summaryrefslogtreecommitdiff
path: root/gas/config/tc-i386.c
diff options
context:
space:
mode:
Diffstat (limited to 'gas/config/tc-i386.c')
-rw-r--r--gas/config/tc-i386.c4475
1 files changed, 4475 insertions, 0 deletions
diff --git a/gas/config/tc-i386.c b/gas/config/tc-i386.c
new file mode 100644
index 0000000000..7149d711b9
--- /dev/null
+++ b/gas/config/tc-i386.c
@@ -0,0 +1,4475 @@
+/* i386.c -- Assemble code for the Intel 80386
+ Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 1999
+ Free Software Foundation.
+
+ This file is part of GAS, the GNU Assembler.
+
+ GAS is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2, or (at your option)
+ any later version.
+
+ GAS is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with GAS; see the file COPYING. If not, write to the Free
+ Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+ 02111-1307, USA. */
+
+/*
+ Intel 80386 machine specific gas.
+ Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
+ Bugs & suggestions are completely welcome. This is free software.
+ Please help us make it better.
+ */
+
+#include <ctype.h>
+
+#include "as.h"
+#include "subsegs.h"
+#include "opcode/i386.h"
+
+#ifndef TC_RELOC
+#define TC_RELOC(X,Y) (Y)
+#endif
+
+#ifndef REGISTER_WARNINGS
+#define REGISTER_WARNINGS 1
+#endif
+
+#ifndef SCALE1_WHEN_NO_INDEX
+/* Specifying a scale factor besides 1 when there is no index is
+ futile. eg. `mov (%ebx,2),%al' does exactly the same as
+ `mov (%ebx),%al'. To slavishly follow what the programmer
+ specified, set SCALE1_WHEN_NO_INDEX to 0. */
+#define SCALE1_WHEN_NO_INDEX 1
+#endif
+
+#define true 1
+#define false 0
+
+static unsigned int mode_from_disp_size PARAMS ((unsigned int));
+static int fits_in_signed_byte PARAMS ((long));
+static int fits_in_unsigned_byte PARAMS ((long));
+static int fits_in_unsigned_word PARAMS ((long));
+static int fits_in_signed_word PARAMS ((long));
+static int smallest_imm_type PARAMS ((long));
+static int add_prefix PARAMS ((unsigned int));
+static void set_16bit_code_flag PARAMS ((int));
+static void set_intel_syntax PARAMS ((int));
+
+#ifdef BFD_ASSEMBLER
+static bfd_reloc_code_real_type reloc
+ PARAMS ((int, int, bfd_reloc_code_real_type));
+#endif
+
+/* 'md_assemble ()' gathers together information and puts it into a
+ i386_insn. */
+
+struct _i386_insn
+ {
+ /* TM holds the template for the insn were currently assembling. */
+ template tm;
+
+ /* SUFFIX holds the instruction mnemonic suffix if given.
+ (e.g. 'l' for 'movl') */
+ char suffix;
+
+ /* Operands are coded with OPERANDS, TYPES, DISPS, IMMS, and REGS. */
+
+ /* OPERANDS gives the number of given operands. */
+ unsigned int operands;
+
+ /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
+ of given register, displacement, memory operands and immediate
+ operands. */
+ unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
+
+ /* TYPES [i] is the type (see above #defines) which tells us how to
+ search through DISPS [i] & IMMS [i] & REGS [i] for the required
+ operand. */
+ unsigned int types[MAX_OPERANDS];
+
+ /* Displacements (if given) for each operand. */
+ expressionS *disps[MAX_OPERANDS];
+
+ /* Relocation type for operand */
+#ifdef BFD_ASSEMBLER
+ enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
+#else
+ int disp_reloc[MAX_OPERANDS];
+#endif
+
+ /* Immediate operands (if given) for each operand. */
+ expressionS *imms[MAX_OPERANDS];
+
+ /* Register operands (if given) for each operand. */
+ const reg_entry *regs[MAX_OPERANDS];
+
+ /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
+ the base index byte below. */
+ const reg_entry *base_reg;
+ const reg_entry *index_reg;
+ unsigned int log2_scale_factor;
+
+ /* SEG gives the seg_entries of this insn. They are zero unless
+ explicit segment overrides are given. */
+ const seg_entry *seg[2]; /* segments for memory operands (if given) */
+
+ /* PREFIX holds all the given prefix opcodes (usually null).
+ PREFIXES is the number of prefix opcodes. */
+ unsigned int prefixes;
+ unsigned char prefix[MAX_PREFIXES];
+
+ /* RM and SIB are the modrm byte and the sib byte where the
+ addressing modes of this insn are encoded. */
+
+ modrm_byte rm;
+ sib_byte sib;
+ };
+
+typedef struct _i386_insn i386_insn;
+
+/* List of chars besides those in app.c:symbol_chars that can start an
+ operand. Used to prevent the scrubber eating vital white-space. */
+#ifdef LEX_AT
+const char extra_symbol_chars[] = "*%-(@";
+#else
+const char extra_symbol_chars[] = "*%-(";
+#endif
+
+/* This array holds the chars that always start a comment. If the
+ pre-processor is disabled, these aren't very useful */
+#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX))
+/* Putting '/' here makes it impossible to use the divide operator.
+ However, we need it for compatibility with SVR4 systems. */
+const char comment_chars[] = "#/";
+#define PREFIX_SEPARATOR '\\'
+#else
+const char comment_chars[] = "#";
+#define PREFIX_SEPARATOR '/'
+#endif
+
+/* This array holds the chars that only start a comment at the beginning of
+ a line. If the line seems to have the form '# 123 filename'
+ .line and .file directives will appear in the pre-processed output */
+/* Note that input_file.c hand checks for '#' at the beginning of the
+ first line of the input file. This is because the compiler outputs
+ #NO_APP at the beginning of its output. */
+/* Also note that comments started like this one will always work if
+ '/' isn't otherwise defined. */
+#if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX))
+const char line_comment_chars[] = "";
+#else
+const char line_comment_chars[] = "/";
+#endif
+
+const char line_separator_chars[] = "";
+
+/* Chars that can be used to separate mant from exp in floating point nums */
+const char EXP_CHARS[] = "eE";
+
+/* Chars that mean this number is a floating point constant */
+/* As in 0f12.456 */
+/* or 0d1.2345e12 */
+const char FLT_CHARS[] = "fFdDxX";
+
+/* tables for lexical analysis */
+static char mnemonic_chars[256];
+static char register_chars[256];
+static char operand_chars[256];
+static char identifier_chars[256];
+static char digit_chars[256];
+
+/* lexical macros */
+#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
+#define is_operand_char(x) (operand_chars[(unsigned char) x])
+#define is_register_char(x) (register_chars[(unsigned char) x])
+#define is_space_char(x) ((x) == ' ')
+#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
+#define is_digit_char(x) (digit_chars[(unsigned char) x])
+
+/* put here all non-digit non-letter charcters that may occur in an operand */
+static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
+
+/* md_assemble() always leaves the strings it's passed unaltered. To
+ effect this we maintain a stack of saved characters that we've smashed
+ with '\0's (indicating end of strings for various sub-fields of the
+ assembler instruction). */
+static char save_stack[32];
+static char *save_stack_p; /* stack pointer */
+#define END_STRING_AND_SAVE(s) \
+ do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
+#define RESTORE_END_STRING(s) \
+ do { *(s) = *--save_stack_p; } while (0)
+
+/* The instruction we're assembling. */
+static i386_insn i;
+
+/* Possible templates for current insn. */
+static const templates *current_templates;
+
+/* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
+static expressionS disp_expressions[2], im_expressions[2];
+
+static int this_operand; /* current operand we are working on */
+
+static int flag_do_long_jump; /* FIXME what does this do? */
+
+static int flag_16bit_code; /* 1 if we're writing 16-bit code, 0 if 32-bit */
+
+static int intel_syntax = 0; /* 1 for intel syntax, 0 if att syntax */
+
+static int allow_naked_reg = 0; /* 1 if register prefix % not required */
+
+/* Interface to relax_segment.
+ There are 2 relax states for 386 jump insns: one for conditional &
+ one for unconditional jumps. This is because the these two types
+ of jumps add different sizes to frags when we're figuring out what
+ sort of jump to choose to reach a given label. */
+
+/* types */
+#define COND_JUMP 1 /* conditional jump */
+#define UNCOND_JUMP 2 /* unconditional jump */
+/* sizes */
+#define CODE16 1
+#define SMALL 0
+#define SMALL16 (SMALL|CODE16)
+#define BIG 2
+#define BIG16 (BIG|CODE16)
+
+#ifndef INLINE
+#ifdef __GNUC__
+#define INLINE __inline__
+#else
+#define INLINE
+#endif
+#endif
+
+#define ENCODE_RELAX_STATE(type,size) \
+ ((relax_substateT)((type<<2) | (size)))
+#define SIZE_FROM_RELAX_STATE(s) \
+ ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
+
+/* This table is used by relax_frag to promote short jumps to long
+ ones where necessary. SMALL (short) jumps may be promoted to BIG
+ (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
+ don't allow a short jump in a 32 bit code segment to be promoted to
+ a 16 bit offset jump because it's slower (requires data size
+ prefix), and doesn't work, unless the destination is in the bottom
+ 64k of the code segment (The top 16 bits of eip are zeroed). */
+
+const relax_typeS md_relax_table[] =
+{
+/* The fields are:
+ 1) most positive reach of this state,
+ 2) most negative reach of this state,
+ 3) how many bytes this mode will add to the size of the current frag
+ 4) which index into the table to try if we can't fit into this one.
