_teardown_pages(struct kbase_context *kctx, u64 vpfn, size_t nr); int kbase_mmu_update_pages(struct kbase_context *kctx, u64 vpfn, phys_addr_t *phys, size_t nr, unsigned long flags); /** * @brief Register region and map it on the GPU. * * Call kbase_add_va_region() and map the region on the GPU. */ int kbase_gpu_mmap(struct kbase_context *kctx, struct kbase_va_region *reg, u64 addr, size_t nr_pages, size_t align); /** * @brief Remove the region from the GPU and unregister it. * * Must be called with context lock held. */ int kbase_gpu_munmap(struct kbase_context *kctx, struct kbase_va_region *reg); /** * The caller has the following locking conditions: * - It must hold kbase_device->mmu_hw_mutex * - It must hold the hwaccess_lock */ void kbase_mmu_update(struct kbase_context *kctx); /** * kbase_mmu_disable() - Disable the MMU for a previously active kbase context. * @kctx: Kbase context * * Disable and perform the required cache maintenance to remove the all * data from provided kbase context from the GPU caches. * * The caller has the following locking conditions: * - It must hold kbase_device->mmu_hw_mutex * - It must hold the hwaccess_lock */ void kbase_mmu_disable(struct kbase_context *kctx); /** * kbase_mmu_disable_as() - Set the MMU to unmapped mode for the specified * address space. * @kbdev: Kbase device * @as_nr: The address space number to set to unmapped. * * This function must only be called during reset/power-up and it used to * ensure the registers are in a known state. * * The caller must hold kbdev->mmu_hw_mutex. */ void kbase_mmu_disable_as(struct kbase_device *kbdev, int as_nr); void kbase_mmu_interrupt(struct kbase_device *kbdev, u32 irq_stat); /** Dump the MMU tables to a buffer * * This function allocates a buffer (of @c nr_pages pages) to hold a dump of the MMU tables and fills it. If the * buffer is too small then the return value will be NULL. * * The GPU vm lock must be held when calling this function. * * The buffer returned should be freed with @ref vfree when it is no longer required. * * @param[in] kctx The kbase context to dump * @param[in] nr_pages The number of pages to allocate for the buffer. * * @return The address of the buffer containing the MMU dump or NULL on error (including if the @c nr_pages is too * small) */ void *kbase_mmu_dump(struct kbase_context *kctx, int nr_pages); int kbase_sync_now(struct kbase_context *kctx, struct base_syncset *syncset); void kbase_sync_single(struct kbase_context *kctx, phys_addr_t cpu_pa, phys_addr_t gpu_pa, off_t offset, size_t size, enum kbase_sync_type sync_fn); void kbase_pre_job_sync(struct kbase_context *kctx, struct base_syncset *syncsets, size_t nr); void kbase_post_job_sync(struct kbase_context *kctx, struct base_syncset *syncsets, size_t nr); /* OS specific functions */ int kbase_mem_free(struct kbase_context *kctx, u64 gpu_addr); int kbase_mem_free_region(struct kbase_context *kctx, struct kbase_va_region *reg); void kbase_os_mem_map_lock(struct kbase_context *kctx); void kbase_os_mem_map_unlock(struct kbase_context *kctx); /** * @brief Update the memory allocation counters for the current process * * OS specific call to updates the current memory allocation counters for the current process with * the supplied delta. * * @param[in] kctx The kbase context * @param[in] pages The desired delta to apply to the memory usage counters. */ void kbasep_os_process_page_usage_update(struct kbase_context *kctx, int pages); /** * @brief Add to the memory allocation counters for the current process * * OS specific call to add to the current memory allocation counters for the current process by * the supplied amount. * * @param[in] kctx The kernel base context used for the allocation. * @param[in] pages The desired delta to apply to the memory usage counters. */ static inline void kbase_process_page_usage_inc(struct kbase_context *kctx, int pages) { kbasep_os_process_page_usage_update(kctx, pages); } /** * @brief Subtract from the memory allocation counters for the current process * * OS specific call to subtract from the current memory allocation counters for the current process by * the supplied amount. * * @param[in] kctx The kernel base context used for the allocation. * @param[in] pages The desired delta to apply to the memory usage counters. */ static inline void kbase_process_page_usage_dec(struct kbase_context *kctx, int pages) { kbasep_os_process_page_usage_update(kctx, 0 - pages); } /** * kbasep_find_enclosing_cpu_mapping_offset() - Find the offset of the CPU * mapping of a memory allocation containing a given address range * * Searches for a CPU mapping of any part of any region that