+ */
+ {1, 1, 0, 0},
+ {1, 1, 0, 0},
+ {1, 1, 0, 0},
+ {1, 1, 0, 0},
+
+ {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
+ {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
+ /* dword conditionals adds 4 bytes to frag:
+ 1 extra opcode byte, 3 extra displacement bytes. */
+ {0, 0, 4, 0},
+ /* word conditionals add 2 bytes to frag:
+ 1 extra opcode byte, 1 extra displacement byte. */
+ {0, 0, 2, 0},
+
+ {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
+ {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
+ /* dword jmp adds 3 bytes to frag:
+ 0 extra opcode bytes, 3 extra displacement bytes. */
+ {0, 0, 3, 0},
+ /* word jmp adds 1 byte to frag:
+ 0 extra opcode bytes, 1 extra displacement byte. */
+ {0, 0, 1, 0}
+
+};
+
+
+void
+i386_align_code (fragP, count)
+ fragS *fragP;
+ int count;
+{
+ /* Various efficient no-op patterns for aligning code labels. */
+ /* Note: Don't try to assemble the instructions in the comments. */
+ /* 0L and 0w are not legal */
+ static const char f32_1[] =
+ {0x90}; /* nop */
+ static const char f32_2[] =
+ {0x89,0xf6}; /* movl %esi,%esi */
+ static const char f32_3[] =
+ {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
+ static const char f32_4[] =
+ {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
+ static const char f32_5[] =
+ {0x90, /* nop */
+ 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
+ static const char f32_6[] =
+ {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
+ static const char f32_7[] =
+ {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
+ static const char f32_8[] =
+ {0x90, /* nop */
+ 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
+ static const char f32_9[] =
+ {0x89,0xf6, /* movl %esi,%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_10[] =
+ {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_11[] =
+ {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_12[] =
+ {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
+ 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
+ static const char f32_13[] =
+ {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_14[] =
+ {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
+ 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
+ static const char f32_15[] =
+ {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
+ 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
+ static const char f16_4[] =
+ {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
+ static const char f16_5[] =
+ {0x90, /* nop */
+ 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
+ static const char f16_6[] =
+ {0x89,0xf6, /* mov %si,%si */
+ 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
+ static const char f16_7[] =
+ {0x8d,0x74,0x00, /* lea 0(%si),%si */
+ 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
+ static const char f16_8[] =
+ {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
+ 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
+ static const char *const f32_patt[] = {
+ f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
+ f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
+ };
+ static const char *const f16_patt[] = {
+ f32_1, f32_2, f32_3, f16_4, f16_5, f16_6, f16_7, f16_8,
+ f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
+ };
+
+ if (count > 0 && count <= 15)
+ {
+ if (flag_16bit_code)
+ {
+ memcpy(fragP->fr_literal + fragP->fr_fix,
+ f16_patt[count - 1], count);
+ if (count > 8) /* adjust jump offset */
+ fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
+ }
+ else
+ memcpy(fragP->fr_literal + fragP->fr_fix,
+ f32_patt[count - 1], count);
+ fragP->fr_var = count;
+ }
+}
+
+static char *output_invalid PARAMS ((int c));
+static int i386_operand PARAMS ((char *operand_string));
+static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
+static const reg_entry *parse_register PARAMS ((char *reg_string,
+ char **end_op));
+
+#ifndef I386COFF
+static void s_bss PARAMS ((int));
+#endif
+
+symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
+
+static INLINE unsigned int
+mode_from_disp_size (t)
+ unsigned int t;
+{
+ return (t & Disp8) ? 1 : (t & (Disp16|Disp32)) ? 2 : 0;
+}
+
+static INLINE int
+fits_in_signed_byte (num)
+ long num;
+{
+ return (num >= -128) && (num <= 127);
+} /* fits_in_signed_byte() */
+
+static INLINE int
+fits_in_unsigned_byte (num)
+ long num;
+{
+ return (num & 0xff) == num;
+} /* fits_in_unsigned_byte() */
+
+static INLINE int
+fits_in_unsigned_word (num)
+ long num;
+{
+ return (num & 0xffff) == num;
+} /* fits_in_unsigned_word() */
+
+static INLINE int
+fits_in_signed_word (num)
+ long num;
+{
+ return (-32768 <= num) && (num <= 32767);
+} /* fits_in_signed_word() */
+
+static int
+smallest_imm_type (num)
+ long num;
+{
+#if 0
+ /* This code is disabled because all the Imm1 forms in the opcode table
+ are slower on the i486, and they're the versions with the implicitly
+ specified single-position displacement, which has another syntax if
+ you really want to use that form. If you really prefer to have the
+ one-byte-shorter Imm1 form despite these problems, re-enable this
+ code. */
+ if (num == 1)
+ return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
+#endif
+ return (fits_in_signed_byte (num)
+ ? (Imm8S | Imm8 | Imm16 | Imm32)
+ : fits_in_unsigned_byte (num)
+ ? (Imm8 | Imm16 | Imm32)
+ : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
+ ? (Imm16 | Imm32)
+ : (Imm32));
+} /* smallest_imm_type() */
+
+/* Returns 0 if attempting to add a prefix where one from the same
+ class already exists, 1 if non rep/repne added, 2 if rep/repne
+ added. */
+static int
+add_prefix (prefix)
+ unsigned int prefix;
+{
+ int ret = 1;
+ int q;
+
+ switch (prefix)
+ {
+ default:
+ abort ();
+
+ case CS_PREFIX_OPCODE:
+ case DS_PREFIX_OPCODE:
+ case ES_PREFIX_OPCODE:
+ case FS_PREFIX_OPCODE:
+ case GS_PREFIX_OPCODE:
+ case SS_PREFIX_OPCODE:
+ q = SEG_PREFIX;
+ break;
+
+ case REPNE_PREFIX_OPCODE:
+ case REPE_PREFIX_OPCODE:
+ ret = 2;
+ /* fall thru */
+ case LOCK_PREFIX_OPCODE:
+ q = LOCKREP_PREFIX;
+ break;
+
+ case FWAIT_OPCODE:
+ q = WAIT_PREFIX;
+ break;
+
+ case ADDR_PREFIX_OPCODE:
+ q = ADDR_PREFIX;
+ break;
+
+ case DATA_PREFIX_OPCODE:
+ q = DATA_PREFIX;
+ break;
+ }
+
+ if (i.prefix[q])
+ {
+ as_bad (_("same type of prefix used twice"));
+ return 0;
+ }
+
+ i.prefixes += 1;
+ i.prefix[q] = prefix;
+ return ret;
+}
+
+static void
+set_16bit_code_flag (new_16bit_code_flag)
+ int new_16bit_code_flag;
+{
+ flag_16bit_code = new_16bit_code_flag;
+}
+
+static void
+set_intel_syntax (syntax_flag)
+ int syntax_flag;
+{
+ /* Find out if register prefixing is specified. */
+ int ask_naked_reg = 0;
+
+ SKIP_WHITESPACE ();
+ if (! is_end_of_line[(unsigned char) *input_line_pointer])
+ {
+ char *string = input_line_pointer;
+ int e = get_symbol_end ();
+
+ if (strcmp(string, "prefix") == 0)
+ ask_naked_reg = 1;
+ else if (strcmp(string, "noprefix") == 0)
+ ask_naked_reg = -1;
+ else
+ as_bad (_("Bad argument to syntax directive."));
+ *input_line_pointer = e;
+ }
+ demand_empty_rest_of_line ();
+
+ intel_syntax = syntax_flag;
+
+ if (ask_naked_reg == 0)
+ {
+#ifdef BFD_ASSEMBLER
+ allow_naked_reg = (intel_syntax
+ && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
+#else
+ allow_naked_reg = 0; /* conservative default */
+#endif
+ }
+ else
+ allow_naked_reg = (ask_naked_reg < 0);
+}
+
+const pseudo_typeS md_pseudo_table[] =
+{
+#ifndef I386COFF
+ {"bss", s_bss, 0},
+#endif
+#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
+ {"align", s_align_bytes, 0},
+#else
+ {"align", s_align_ptwo, 0},
+#endif
+ {"ffloat", float_cons, 'f'},
+ {"dfloat", float_cons, 'd'},
+ {"tfloat", float_cons, 'x'},
+ {"value", cons, 2},
+ {"noopt", s_ignore, 0},
+ {"optim", s_ignore, 0},
+ {"code16", set_16bit_code_flag, 1},
+ {"code32", set_16bit_code_flag, 0},
+ {"intel_syntax", set_intel_syntax, 1},
+ {"att_syntax", set_intel_syntax, 0},
+ {0, 0, 0}
+};
+
+/* for interface with expression () */
+extern char *input_line_pointer;
+
+/* hash table for instruction mnemonic lookup */
+static struct hash_control *op_hash;
+/* hash table for register lookup */
+static struct hash_control *reg_hash;
+
+
+void
+md_begin ()
+{
+ const char *hash_err;
+
+ /* initialize op_hash hash table */
+ op_hash = hash_new ();
+
+ {
+ register const template *optab;
+ register templates *core_optab;
+
+ optab = i386_optab; /* setup for loop */
+ core_optab = (templates *) xmalloc (sizeof (templates));
+ core_optab->start = optab;
+
+ while (1)
+ {
+ ++optab;
+ if (optab->name == NULL
+ || strcmp (optab->name, (optab - 1)->name) != 0)
+ {
+ /* different name --> ship out current template list;
+ add to hash table; & begin anew */
+ core_optab->end = optab;
+ hash_err = hash_insert (op_hash,
+ (optab - 1)->name,
+ (PTR) core_optab);
+ if (hash_err)
+ {
+ hash_error:
+ as_fatal (_("Internal Error: Can't hash %s: %s"),
+ (optab - 1)->name,
+ hash_err);
+ }
+ if (optab->name == NULL)
+ break;
+ core_optab = (templates *) xmalloc (sizeof (templates));
+ core_optab->start = optab;
+ }
+ }
+ }
+
+ /* initialize reg_hash hash table */
+ reg_hash = hash_new ();
+ {
+ register const reg_entry *regtab;
+
+ for (regtab = i386_regtab;
+ regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
+ regtab++)
+ {
+ hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
+ if (hash_err)
+ goto hash_error;
+ }
+ }
+
+ /* fill in lexical tables: mnemonic_chars, operand_chars. */
+ {
+ register int c;
+ register char *p;
+
+ for (c = 0; c < 256; c++)
+ {
+ if (isdigit (c))
+ {
+ digit_chars[c] = c;
+ mnemonic_chars[c] = c;
+ register_chars[c] = c;
+ operand_chars[c] = c;
+ }
+ else if (islower (c))
+ {
+ mnemonic_chars[c] = c;
+ register_chars[c] = c;
+ operand_chars[c] = c;
+ }
+ else if (isupper (c))
+ {
+ mnemonic_chars[c] = tolower (c);
+ register_chars[c] = mnemonic_chars[c];
+ operand_chars[c] = c;
+ }
+
+ if (isalpha (c) || isdigit (c))
+ identifier_chars[c] = c;
+ else if (c >= 128)
+ {
+ identifier_chars[c] = c;
+ operand_chars[c] = c;
+ }
+ }
+
+#ifdef LEX_AT
+ identifier_chars['@'] = '@';
+#endif
+ register_chars[')'] = ')';
+ register_chars['('] = '(';
+ digit_chars['-'] = '-';
+ identifier_chars['_'] = '_';
+ identifier_chars['.'] = '.';
+
+ for (p = operand_special_chars; *p != '\0'; p++)
+ operand_chars[(unsigned char) *p] = *p;
+ }
+
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
+ {
+ record_alignment (text_section, 2);
+ record_alignment (data_section, 2);
+ record_alignment (bss_section, 2);
+ }
+#endif
+}
+
+void
+i386_print_statistics (file)
+ FILE *file;
+{
+ hash_print_statistics (file, "i386 opcode", op_hash);
+ hash_print_statistics (file, "i386 register", reg_hash);
+}
+
+
+#ifdef DEBUG386
+
+/* debugging routines for md_assemble */
+static void pi PARAMS ((char *, i386_insn *));
+static void pte PARAMS ((template *));
+static void pt PARAMS ((unsigned int));
+static void pe PARAMS ((expressionS *));
+static void ps PARAMS ((symbolS *));
+
+static void
+pi (line, x)
+ char *line;
+ i386_insn *x;
+{
+ register template *p;
+ int i;
+
+ fprintf (stdout, "%s: template ", line);
+ pte (&x->tm);
+ fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
+ x->rm.mode, x->rm.reg, x->rm.regmem);
+ fprintf (stdout, " base %x index %x scale %x\n",
+ x->bi.base, x->bi.index, x->bi.scale);
+ for (i = 0; i < x->operands; i++)
+ {
+ fprintf (stdout, " #%d: ", i + 1);
+ pt (x->types[i]);
+ fprintf (stdout, "\n");
+ if (x->types[i]
+ & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX))
+ fprintf (stdout, "%s\n", x->regs[i]->reg_name);
+ if (x->types[i] & Imm)
+ pe (x->imms[i]);
+ if (x->types[i] & Disp)
+ pe (x->disps[i]);
+ }
+}
+
+static void
+pte (t)
+ template *t;
+{
+ int i;
+ fprintf (stdout, " %d operands ", t->operands);
+ fprintf (stdout, "opcode %x ",
+ t->base_opcode);
+ if (t->extension_opcode != None)
+ fprintf (stdout, "ext %x ", t->extension_opcode);
+ if (t->opcode_modifier & D)
+ fprintf (stdout, "D");
+ if (t->opcode_modifier & W)
+ fprintf (stdout, "W");
+ fprintf (stdout, "\n");
+ for (i = 0; i < t->operands; i++)
+ {
+ fprintf (stdout, " #%d type ", i + 1);
+ pt (t->operand_types[i]);
+ fprintf (stdout, "\n");
+ }
+}
+
+static void
+pe (e)
+ expressionS *e;
+{
+ fprintf (stdout, " operation %d\n", e->X_op);
+ fprintf (stdout, " add_number %d (%x)\n",
+ e->X_add_number, e->X_add_number);
+ if (e->X_add_symbol)
+ {
+ fprintf (stdout, " add_symbol ");
+ ps (e->X_add_symbol);
+ fprintf (stdout, "\n");
+ }
+ if (e->X_op_symbol)
+ {
+ fprintf (stdout, " op_symbol ");
+ ps (e->X_op_symbol);
+ fprintf (stdout, "\n");
+ }
+}
+
+static void
+ps (s)
+ symbolS *s;
+{
+ fprintf (stdout, "%s type %s%s",
+ S_GET_NAME (s),
+ S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
+ segment_name (S_GET_SEGMENT (s)));
+}
+
+struct type_name
+ {
+ unsigned int mask;
+ char *tname;
+ }
+
+type_names[] =
+{
+ { Reg8, "r8" },
+ { Reg16, "r16" },
+ { Reg32, "r32" },
+ { Imm8, "i8" },
+ { Imm8S, "i8s" },
+ { Imm16, "i16" },
+ { Imm32, "i32" },
+ { Imm1, "i1" },
+ { BaseIndex, "BaseIndex" },
+ { Disp8, "d8" },
+ { Disp16, "d16" },
+ { Disp32, "d32" },
+ { InOutPortReg, "InOutPortReg" },
+ { ShiftCount, "ShiftCount" },
+ { Control, "control reg" },
+ { Test, "test reg" },
+ { Debug, "debug reg" },
+ { FloatReg, "FReg" },
+ { FloatAcc, "FAcc" },
+ { SReg2, "SReg2" },
+ { SReg3, "SReg3" },
+ { Acc, "Acc" },
+ { JumpAbsolute, "Jump Absolute" },
+ { RegMMX, "rMMX" },
+ { EsSeg, "es" },
+ { 0, "" }
+};
+
+static void
+pt (t)
+ unsigned int t;
+{
+ register struct type_name *ty;
+
+ if (t == Unknown)
+ {
+ fprintf (stdout, _("Unknown"));
+ }
+ else
+ {
+ for (ty = type_names; ty->mask; ty++)
+ if (t & ty->mask)
+ fprintf (stdout, "%s, ", ty->tname);
+ }
+ fflush (stdout);
+}
+
+#endif /* DEBUG386 */
+
+int
+tc_i386_force_relocation (fixp)
+ struct fix *fixp;
+{
+#ifdef BFD_ASSEMBLER
+ if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
+ || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
+ return 1;
+ return 0;
+#else
+ /* For COFF */
+ return fixp->fx_r_type==7;
+#endif
+}
+
+#ifdef BFD_ASSEMBLER
+static bfd_reloc_code_real_type reloc
+ PARAMS ((int, int, bfd_reloc_code_real_type));
+
+static bfd_reloc_code_real_type
+reloc (size, pcrel, other)
+ int size;
+ int pcrel;
+ bfd_reloc_code_real_type other;
+{
+ if (other != NO_RELOC) return other;
+
+ if (pcrel)
+ {
+ switch (size)
+ {
+ case 1: return BFD_RELOC_8_PCREL;
+ case 2: return BFD_RELOC_16_PCREL;
+ case 4: return BFD_RELOC_32_PCREL;
+ }
+ as_bad (_("Can not do %d byte pc-relative relocation"), size);
+ }
+ else
+ {
+ switch (size)
+ {
+ case 1: return BFD_RELOC_8;
+ case 2: return BFD_RELOC_16;
+ case 4: return BFD_RELOC_32;
+ }
+ as_bad (_("Can not do %d byte relocation"), size);
+ }
+
+ return BFD_RELOC_NONE;
+}
+
+/*
+ * Here we decide which fixups can be adjusted to make them relative to
+ * the beginning of the section instead of the symbol. Basically we need
+ * to make sure that the dynamic relocations are done correctly, so in
+ * some cases we force the original symbol to be used.
+ */
+int
+tc_i386_fix_adjustable(fixP)
+ fixS * fixP;
+{
+#ifdef OBJ_ELF
+ /* Prevent all adjustments to global symbols. */
+ if (S_IS_EXTERN (fixP->fx_addsy))
+ return 0;
+ if (S_IS_WEAK (fixP->fx_addsy))
+ return 0;
+#endif
+ /* adjust_reloc_syms doesn't know about the GOT */
+ if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
+ || fixP->fx_r_type == BFD_RELOC_386_PLT32
+ || fixP->fx_r_type == BFD_RELOC_386_GOT32
+ || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
+ || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
+ return 0;
+ return 1;
+}
+#else
+#define reloc(SIZE,PCREL,OTHER) 0
+#define BFD_RELOC_16 0
+#define BFD_RELOC_32 0
+#define BFD_RELOC_16_PCREL 0
+#define BFD_RELOC_32_PCREL 0
+#define BFD_RELOC_386_PLT32 0
+#define BFD_RELOC_386_GOT32 0
+#define BFD_RELOC_386_GOTOFF 0
+#endif
+
+int
+intel_float_operand (mnemonic)
+ char *mnemonic;
+{
+ if (mnemonic[0] == 'f' && mnemonic[1] =='i')
+ return 0;
+
+ if (mnemonic[0] == 'f')
+ return 1;
+
+ return 0;
+}
+
+/* This is the guts of the machine-dependent assembler. LINE points to a
+ machine dependent instruction. This function is supposed to emit
+ the frags/bytes it assembles to. */
+
+void
+md_assemble (line)
+ char *line;
+{
+ /* Points to template once we've found it. */
+ const template *t;
+
+ /* Count the size of the instruction generated. */
+ int insn_size = 0;
+
+ int j;
+
+ char mnemonic[MAX_MNEM_SIZE];
+
+ /* Initialize globals. */
+ memset (&i, '\0', sizeof (i));
+ for (j = 0; j < MAX_OPERANDS; j++)
+ i.disp_reloc[j] = NO_RELOC;
+ memset (disp_expressions, '\0', sizeof (disp_expressions));
+ memset (im_expressions, '\0', sizeof (im_expressions));
+ save_stack_p = save_stack; /* reset stack pointer */
+
+ /* First parse an instruction mnemonic & call i386_operand for the operands.
+ We assume that the scrubber has arranged it so that line[0] is the valid
+ start of a (possibly prefixed) mnemonic. */
+ {
+ char *l = line;
+ char *token_start = l;
+ char *mnem_p;
+
+ /* Non-zero if we found a prefix only acceptable with string insns. */
+ const char *expecting_string_instruction = NULL;
+
+ while (1)
+ {
+ mnem_p = mnemonic;
+ while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
+ {
+ mnem_p++;
+ if (mnem_p >= mnemonic + sizeof (mnemonic))
+ {
+ as_bad (_("no such 386 instruction: `%s'"), token_start);
+ return;
+ }
+ l++;
+ }
+ if (!is_space_char (*l)
+ && *l != END_OF_INSN
+ && *l != PREFIX_SEPARATOR)
+ {
+ as_bad (_("invalid character %s in mnemonic"),
+ output_invalid (*l));
+ return;
+ }
+ if (token_start == l)
+ {
+ if (*l == PREFIX_SEPARATOR)
+ as_bad (_("expecting prefix; got nothing"));
+ else
+ as_bad (_("expecting mnemonic; got nothing"));
+ return;
+ }
+
+ /* Look up instruction (or prefix) via hash table. */
+ current_templates = hash_find (op_hash, mnemonic);
+
+ if (*l != END_OF_INSN
+ && (! is_space_char (*l) || l[1] != END_OF_INSN)
+ && current_templates
+ && (current_templates->start->opcode_modifier & IsPrefix))
+ {
+ /* If we are in 16-bit mode, do not allow addr16 or data16.