fully encloses the * CPU virtual address range specified by @uaddr and @size. Returns a failure * indication if only part of the address range lies within a CPU mapping. * * @kctx: The kernel base context used for the allocation. * @uaddr: Start of the CPU virtual address range. * @size: Size of the CPU virtual address range (in bytes). * @offset: The offset from the start of the allocation to the specified CPU * virtual address. * * Return: 0 if offset was obtained successfully. Error code otherwise. */ int kbasep_find_enclosing_cpu_mapping_offset( struct kbase_context *kctx, unsigned long uaddr, size_t size, u64 *offset); enum hrtimer_restart kbasep_as_poke_timer_callback(struct hrtimer *timer); void kbase_as_poking_timer_retain_atom(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_jd_atom *katom); void kbase_as_poking_timer_release_atom(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_jd_atom *katom); /** * @brief Allocates physical pages. * * Allocates \a nr_pages_requested and updates the alloc object. * * @param[in] alloc allocation object to add pages to * @param[in] nr_pages_requested number of physical pages to allocate * * @return 0 if all pages have been successfully allocated. Error code otherwise */ int kbase_alloc_phy_pages_helper(struct kbase_mem_phy_alloc *alloc, size_t nr_pages_requested); /** * @brief Free physical pages. * * Frees \a nr_pages and updates the alloc object. * * @param[in] alloc allocation object to free pages from * @param[in] nr_pages_to_free number of physical pages to free */ int kbase_free_phy_pages_helper(struct kbase_mem_phy_alloc *alloc, size_t nr_pages_to_free); static inline void kbase_set_dma_addr(struct page *p, dma_addr_t dma_addr) { SetPagePrivate(p); if (sizeof(dma_addr_t) > sizeof(p->private)) { /* on 32-bit ARM with LPAE dma_addr_t becomes larger, but the * private field stays the same. So we have to be clever and * use the fact that we only store DMA addresses of whole pages, * so the low bits should be zero */ KBASE_DEBUG_ASSERT(!(dma_addr & (PAGE_SIZE - 1))); set_page_private(p, dma_addr >> PAGE_SHIFT); } else { set_page_private(p, dma_addr); } } static inline dma_addr_t kbase_dma_addr(struct page *p) { if (sizeof(dma_addr_t) > sizeof(p->private)) return ((dma_addr_t)page_private(p)) << PAGE_SHIFT; return (dma_addr_t)page_private(p); } static inline void kbase_clear_dma_addr(struct page *p) { ClearPagePrivate(p); } /** * @brief Process a bus or page fault. * * This function will process a fault on a specific address space * * @param[in] kbdev The @ref kbase_device the fault happened on * @param[in] kctx The @ref kbase_context for the faulting address space if * one was found. * @param[in] as The address space that has the fault */ void kbase_mmu_interrupt_process(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_as *as); /** * @brief Process a page fault. * * @param[in] data work_struct passed by queue_work() */ void page_fault_worker(struct work_struct *data); /** * @brief Process a bus fault. * * @param[in] data work_struct passed by queue_work() */ void bus_fault_worker(struct work_struct *data); /** * @brief Flush MMU workqueues. * * This function will cause any outstanding page or bus faults to be processed. * It should be called prior to powering off the GPU. * * @param[in] kbdev Device pointer */ void kbase_flush_mmu_wqs(struct kbase_device *kbdev); /** * kbase_sync_single_for_device - update physical memory and give GPU ownership * @kbdev: Device pointer * @handle: DMA address of region * @size: Size of region to sync * @dir: DMA data direction */ void kbase_sync_single_for_device(struct kbase_device *kbdev, dma_addr_t handle, size_t size, enum dma_data_direction dir); /** * kbase_sync_single_for_cpu - update physical memory and give CPU ownership * @kbdev: Device pointer * @handle: DMA address of region * @size: Size of region to sync * @dir: DMA data direction */ void kbase_sync_single_for_cpu(struct kbase_device *kbdev, dma_addr_t handle, size_t size, enum dma_data_direction dir); #ifdef CONFIG_DEBUG_FS /** * kbase_jit_debugfs_init - Add per context debugfs entry for JIT. * @kctx: kbase context */ void kbase_jit_debugfs_init(struct kbase_context *kctx); #endif /* CONFIG_DEBUG_FS */ /** * kbase_jit_init - Initialize the JIT memory pool management * @kctx: kbase context * * Returns zero on success or negative error number on failure. */ int kbase_jit_init(struct kbase_context *kctx); /** * kbase_jit_allocate - Allocate JIT memory * @kctx: kbase context * @info: JIT allocation information * * Return: JIT allocation on success or NULL on failure. */ struct kbase_va_region *kbase_jit_allocate(struct