+ Similarly, in 32-bit mode, do not allow addr32 or data32. */
+ if ((current_templates->start->opcode_modifier & (Size16 | Size32))
+ && (((current_templates->start->opcode_modifier & Size32) != 0)
+ ^ flag_16bit_code))
+ {
+ as_bad (_("redundant %s prefix"),
+ current_templates->start->name);
+ return;
+ }
+ /* Add prefix, checking for repeated prefixes. */
+ switch (add_prefix (current_templates->start->base_opcode))
+ {
+ case 0:
+ return;
+ case 2:
+ expecting_string_instruction =
+ current_templates->start->name;
+ break;
+ }
+ /* Skip past PREFIX_SEPARATOR and reset token_start. */
+ token_start = ++l;
+ }
+ else
+ break;
+ }
+
+ if (!current_templates)
+ {
+ /* See if we can get a match by trimming off a suffix. */
+ switch (mnem_p[-1])
+ {
+ case DWORD_MNEM_SUFFIX:
+ case WORD_MNEM_SUFFIX:
+ case BYTE_MNEM_SUFFIX:
+ case SHORT_MNEM_SUFFIX:
+#if LONG_MNEM_SUFFIX != DWORD_MNEM_SUFFIX
+ case LONG_MNEM_SUFFIX:
+#endif
+ i.suffix = mnem_p[-1];
+ mnem_p[-1] = '\0';
+ current_templates = hash_find (op_hash, mnemonic);
+ break;
+
+ /* Intel Syntax */
+ case INTEL_DWORD_MNEM_SUFFIX:
+ if (intel_syntax)
+ {
+ i.suffix = mnem_p[-1];
+ mnem_p[-1] = '\0';
+ current_templates = hash_find (op_hash, mnemonic);
+ break;
+ }
+ }
+ if (!current_templates)
+ {
+ as_bad (_("no such 386 instruction: `%s'"), token_start);
+ return;
+ }
+ }
+
+ /* check for rep/repne without a string instruction */
+ if (expecting_string_instruction
+ && !(current_templates->start->opcode_modifier & IsString))
+ {
+ as_bad (_("expecting string instruction after `%s'"),
+ expecting_string_instruction);
+ return;
+ }
+
+ /* There may be operands to parse. */
+ if (*l != END_OF_INSN)
+ {
+ /* parse operands */
+
+ /* 1 if operand is pending after ','. */
+ unsigned int expecting_operand = 0;
+
+ /* Non-zero if operand parens not balanced. */
+ unsigned int paren_not_balanced;
+
+ do
+ {
+ /* skip optional white space before operand */
+ if (is_space_char (*l))
+ ++l;
+ if (!is_operand_char (*l) && *l != END_OF_INSN)
+ {
+ as_bad (_("invalid character %s before operand %d"),
+ output_invalid (*l),
+ i.operands + 1);
+ return;
+ }
+ token_start = l; /* after white space */
+ paren_not_balanced = 0;
+ while (paren_not_balanced || *l != ',')
+ {
+ if (*l == END_OF_INSN)
+ {
+ if (paren_not_balanced)
+ {
+ if (!intel_syntax)
+ as_bad (_("unbalanced parenthesis in operand %d."),
+ i.operands + 1);
+ else
+ as_bad (_("unbalanced brackets in operand %d."),
+ i.operands + 1);
+ return;
+ }
+ else
+ break; /* we are done */
+ }
+ else if (!is_operand_char (*l) && !is_space_char (*l))
+ {
+ as_bad (_("invalid character %s in operand %d"),
+ output_invalid (*l),
+ i.operands + 1);
+ return;
+ }
+ if (!intel_syntax)
+ {
+ if (*l == '(')
+ ++paren_not_balanced;
+ if (*l == ')')
+ --paren_not_balanced;
+ }
+ else
+ {
+ if (*l == '[')
+ ++paren_not_balanced;
+ if (*l == ']')
+ --paren_not_balanced;
+ }
+ l++;
+ }
+ if (l != token_start)
+ { /* yes, we've read in another operand */
+ unsigned int operand_ok;
+ this_operand = i.operands++;
+ if (i.operands > MAX_OPERANDS)
+ {
+ as_bad (_("spurious operands; (%d operands/instruction max)"),
+ MAX_OPERANDS);
+ return;
+ }
+ /* now parse operand adding info to 'i' as we go along */
+ END_STRING_AND_SAVE (l);
+
+ if (intel_syntax)
+ operand_ok = i386_intel_operand (token_start, intel_float_operand (mnemonic));
+ else
+ operand_ok = i386_operand (token_start);
+
+ RESTORE_END_STRING (l); /* restore old contents */
+ if (!operand_ok)
+ return;
+ }
+ else
+ {
+ if (expecting_operand)
+ {
+ expecting_operand_after_comma:
+ as_bad (_("expecting operand after ','; got nothing"));
+ return;
+ }
+ if (*l == ',')
+ {
+ as_bad (_("expecting operand before ','; got nothing"));
+ return;
+ }
+ }
+
+ /* now *l must be either ',' or END_OF_INSN */
+ if (*l == ',')
+ {
+ if (*++l == END_OF_INSN)
+ { /* just skip it, if it's \n complain */
+ goto expecting_operand_after_comma;
+ }
+ expecting_operand = 1;
+ }
+ }
+ while (*l != END_OF_INSN); /* until we get end of insn */
+ }
+ }
+
+ /* Now we've parsed the mnemonic into a set of templates, and have the
+ operands at hand.
+
+ Next, we find a template that matches the given insn,
+ making sure the overlap of the given operands types is consistent
+ with the template operand types. */
+
+#define MATCH(overlap, given, template) \
+ ((overlap) \
+ && ((given) & BaseIndex) == ((overlap) & BaseIndex) \
+ && ((given) & JumpAbsolute) == ((template) & JumpAbsolute))
+
+ /* If given types r0 and r1 are registers they must be of the same type
+ unless the expected operand type register overlap is null.
+ Note that Acc in a template matches every size of reg. */
+#define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
+ ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
+ ((g0) & Reg) == ((g1) & Reg) || \
+ ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
+
+ {
+ register unsigned int overlap0, overlap1;
+ expressionS *exp;
+ unsigned int overlap2;
+ unsigned int found_reverse_match;
+ int suffix_check;
+
+ /* All intel opcodes have reversed operands except for BOUND and ENTER */
+ if (intel_syntax
+ && (strcmp (mnemonic, "enter") != 0)
+ && (strcmp (mnemonic, "bound") != 0)
+ && (strncmp (mnemonic, "fsub", 4) !=0)
+ && (strncmp (mnemonic, "fdiv", 4) !=0))
+ {
+ const reg_entry *temp_reg;
+ expressionS *temp_disp;
+ expressionS *temp_imm;
+ unsigned int temp_type;
+ int xchg1, xchg2;
+
+ if (i.operands == 2)
+ {
+ xchg1 = 0;
+ xchg2 = 1;
+ }
+ else if (i.operands == 3)
+ {
+ xchg1 = 0;
+ xchg2 = 2;
+ }
+
+ if (i.operands > 1)
+ {
+ temp_type = i.types[xchg2];
+ if (temp_type & (Reg | FloatReg))
+ temp_reg = i.regs[xchg2];
+ else if (temp_type & Imm)
+ temp_imm = i.imms[xchg2];
+ else if (temp_type & Disp)
+ temp_disp = i.disps[xchg2];
+
+ i.types[xchg2] = i.types[xchg1];
+
+ if (i.types[xchg1] & (Reg | FloatReg))
+ {
+ i.regs[xchg2] = i.regs[xchg1];
+ i.regs[xchg1] = NULL;
+ }
+ else if (i.types[xchg2] & Imm)
+ {
+ i.imms[xchg2] = i.imms[xchg1];
+ i.imms[xchg1] = NULL;
+ }
+ else if (i.types[xchg2] & Disp)
+ {
+ i.disps[xchg2] = i.disps[xchg1];
+ i.disps[xchg1] = NULL;
+ }
+
+ if (temp_type & (Reg | FloatReg))
+ {
+ i.regs[xchg1] = temp_reg;
+ if (! (i.types[xchg1] & (Reg | FloatReg)))
+ i.regs[xchg2] = NULL;
+ }
+ else if (temp_type & Imm)
+ {
+ i.imms[xchg1] = temp_imm;
+ if (! (i.types[xchg1] & Imm))
+ i.imms[xchg2] = NULL;
+ }
+ else if (temp_type & Disp)
+ {
+ i.disps[xchg1] = temp_disp;
+ if (! (i.types[xchg1] & Disp))
+ i.disps[xchg2] = NULL;
+ }
+
+ i.types[xchg1] = temp_type;
+ }
+ if (!strcmp(mnemonic,"jmp")
+ || !strcmp (mnemonic, "call"))
+ if ((i.types[0] & Reg) || i.types[0] & BaseIndex)
+ i.types[0] |= JumpAbsolute;
+
+ }
+ overlap0 = 0;
+ overlap1 = 0;
+ overlap2 = 0;
+ found_reverse_match = 0;
+ suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
+ ? No_bSuf
+ : (i.suffix == WORD_MNEM_SUFFIX
+ ? No_wSuf
+ : (i.suffix == SHORT_MNEM_SUFFIX
+ ? No_sSuf
+ : (i.suffix == LONG_MNEM_SUFFIX
+ ? No_lSuf
+ : (i.suffix == INTEL_DWORD_MNEM_SUFFIX
+ ? No_dSuf
+ : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
+
+ for (t = current_templates->start;
+ t < current_templates->end;
+ t++)
+ {
+ /* Must have right number of operands. */
+ if (i.operands != t->operands)
+ continue;
+
+ /* For some opcodes, don't check the suffix */
+ if (intel_syntax)
+ {
+ if (strcmp (t->name, "fnstcw")
+ && strcmp (t->name, "fldcw")
+ && (t->opcode_modifier & suffix_check))
+ continue;
+ }
+ /* Must not have disallowed suffix. */
+ else if ((t->opcode_modifier & suffix_check))
+ continue;
+
+ else if (!t->operands)
+ break; /* 0 operands always matches */
+
+ overlap0 = i.types[0] & t->operand_types[0];
+ switch (t->operands)
+ {
+ case 1:
+ if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
+ continue;
+ break;
+ case 2:
+ case 3:
+ overlap1 = i.types[1] & t->operand_types[1];
+ if (!MATCH (overlap0, i.types[0], t->operand_types[0])
+ || !MATCH (overlap1, i.types[1], t->operand_types[1])
+ || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
+ t->operand_types[0],
+ overlap1, i.types[1],
+ t->operand_types[1]))
+ {
+
+ /* check if other direction is valid ... */
+ if ((t->opcode_modifier & (D|FloatD)) == 0)
+ continue;
+
+ /* try reversing direction of operands */
+ overlap0 = i.types[0] & t->operand_types[1];
+ overlap1 = i.types[1] & t->operand_types[0];
+ if (!MATCH (overlap0, i.types[0], t->operand_types[1])
+ || !MATCH (overlap1, i.types[1], t->operand_types[0])
+ || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
+ t->operand_types[1],
+ overlap1, i.types[1],
+ t->operand_types[0]))
+ {
+ /* does not match either direction */
+ continue;
+ }
+ /* found_reverse_match holds which of D or FloatDR
+ we've found. */
+ found_reverse_match = t->opcode_modifier & (D|FloatDR);
+ break;
+ }
+ /* found a forward 2 operand match here */
+ if (t->operands == 3)
+ {
+ /* Here we make use of the fact that there are no
+ reverse match 3 operand instructions, and all 3
+ operand instructions only need to be checked for
+ register consistency between operands 2 and 3. */
+ overlap2 = i.types[2] & t->operand_types[2];
+ if (!MATCH (overlap2, i.types[2], t->operand_types[2])
+ || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
+ t->operand_types[1],
+ overlap2, i.types[2],
+ t->operand_types[2]))
+
+ continue;
+ }
+ /* found either forward/reverse 2 or 3 operand match here:
+ slip through to break */
+ }
+ break; /* we've found a match; break out of loop */
+ } /* for (t = ... */
+ if (t == current_templates->end)
+ { /* we found no match */
+ as_bad (_("suffix or operands invalid for `%s'"),
+ current_templates->start->name);
+ return;
+ }
+
+ if ((t->opcode_modifier & (IsPrefix|IgnoreSize)) == (IsPrefix|IgnoreSize))
+ {
+ /* Warn them that a data or address size prefix doesn't affect
+ assembly of the next line of code. */
+ as_warn (_("stand-alone `%s' prefix"), t->name);
+ }
+
+ /* Copy the template we found. */
+ i.tm = *t;
+ if (found_reverse_match)
+ {
+ i.tm.operand_types[0] = t->operand_types[1];
+ i.tm.operand_types[1] = t->operand_types[0];
+ }
+
+
+ if (i.tm.opcode_modifier & FWait)
+ if (! add_prefix (FWAIT_OPCODE))
+ return;
+
+ /* Check string instruction segment overrides */
+ if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
+ {
+ int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
+ if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
+ {
+ if (i.seg[0] != NULL && i.seg[0] != &es)
+ {
+ as_bad (_("`%s' operand %d must use `%%es' segment"),
+ i.tm.name,
+ mem_op + 1);
+ return;
+ }
+ /* There's only ever one segment override allowed per instruction.
+ This instruction possibly has a legal segment override on the
+ second operand, so copy the segment to where non-string
+ instructions store it, allowing common code. */
+ i.seg[0] = i.seg[1];
+ }
+ else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
+ {
+ if (i.seg[1] != NULL && i.seg[1] != &es)
+ {
+ as_bad (_("`%s' operand %d must use `%%es' segment"),
+ i.tm.name,
+ mem_op + 2);
+ return;
+ }
+ }
+ }
+
+ /* If matched instruction specifies an explicit instruction mnemonic
+ suffix, use it. */
+ if (i.tm.opcode_modifier & (Size16 | Size32))
+ {
+ if (i.tm.opcode_modifier & Size16)
+ i.suffix = WORD_MNEM_SUFFIX;
+ else
+ i.suffix = DWORD_MNEM_SUFFIX;
+ }
+ else if (i.reg_operands)
+ {
+ /* If there's no instruction mnemonic suffix we try to invent one
+ based on register operands. */
+ if (!i.suffix)
+ {
+ /* We take i.suffix from the last register operand specified,
+ Destination register type is more significant than source
+ register type. */
+ int op;
+ for (op = i.operands; --op >= 0; )
+ if (i.types[op] & Reg)
+ {
+ i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
+ (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
+ DWORD_MNEM_SUFFIX);
+ break;
+ }
+ }
+ else if (i.suffix == BYTE_MNEM_SUFFIX)
+ {
+ int op;
+ for (op = i.operands; --op >= 0; )
+ {
+ /* If this is an eight bit register, it's OK. If it's
+ the 16 or 32 bit version of an eight bit register,
+ we will just use the low portion, and that's OK too. */
+ if (i.types[op] & Reg8)
+ continue;
+
+ /* movzx and movsx should not generate this warning. */
+ if (intel_syntax
+ && (i.tm.base_opcode == 0xfb7
+ || i.tm.base_opcode == 0xfb6
+ || i.tm.base_opcode == 0xfbe
+ || i.tm.base_opcode == 0xfbf))
+ continue;
+
+ if ((i.types[op] & WordReg) && i.regs[op]->reg_num < 4
+#if 0
+ /* Check that the template allows eight bit regs
+ This kills insns such as `orb $1,%edx', which
+ maybe should be allowed. */
+ && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
+#endif
+ )
+ {
+#if REGISTER_WARNINGS
+ if ((i.tm.operand_types[op] & InOutPortReg) == 0)
+ as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
+ (i.regs[op] - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
+ i.regs[op]->reg_name,
+ i.suffix);
+#endif
+ continue;
+ }
+ /* Any other register is bad */
+ if (i.types[op] & (Reg | RegMMX | Control | Debug | Test
+ | FloatReg | FloatAcc | SReg2 | SReg3))
+ {
+ as_bad (_("`%%%s' not allowed with `%s%c'"),
+ i.regs[op]->reg_name,
+ i.tm.name,
+ i.suffix);
+ return;
+ }
+ }
+ }
+ else if (i.suffix == DWORD_MNEM_SUFFIX)
+ {
+ int op;
+ for (op = i.operands; --op >= 0; )
+ /* Reject eight bit registers, except where the template
+ requires them. (eg. movzb) */
+ if ((i.types[op] & Reg8) != 0
+ && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
+ {
+ as_bad (_("`%%%s' not allowed with `%s%c'"),
+ i.regs[op]->reg_name,
+ i.tm.name,
+ i.suffix);
+ return;
+ }
+#if REGISTER_WARNINGS
+ /* Warn if the e prefix on a general reg is missing. */
+ else if ((i.types[op] & Reg16) != 0
+ && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
+ {
+ as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
+ (i.regs[op] + 8)->reg_name,
+ i.regs[op]->reg_name,
+ i.suffix);
+ }
+#endif
+ }
+ else if (i.suffix == WORD_MNEM_SUFFIX)
+ {
+ int op;
+ for (op = i.operands; --op >= 0; )
+ /* Reject eight bit registers, except where the template
+ requires them. (eg. movzb) */
+ if ((i.types[op] & Reg8) != 0
+ && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
+ {
+ as_bad (_("`%%%s' not allowed with `%s%c'"),
+ i.regs[op]->reg_name,
+ i.tm.name,
+ i.suffix);
+ return;
+ }
+#if REGISTER_WARNINGS
+ /* Warn if the e prefix on a general reg is present. */
+ else if ((i.types[op] & Reg32) != 0
+ && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
+ {
+ as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
+ (i.regs[op] - 8)->reg_name,
+ i.regs[op]->reg_name,
+ i.suffix);
+ }
+#endif
+ }
+ else
+ abort();
+ }
+
+ /* Make still unresolved immediate matches conform to size of immediate
+ given in i.suffix. Note: overlap2 cannot be an immediate! */
+ if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
+ && overlap0 != Imm8 && overlap0 != Imm8S
+ && overlap0 != Imm16 && overlap0 != Imm32)
+ {
+ if (i.suffix)
+ {
+ overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
+ (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
+ }
+ else if (overlap0 == (Imm16 | Imm32))
+ {
+ overlap0 =
+ (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
+ }
+ else
+ {
+ as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
+ return;
+ }
+ }
+ if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
+ && overlap1 != Imm8 && overlap1 != Imm8S
+ && overlap1 != Imm16 && overlap1 != Imm32)
+ {
+ if (i.suffix)
+ {
+ overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
+ (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
+ }
+ else if (overlap1 == (Imm16 | Imm32))
+ {
+ overlap1 =
+ (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
+ }
+ else
+ {
+ as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
+ return;
+ }
+ }
+ assert ((overlap2 & Imm) == 0);
+
+ i.types[0] = overlap0;
+ if (overlap0 & ImplicitRegister)
+ i.reg_operands--;
+ if (overlap0 & Imm1)
+ i.imm_operands = 0; /* kludge for shift insns */
+
+ i.types[1] = overlap1;
+ if (overlap1 & ImplicitRegister)
+ i.reg_operands--;
+
+ i.types[2] = overlap2;
+ if (overlap2 & ImplicitRegister)
+ i.reg_operands--;
+
+ /* Finalize opcode. First, we change the opcode based on the operand
+ size given by i.suffix: We need not change things for byte insns. */
+
+ if (!i.suffix && (i.tm.opcode_modifier & W))
+ {
+ as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
+ return;
+ }
+
+ /* For movzx and movsx, need to check the register type */
+ if (intel_syntax
+ && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
+ if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
+ {
+ unsigned int prefix = DATA_PREFIX_OPCODE;
+
+ if ((i.regs[1]->reg_type & Reg16) != 0)
+ if (!add_prefix (prefix))
+ return;
+ }
+
+ if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
+ {
+ /* It's not a byte, select word/dword operation. */
+ if (i.tm.opcode_modifier & W)
+ {
+ if (i.tm.opcode_modifier & ShortForm)
+ i.tm.base_opcode |= 8;
+ else
+ i.tm.base_opcode |= 1;
+ }
+ /* Now select between word & dword operations via the operand
+ size prefix, except for instructions that will ignore this
+ prefix anyway. */
+ if (((intel_syntax && (i.suffix == INTEL_DWORD_MNEM_SUFFIX))
+ || i.suffix == DWORD_MNEM_SUFFIX
+ || i.suffix == LONG_MNEM_SUFFIX) == flag_16bit_code
+ && !(i.tm.opcode_modifier & IgnoreSize))
+ {
+ unsigned int prefix = DATA_PREFIX_OPCODE;
+ if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
+ prefix = ADDR_PREFIX_OPCODE;
+
+ if (! add_prefix (prefix))
+ return;
+ }
+ /* Size floating point instruction. */
+ if (i.suffix == LONG_MNEM_SUFFIX
+ || (intel_syntax && i.suffix == INTEL_DWORD_MNEM_SUFFIX))
+ {
+ if (i.tm.opcode_modifier & FloatMF)
+ i.tm.base_opcode ^= 4;
+ }
+
+ if (intel_syntax && i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
+ {
+ if (i.tm.opcode_modifier & FloatMF)
+ i.tm.base_opcode ^= 2;
+ }
+ }
+
+ if (i.tm.base_opcode == AMD_3DNOW_OPCODE)
+ {
+ /* These AMD specific instructions have an opcode suffix which
+ is coded in the same place as an 8-bit immediate field
+ would be. Here we fake an 8-bit immediate operand from the
+ opcode suffix stored in tm.extension_opcode. */
+
+ expressionS *exp;
+
+ assert(i.imm_operands == 0 && i.operands <= 2);
+
+ exp = &im_expressions[i.imm_operands++];
+ i.imms[i.operands] = exp;
+ i.types[i.operands++] = Imm8;
+ exp->X_op = O_constant;
+ exp->X_add_number = i.tm.extension_opcode;
+ i.tm.extension_opcode = None;
+ }
+
+ /* For insns with operands there are more diddles to do to the opcode. */
+ if (i.operands)
+ {
+ /* Default segment register this instruction will use
+ for memory accesses. 0 means unknown.