kbase_context *kctx, struct base_jit_alloc_info *info); /** * kbase_jit_free - Free a JIT allocation * @kctx: kbase context * @reg: JIT allocation * * Frees a JIT allocation and places it into the free pool for later reuse. */ void kbase_jit_free(struct kbase_context *kctx, struct kbase_va_region *reg); /** * kbase_jit_backing_lost - Inform JIT that an allocation has lost backing * @reg: JIT allocation */ void kbase_jit_backing_lost(struct kbase_va_region *reg); /** * kbase_jit_evict - Evict a JIT allocation from the pool * @kctx: kbase context * * Evict the least recently used JIT allocation from the pool. This can be * required if normal VA allocations are failing due to VA exhaustion. * * Return: True if a JIT allocation was freed, false otherwise. */ bool kbase_jit_evict(struct kbase_context *kctx); /** * kbase_jit_term - Terminate the JIT memory pool management * @kctx: kbase context */ void kbase_jit_term(struct kbase_context *kctx); /** * kbase_map_external_resource - Map an external resource to the GPU. * @kctx: kbase context. * @reg: The region to map. * @locked_mm: The mm_struct which has been locked for this operation. * @kds_res_count: The number of KDS resources. * @kds_resources: Array of KDS resources. * @kds_access_bitmap: Access bitmap for KDS. * @exclusive: If the KDS resource requires exclusive access. * * Return: The physical allocation which backs the region on success or NULL * on failure. */ struct kbase_mem_phy_alloc *kbase_map_external_resource( struct kbase_context *kctx, struct kbase_va_region *reg, struct mm_struct *locked_mm #ifdef CONFIG_KDS , u32 *kds_res_count, struct kds_resource **kds_resources, unsigned long *kds_access_bitmap, bool exclusive #endif ); /** * kbase_unmap_external_resource - Unmap an external resource from the GPU. * @kctx: kbase context. * @reg: The region to unmap or NULL if it has already been released. * @alloc: The physical allocation being unmapped. */ void kbase_unmap_external_resource(struct kbase_context *kctx, struct kbase_va_region *reg, struct kbase_mem_phy_alloc *alloc); /** * kbase_sticky_resource_init - Initialize sticky resource management. * @kctx: kbase context * * Returns zero on success or negative error number on failure. */ int kbase_sticky_resource_init(struct kbase_context *kctx); /** * kbase_sticky_resource_acquire - Acquire a reference on a sticky resource. * @kctx: kbase context. * @gpu_addr: The GPU address of the external resource. * * Return: The metadata object which represents the binding between the * external resource and the kbase context on success or NULL on failure. */ struct kbase_ctx_ext_res_meta *kbase_sticky_resource_acquire( struct kbase_context *kctx, u64 gpu_addr); /** * kbase_sticky_resource_release - Release a reference on a sticky resource. * @kctx: kbase context. * @meta: Binding metadata. * @gpu_addr: GPU address of the external resource. * * If meta is NULL then gpu_addr will be used to scan the metadata list and * find the matching metadata (if any), otherwise the provided meta will be * used and gpu_addr will be ignored. * * Return: True if the release found the metadata and the reference was dropped. */ bool kbase_sticky_resource_release(struct kbase_context *kctx, struct kbase_ctx_ext_res_meta *meta, u64 gpu_addr); /** * kbase_sticky_resource_term - Terminate sticky resource management. * @kctx: kbase context */ void kbase_sticky_resource_term(struct kbase_context *kctx); /** * kbase_zone_cache_update - Update the memory zone cache after new pages have * been added. * @alloc: The physical memory allocation to build the cache for. * @start_offset: Offset to where the new pages start. * * Updates an existing memory zone cache, updating the counters for the * various zones. * If the memory allocation doesn't already have a zone cache assume that * one isn't created and thus don't do anything. * * Return: Zero cache was updated, negative error code on error. */ int kbase_zone_cache_update(struct kbase_mem_phy_alloc *alloc, size_t start_offset); /** * kbase_zone_cache_build - Build the memory zone cache. * @alloc: The physical memory allocation to build the cache for. * * Create a new zone cache for the provided physical memory allocation if * one doesn't already exist, if one does exist then just return. * * Return: Zero if the zone cache was created, negative error code on error. */ int kbase_zone_cache_build(struct kbase_mem_phy_alloc *alloc); /** * kbase_zone_cache_clear - Clear the memory zone cache. * @alloc: The physical memory allocation to clear the cache on. */ void kbase_zone_cache_clear(struct kbase_mem_phy_alloc *alloc); #endif /* _KBASE_MEM_H_ */