+ This is only for optimizing out unnecessary segment overrides. */
+ const seg_entry *default_seg = 0;
+
+ /* If we found a reverse match we must alter the opcode
+ direction bit. found_reverse_match holds bits to change
+ (different for int & float insns). */
+
+ i.tm.base_opcode ^= found_reverse_match;
+
+ /* The imul $imm, %reg instruction is converted into
+ imul $imm, %reg, %reg, and the clr %reg instruction
+ is converted into xor %reg, %reg. */
+ if (i.tm.opcode_modifier & regKludge)
+ {
+ unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
+ /* Pretend we saw the extra register operand. */
+ i.regs[first_reg_op+1] = i.regs[first_reg_op];
+ i.reg_operands = 2;
+ }
+
+ if (i.tm.opcode_modifier & ShortForm)
+ {
+ /* The register or float register operand is in operand 0 or 1. */
+ unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
+ /* Register goes in low 3 bits of opcode. */
+ i.tm.base_opcode |= i.regs[op]->reg_num;
+ if ((i.tm.opcode_modifier & Ugh) != 0)
+ {
+ /* Warn about some common errors, but press on regardless.
+ The first case can be generated by gcc (<= 2.8.1). */
+ if (i.operands == 2)
+ {
+ /* reversed arguments on faddp, fsubp, etc. */
+ as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
+ i.regs[1]->reg_name,
+ i.regs[0]->reg_name);
+ }
+ else
+ {
+ /* extraneous `l' suffix on fp insn */
+ as_warn (_("translating to `%s %%%s'"), i.tm.name,
+ i.regs[0]->reg_name);
+ }
+ }
+ }
+ else if (i.tm.opcode_modifier & Modrm)
+ {
+ /* The opcode is completed (modulo i.tm.extension_opcode which
+ must be put into the modrm byte).
+ Now, we make the modrm & index base bytes based on all the
+ info we've collected. */
+
+ /* i.reg_operands MUST be the number of real register operands;
+ implicit registers do not count. */
+ if (i.reg_operands == 2)
+ {
+ unsigned int source, dest;
+ source = ((i.types[0]
+ & (Reg
+ | SReg2
+ | SReg3
+ | Control
+ | Debug
+ | Test
+ | RegMMX))
+ ? 0 : 1);
+ dest = source + 1;
+
+ /* Certain instructions expect the destination to be
+ in the i.rm.reg field. This is by far the
+ exceptional case. For these instructions, if the
+ source operand is a register, we must reverse the
+ i.rm.reg and i.rm.regmem fields. We accomplish
+ this by pretending that the two register operands
+ were given in the reverse order. */
+ if (i.tm.opcode_modifier & ReverseRegRegmem)
+ {
+ const reg_entry *tmp = i.regs[source];
+ i.regs[source] = i.regs[dest];
+ i.regs[dest] = tmp;
+ }
+
+ i.rm.mode = 3;
+ /* We must be careful to make sure that all
+ segment/control/test/debug/MMX registers go into
+ the i.rm.reg field (despite whether they are
+ source or destination operands). */
+ if (i.regs[dest]->reg_type
+ & (SReg2 | SReg3 | Control | Debug | Test | RegMMX))
+ {
+ i.rm.reg = i.regs[dest]->reg_num;
+ i.rm.regmem = i.regs[source]->reg_num;
+ }
+ else
+ {
+ i.rm.reg = i.regs[source]->reg_num;
+ i.rm.regmem = i.regs[dest]->reg_num;
+ }
+ }
+ else
+ { /* if it's not 2 reg operands... */
+ if (i.mem_operands)
+ {
+ unsigned int fake_zero_displacement = 0;
+ unsigned int op = ((i.types[0] & AnyMem)
+ ? 0
+ : (i.types[1] & AnyMem) ? 1 : 2);
+
+ default_seg = &ds;
+
+ if (! i.base_reg)
+ {
+ i.rm.mode = 0;
+ if (! i.disp_operands)
+ fake_zero_displacement = 1;
+ if (! i.index_reg)
+ {
+ /* Operand is just <disp> */
+ if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
+ {
+ i.rm.regmem = NO_BASE_REGISTER_16;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp16;
+ }
+ else
+ {
+ i.rm.regmem = NO_BASE_REGISTER;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp32;
+ }
+ }
+ else /* ! i.base_reg && i.index_reg */
+ {
+ i.sib.index = i.index_reg->reg_num;
+ i.sib.base = NO_BASE_REGISTER;
+ i.sib.scale = i.log2_scale_factor;
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ i.types[op] &= ~Disp;
+ i.types[op] |= Disp32; /* Must be 32 bit */
+ }
+ }
+ else if (i.base_reg->reg_type & Reg16)
+ {
+ switch (i.base_reg->reg_num)
+ {
+ case 3: /* (%bx) */
+ if (! i.index_reg)
+ i.rm.regmem = 7;
+ else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
+ i.rm.regmem = i.index_reg->reg_num - 6;
+ break;
+ case 5: /* (%bp) */
+ default_seg = &ss;
+ if (! i.index_reg)
+ {
+ i.rm.regmem = 6;
+ if ((i.types[op] & Disp) == 0)
+ {
+ /* fake (%bp) into 0(%bp) */
+ i.types[op] |= Disp8;
+ fake_zero_displacement = 1;
+ }
+ }
+ else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
+ i.rm.regmem = i.index_reg->reg_num - 6 + 2;
+ break;
+ default: /* (%si) -> 4 or (%di) -> 5 */
+ i.rm.regmem = i.base_reg->reg_num - 6 + 4;
+ }
+ i.rm.mode = mode_from_disp_size (i.types[op]);
+ }
+ else /* i.base_reg and 32 bit mode */
+ {
+ i.rm.regmem = i.base_reg->reg_num;
+ i.sib.base = i.base_reg->reg_num;
+ if (i.base_reg->reg_num == EBP_REG_NUM)
+ {
+ default_seg = &ss;
+ if (i.disp_operands == 0)
+ {
+ fake_zero_displacement = 1;
+ i.types[op] |= Disp8;
+ }
+ }
+ else if (i.base_reg->reg_num == ESP_REG_NUM)
+ {
+ default_seg = &ss;
+ }
+ i.sib.scale = i.log2_scale_factor;
+ if (! i.index_reg)
+ {
+ /* <disp>(%esp) becomes two byte modrm
+ with no index register. We've already
+ stored the code for esp in i.rm.regmem
+ ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
+ base register besides %esp will not use
+ the extra modrm byte. */
+ i.sib.index = NO_INDEX_REGISTER;
+#if ! SCALE1_WHEN_NO_INDEX
+ /* Another case where we force the second
+ modrm byte. */
+ if (i.log2_scale_factor)
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+#endif
+ }
+ else
+ {
+ i.sib.index = i.index_reg->reg_num;
+ i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
+ }
+ i.rm.mode = mode_from_disp_size (i.types[op]);
+ }
+
+ if (fake_zero_displacement)
+ {
+ /* Fakes a zero displacement assuming that i.types[op]
+ holds the correct displacement size. */
+ exp = &disp_expressions[i.disp_operands++];
+ i.disps[op] = exp;
+ exp->X_op = O_constant;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_op_symbol = (symbolS *) 0;
+ }
+ }
+
+ /* Fill in i.rm.reg or i.rm.regmem field with register
+ operand (if any) based on i.tm.extension_opcode.
+ Again, we must be careful to make sure that
+ segment/control/debug/test/MMX registers are coded
+ into the i.rm.reg field. */
+ if (i.reg_operands)
+ {
+ unsigned int op =
+ ((i.types[0]
+ & (Reg | SReg2 | SReg3 | Control | Debug
+ | Test | RegMMX))
+ ? 0
+ : ((i.types[1]
+ & (Reg | SReg2 | SReg3 | Control | Debug
+ | Test | RegMMX))
+ ? 1
+ : 2));
+ /* If there is an extension opcode to put here, the
+ register number must be put into the regmem field. */
+ if (i.tm.extension_opcode != None)
+ i.rm.regmem = i.regs[op]->reg_num;
+ else
+ i.rm.reg = i.regs[op]->reg_num;
+
+ /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
+ we must set it to 3 to indicate this is a register
+ operand in the regmem field. */
+ if (!i.mem_operands)
+ i.rm.mode = 3;
+ }
+
+ /* Fill in i.rm.reg field with extension opcode (if any). */
+ if (i.tm.extension_opcode != None)
+ i.rm.reg = i.tm.extension_opcode;
+ }
+ }
+ else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
+ {
+ if (i.tm.base_opcode == POP_SEG_SHORT && i.regs[0]->reg_num == 1)
+ {
+ as_bad (_("you can't `pop %%cs'"));
+ return;
+ }
+ i.tm.base_opcode |= (i.regs[0]->reg_num << 3);
+ }
+ else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
+ {
+ default_seg = &ds;
+ }
+ else if ((i.tm.opcode_modifier & IsString) != 0)
+ {
+ /* For the string instructions that allow a segment override
+ on one of their operands, the default segment is ds. */
+ default_seg = &ds;
+ }
+
+ /* If a segment was explicitly specified,
+ and the specified segment is not the default,
+ use an opcode prefix to select it.
+ If we never figured out what the default segment is,
+ then default_seg will be zero at this point,
+ and the specified segment prefix will always be used. */
+ if ((i.seg[0]) && (i.seg[0] != default_seg))
+ {
+ if (! add_prefix (i.seg[0]->seg_prefix))
+ return;
+ }
+ }
+ else if ((i.tm.opcode_modifier & Ugh) != 0)
+ {
+ /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc */
+ as_warn (_("translating to `%sp'"), i.tm.name);
+ }
+ }
+
+ /* Handle conversion of 'int $3' --> special int3 insn. */
+ if (i.tm.base_opcode == INT_OPCODE && i.imms[0]->X_add_number == 3)
+ {
+ i.tm.base_opcode = INT3_OPCODE;
+ i.imm_operands = 0;
+ }
+
+ /* We are ready to output the insn. */
+ {
+ register char *p;
+
+ /* Output jumps. */
+ if (i.tm.opcode_modifier & Jump)
+ {
+ long n = (long) i.disps[0]->X_add_number;
+ int prefix = (i.prefix[DATA_PREFIX] != 0);
+ int code16 = 0;
+
+ if (prefix)
+ {
+ i.prefixes -= 1;
+ code16 = CODE16;
+ }
+ if (flag_16bit_code)
+ code16 ^= CODE16;
+
+ if (!intel_syntax && (i.prefixes != 0))
+ as_warn (_("skipping prefixes on this instruction"));
+
+ if (i.disps[0]->X_op == O_constant)
+ {
+ if (fits_in_signed_byte (n))
+ {
+ insn_size += 2;
+ p = frag_more (2);
+ p[0] = i.tm.base_opcode;
+ p[1] = n;
+ }
+ else
+ {
+ /* Use 16-bit jumps only for 16-bit code,
+ because text segments are limited to 64K anyway;
+ Use 32-bit jumps for 32-bit code, because they're faster,
+ and a 16-bit jump will clear the top 16 bits of %eip. */
+ int jmp_size = code16 ? 2 : 4;
+ if (code16 && !fits_in_signed_word (n))
+ {
+ as_bad (_("16-bit jump out of range"));
+ return;
+ }
+
+ if (i.tm.base_opcode == JUMP_PC_RELATIVE)
+ { /* pace */
+ /* unconditional jump */
+ insn_size += prefix + 1 + jmp_size;
+ p = frag_more (prefix + 1 + jmp_size);
+ if (prefix)
+ *p++ = DATA_PREFIX_OPCODE;
+ *p++ = (char) 0xe9;
+ md_number_to_chars (p, (valueT) n, jmp_size);
+ }
+ else
+ {
+ /* conditional jump */
+ insn_size += prefix + 2 + jmp_size;
+ p = frag_more (prefix + 2 + jmp_size);
+ if (prefix)
+ *p++ = DATA_PREFIX_OPCODE;
+ *p++ = TWO_BYTE_OPCODE_ESCAPE;
+ *p++ = i.tm.base_opcode + 0x10;
+ md_number_to_chars (p, (valueT) n, jmp_size);
+ }
+ }
+ }
+ else
+ {
+ int size = code16 ? 2 : 4;
+
+ /* It's a symbol; end frag & setup for relax.
+ Make sure there are more than 6 chars left in the current frag;
+ if not we'll have to start a new one. */
+ frag_grow (prefix + 1 + 2 + size);
+ insn_size += 1 + prefix;
+ p = frag_more (1 + prefix);
+ if (prefix)
+ *p++ = DATA_PREFIX_OPCODE;
+ *p = i.tm.base_opcode;
+ frag_var (rs_machine_dependent,
+ prefix + 2 + size, /* 2 opcode/prefix + displacement */
+ 1,
+ ((unsigned char) *p == JUMP_PC_RELATIVE
+ ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
+ : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
+ i.disps[0]->X_add_symbol,
+ (offsetT) n, p);
+ }
+ }
+ else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
+ {
+ int size = (i.tm.opcode_modifier & JumpByte) ? 1 : 4;
+ long n = (long) i.disps[0]->X_add_number;
+
+ if (size == 1) /* then this is a loop or jecxz type instruction */
+ {
+ if (i.prefix[ADDR_PREFIX])
+ {
+ insn_size += 1;
+ FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
+ i.prefixes -= 1;
+ }
+ }
+ else
+ {
+ int code16 = 0;
+
+ if (i.prefix[DATA_PREFIX])
+ {
+ insn_size += 1;
+ FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
+ i.prefixes -= 1;
+ code16 = CODE16;
+ }
+ if (flag_16bit_code)
+ code16 ^= CODE16;
+
+ if (code16)
+ size = 2;
+ }
+
+ if (!intel_syntax && (i.prefixes != 0))
+ as_warn (_("skipping prefixes on this instruction"));
+
+ if (fits_in_unsigned_byte (i.tm.base_opcode))
+ {
+ insn_size += 1 + size;
+ p = frag_more (1 + size);
+ }
+ else
+ {
+ insn_size += 2 + size; /* opcode can be at most two bytes */
+ p = frag_more (2 + size);
+ *p++ = (i.tm.base_opcode >> 8) & 0xff;
+ }
+ *p++ = i.tm.base_opcode & 0xff;
+
+ if (i.disps[0]->X_op == O_constant)
+ {
+ if (size == 1 && !fits_in_signed_byte (n))
+ {
+ as_bad (_("`%s' only takes byte displacement; %ld shortened to %d"),
+ i.tm.name, n, *p);
+ }
+ else if (size == 2 && !fits_in_signed_word (n))
+ {
+ as_bad (_("16-bit jump out of range"));
+ return;
+ }
+ md_number_to_chars (p, (valueT) n, size);
+ }
+ else
+ {
+ fix_new_exp (frag_now, p - frag_now->fr_literal, size,
+ i.disps[0], 1, reloc (size, 1, i.disp_reloc[0]));
+
+ }
+ }
+ else if (i.tm.opcode_modifier & JumpInterSegment)
+ {
+ int size;
+ int reloc_type;
+ int prefix = i.prefix[DATA_PREFIX] != 0;
+ int code16 = 0;
+
+ if (prefix)
+ {
+ code16 = CODE16;
+ i.prefixes -= 1;
+ }
+ if (flag_16bit_code)
+ code16 ^= CODE16;
+
+ size = 4;
+ reloc_type = BFD_RELOC_32;
+ if (code16)
+ {
+ size = 2;
+ reloc_type = BFD_RELOC_16;
+ }
+
+ if (!intel_syntax && (i.prefixes != 0))
+ as_warn (_("skipping prefixes on this instruction"));
+
+ insn_size += prefix + 1 + 2 + size; /* 1 opcode; 2 segment; offset */
+ p = frag_more (prefix + 1 + 2 + size);
+ if (prefix)
+ *p++ = DATA_PREFIX_OPCODE;
+ *p++ = i.tm.base_opcode;
+ if (i.imms[1]->X_op == O_constant)
+ {
+ long n = (long) i.imms[1]->X_add_number;
+
+ if (size == 2 && !fits_in_unsigned_word (n))
+ {
+ as_bad (_("16-bit jump out of range"));
+ return;
+ }
+ md_number_to_chars (p, (valueT) n, size);
+ }
+ else
+ fix_new_exp (frag_now, p - frag_now->fr_literal, size,
+ i.imms[1], 0, reloc_type);
+ if (i.imms[0]->X_op != O_constant)
+ as_bad (_("can't handle non absolute segment in `%s'"),
+ i.tm.name);
+ md_number_to_chars (p + size, (valueT) i.imms[0]->X_add_number, 2);
+ }
+ else
+ {
+ /* Output normal instructions here. */
+ unsigned char *q;
+
+ /* The prefix bytes. */
+ for (q = i.prefix;
+ q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
+ q++)
+ {
+ if (*q)
+ {
+ insn_size += 1;
+ p = frag_more (1);
+ md_number_to_chars (p, (valueT) *q, 1);
+ }
+ }
+
+ /* Now the opcode; be careful about word order here! */
+ if (fits_in_unsigned_byte (i.tm.base_opcode))
+ {
+ insn_size += 1;
+ FRAG_APPEND_1_CHAR (i.tm.base_opcode);
+ }
+ else if (fits_in_unsigned_word (i.tm.base_opcode))
+ {
+ insn_size += 2;
+ p = frag_more (2);
+ /* put out high byte first: can't use md_number_to_chars! */
+ *p++ = (i.tm.base_opcode >> 8) & 0xff;
+ *p = i.tm.base_opcode & 0xff;
+ }
+ else
+ { /* opcode is either 3 or 4 bytes */
+ if (i.tm.base_opcode & 0xff000000)
+ {
+ insn_size += 4;
+ p = frag_more (4);
+ *p++ = (i.tm.base_opcode >> 24) & 0xff;
+ }
+ else
+ {
+ insn_size += 3;
+ p = frag_more (3);
+ }
+ *p++ = (i.tm.base_opcode >> 16) & 0xff;
+ *p++ = (i.tm.base_opcode >> 8) & 0xff;
+ *p = (i.tm.base_opcode) & 0xff;
+ }
+
+ /* Now the modrm byte and sib byte (if present). */
+ if (i.tm.opcode_modifier & Modrm)
+ {
+ insn_size += 1;
+ p = frag_more (1);
+ md_number_to_chars (p,
+ (valueT) (i.rm.regmem << 0
+ | i.rm.reg << 3
+ | i.rm.mode << 6),
+ 1);
+ /* If i.rm.regmem == ESP (4)
+ && i.rm.mode != (Register mode)
+ && not 16 bit
+ ==> need second modrm byte. */
+ if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
+ && i.rm.mode != 3
+ && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
+ {
+ insn_size += 1;
+ p = frag_more (1);
+ md_number_to_chars (p,
+ (valueT) (i.sib.base << 0
+ | i.sib.index << 3
+ | i.sib.scale << 6),
+ 1);
+ }
+ }
+
+ if (i.disp_operands)
+ {
+ register unsigned int n;
+
+ for (n = 0; n < i.operands; n++)
+ {
+ if (i.disps[n])
+ {
+ if (i.disps[n]->X_op == O_constant)
+ {
+ if (i.types[n] & Disp8)
+ {
+ insn_size += 1;
+ p = frag_more (1);
+ md_number_to_chars (p,
+ (valueT) i.disps[n]->X_add_number,
+ 1);
+ }
+ else if (i.types[n] & Disp16)
+ {
+ insn_size += 2;
+ p = frag_more (2);
+ md_number_to_chars (p,
+ (valueT) i.disps[n]->X_add_number,
+ 2);
+ }
+ else
+ { /* Disp32 */
+ insn_size += 4;
+ p = frag_more (4);
+ md_number_to_chars (p,
+ (valueT) i.disps[n]->X_add_number,
+ 4);
+ }
+ }
+ else if (i.types[n] & Disp32)
+ {
+ insn_size += 4;
+ p = frag_more (4);
+ fix_new_exp (frag_now, p - frag_now->fr_literal, 4,
+ i.disps[n], 0,
+ TC_RELOC (i.disp_reloc[n], BFD_RELOC_32));
+ }
+ else
+ { /* must be Disp16 */
+ insn_size += 2;
+ p = frag_more (2);
+ fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
+ i.disps[n], 0,
+ TC_RELOC (i.disp_reloc[n], BFD_RELOC_16));
+ }
+ }
+ }
+ } /* end displacement output */
+
+ /* output immediate */
+ if (i.imm_operands)
+ {
+ register unsigned int n;
+
+ for (n = 0; n < i.operands; n++)
+ {
+ if (i.imms[n])
+ {
+ if (i.imms[n]->X_op == O_constant)
+ {
+ if (i.types[n] & (Imm8 | Imm8S))
+ {
+ insn_size += 1;
+ p = frag_more (1);
+ md_number_to_chars (p,
+ (valueT) i.imms[n]->X_add_number,
+ 1);
+ }
+ else if (i.types[n] & Imm16)
+ {
+ insn_size += 2;
+ p = frag_more (2);
+ md_number_to_chars (p,
+ (valueT) i.imms[n]->X_add_number,
+ 2);
+ }
+ else
+ {
+ insn_size += 4;
+ p = frag_more (4);
+ md_number_to_chars (p,
+ (valueT) i.imms[n]->X_add_number,
+ 4);
+ }
+ }
+ else
+ { /* not absolute_section */
+ /* Need a 32-bit fixup (don't support 8bit
+ non-absolute ims). Try to support other
+ sizes ... */
+ int r_type;
+ int size;
+ int pcrel = 0;
+
+ if (i.types[n] & (Imm8 | Imm8S))
+ size = 1;
+ else if (i.types[n] & Imm16)
+ size = 2;
+ else
+ size = 4;
+ insn_size += size;
+ p = frag_more (size);
+ r_type = reloc (size, 0, i.disp_reloc[0]);
+#ifdef BFD_ASSEMBLER
+ if (r_type == BFD_RELOC_32
+ && GOT_symbol
+ && GOT_symbol == i.imms[n]->X_add_symbol
+ && (i.imms[n]->X_op == O_symbol
+ || (i.imms[n]->X_op == O_add
+ && (i.imms[n]->X_op_symbol->sy_value.X_op
+ == O_subtract))))
+ {
+ r_type = BFD_RELOC_386_GOTPC;
+ i.imms[n]->X_add_number += 3;
+ }
+#endif
+ fix_new_exp (frag_now, p - frag_now->fr_literal, size,
+ i.imms[n], pcrel, r_type);
+ }
+ }
+ }
+ } /* end immediate output */
+ }
+
+#ifdef DEBUG386
+ if (flag_debug)
+ {
+ pi (line, &i);
+ }
+#endif /* DEBUG386 */
+ }
+}
+
+static int i386_is_reg PARAMS ((char *));
+
+static int
+i386_is_reg (reg_string)
+ char *reg_string;
+{
+ register char *s = reg_string;
+ register char *p;
+ char reg_name_given[MAX_REG_NAME_SIZE + 1];
+
+ if (is_space_char (*s))
+ ++s;
+
+ p = reg_name_given;
+ while ((*p++ = register_chars[(unsigned char) *s++]) != '\0')
+ if (p >= reg_name_given + MAX_REG_NAME_SIZE)
+ return 0;
+
+ if (!hash_find (reg_hash, reg_name_given))
+ return 0;
+ else
+ return 1;
+}
+
+static int i386_immediate PARAMS ((char *));
+
+static int
+i386_immediate (imm_start)
+ char *imm_start;
+{
+ char *save_input_line_pointer;
+ segT exp_seg = 0;
+ expressionS * exp;
+
+ if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
+ {
+ as_bad (_("Only 1 or 2 immediate operands are allowed"));
+ return 0;
+ }
+
+ exp = &im_expressions[i.imm_operands++];
+ i.imms[this_operand] = exp;
+
+ if (is_space_char (*imm_start))
+ ++imm_start;
+
+ save_input_line_pointer = input_line_pointer;
+ input_line_pointer = imm_start;
+
+#ifndef LEX_AT
+ {
+ /*
+ * We can have operands of the form
+ * <symbol>@GOTOFF+<nnn>
+ * Take the easy way out here and copy everything
+ * into a temporary buffer...
+ */
+ register char *cp;
+
+ cp = strchr (input_line_pointer, '@');
+ if (cp != NULL)
+ {
+ char *tmpbuf;
+ int len, first;
+
+ /* GOT relocations are not supported in 16 bit mode */
+ if (flag_16bit_code)
+ as_bad (_("GOT relocations not supported in 16 bit mode"));
+
+ if (GOT_symbol == NULL)
+ GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
+
+ if (strncmp (cp + 1, "PLT", 3) == 0)
+ {
+ i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
+ len = 3;
+ }
+ else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
+ {
+ i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
+ len = 6;
+ }
+ else if (strncmp (cp + 1, "GOT", 3) == 0)
+ {
+ i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
+ len = 3;
+ }
+ else
+ as_bad (_("Bad reloc specifier in expression"));
+
+ /* Replace the relocation token with ' ', so that errors like
+ foo@GOTOFF1 will be detected. */
+ first = cp - input_line_pointer;
+ tmpbuf = (char *) alloca (strlen(input_line_pointer));
+ memcpy (tmpbuf, input_line_pointer, first);
+ tmpbuf[first] = ' ';
+ strcpy (tmpbuf + first + 1, cp + 1 + len);
+ input_line_pointer = tmpbuf;
+ }
+ }
+#endif
+
+ exp_seg = expression (exp);
+
+ if (*input_line_pointer)
+ as_bad (_("Ignoring junk `%s' after expression"), input_line_pointer);
+
+ input_line_pointer = save_input_line_pointer;
+
+ if (exp->X_op == O_absent)
+ {
+ /* missing or bad expr becomes absolute 0 */
+ as_bad (_("Missing or invalid immediate expression `%s' taken as 0"),
+ imm_start);
+ exp->X_op = O_constant;
+ exp->X_add_number = 0;
+ exp->X_add_symbol = (symbolS *) 0;
+ exp->X_op_symbol = (symbolS *) 0;
+ i.types[this_operand] |= Imm;
+ }
+ else if (exp->X_op == O_constant)
+ {
+ i.types[this_operand] |=
+ smallest_imm_type ((long) exp->X_add_number);
+
+ /* If a suffix is given, this operand may be shortended. */
+ switch (i.suffix)
+ {
+ case WORD_MNEM_SUFFIX:
+ i.types[this_operand] |= Imm16;
+ break;
+ case BYTE_MNEM_SUFFIX:
+ i.types[this_operand] |= Imm16 | Imm8 | Imm8S;
+ break;
+ }
+ }
+#ifdef OBJ_AOUT
+ else if (exp_seg != text_section
+ && exp_seg != data_section
+ && exp_seg != bss_section
+ && exp_seg != undefined_section
+#ifdef BFD_ASSEMBLER
+ && !bfd_is_com_section (exp_seg)
+#endif
+ )
+ {
+ seg_unimplemented:
+ as_bad (_("Unimplemented segment type %d in operand"), exp_seg);
+ return 0;
+ }
+#endif
+ else
+ {
+ /* This is an address. The size of the address will be
+ determined later, depending on destination register,
+ suffix, or the default for the section. We exclude
+ Imm8S here so that `push $foo' and other instructions
+ with an Imm8S form will use Imm16 or Imm32. */
+ i.types[this_operand] |= (Imm8 | Imm16 | Imm32);
+ }
+
+ return 1;
+}
+
+static int i386_scale PARAMS ((char *));
+
+static int
+i386_scale (scale)
+ char *scale;
+{
+ if (!isdigit (*scale))
+ goto bad_scale;
+
+ switch (*scale)
+ {
+ case '0':
+ case '1':
+ i.log2_scale_factor = 0;
+ break;
+ case '2':
+ i.log2_scale_factor = 1;
+ break;
+ case '4':
+ i.log2_scale_factor = 2;
+ break;
+ case '8':
+ i.log2_scale_factor = 3;
+ break;
+ default:
+ bad_scale:
+ as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
+ scale);
+ return 0;
+ }
+ if (i.log2_scale_factor != 0 && ! i.index_reg)
+ {
+ as_warn (_("scale factor of %d without an index register"),
+ 1 << i.log2_scale_factor);
+#if SCALE1_WHEN_NO_INDEX
+ i.log2_scale_factor = 0;
+#endif
+ }
+ return 1;
+}
+
+static int i386_displacement PARAMS ((char *, char *));
+
+static int
+i386_displacement (disp_start, disp_end)
+ char *disp_start;
+ char *disp_end;
+{
+ register expressionS *exp;
+ segT exp_seg = 0;
+ char *save_input_line_pointer;
+ int bigdisp = Disp32;
+
+ /* All of the pieces of the displacement expression are handled together. */
+ if (intel_syntax && i.disp_operands != 0)
+ return 1;
+
+ if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
+ bigdisp = Disp16;
+ i.types[this_operand] |= bigdisp;
+
+ exp = &disp_expressions[i.disp_operands];
+ i.disps[this_operand] = exp;
+ i.disp_reloc[this_operand] = NO_RELOC;
+ i.disp_operands++;
+ save_input_line_pointer = input_line_pointer;
+ input_line_pointer = disp_start;
+ END_STRING_AND_SAVE (disp_end);
+
+#ifndef GCC_ASM_O_HACK
+#define GCC_ASM_O_HACK 0
+#endif
+#if GCC_ASM_O_HACK
+ END_STRING_AND_SAVE (disp_end + 1);
+ if ((i.types[this_operand] & BaseIndex) != 0
+ && displacement_string_end[-1] == '+')
+ {
+ /* This hack is to avoid a warning when using the "o"
+ constraint within gcc asm statements.
+ For instance:
+
+ #define _set_tssldt_desc(n,addr,limit,type) \
+ __asm__ __volatile__ ( \
+ "movw %w2,%0\n\t" \
+ "movw %w1,2+%0\n\t" \
+ "rorl $16,%1\n\t" \
+ "movb %b1,4+%0\n\t" \
+ "movb %4,5+%0\n\t" \
+ "movb $0,6+%0\n\t" \
+ "movb %h1,7+%0\n\t" \
+ "rorl $16,%1" \
+ : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
+
+ This works great except that the output assembler ends
+ up looking a bit weird if it turns out that there is
+ no offset. You end up producing code that looks like:
+
+ #APP
+ movw $235,(%eax)
+ movw %dx,2+(%eax)
+ rorl $16,%edx
+ movb %dl,4+(%eax)
+ movb $137,5+(%eax)
+ movb $0,6+(%eax)
+ movb %dh,7+(%eax)
+ rorl $16,%edx
+ #NO_APP
+
+ So here we provide the missing zero.
+ */
+
+ *displacement_string_end = '0';
+ }
+#endif
+#ifndef LEX_AT
+ {
+ /*
+ * We can have operands of the form
+ * <symbol>@GOTOFF+<nnn>
+ * Take the easy way out here and copy everything
+ * into a temporary buffer...
+ */
+ register char *cp;
+
+ cp = strchr (input_line_pointer, '@');
+ if (cp != NULL)
+ {
+ char *tmpbuf;
+ int len, first;
+
+ /* GOT relocations are not supported in 16 bit mode */
+ if (flag_16bit_code)
+ as_bad (_("GOT relocations not supported in 16 bit mode"));
+
+ if (GOT_symbol == NULL)
+ GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
+
+ if (strncmp (cp + 1, "PLT", 3) == 0)
+ {
+ i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
+ len = 3;
+ }
+ else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
+ {
+ i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
+ len = 6;
+ }
+ else if (strncmp (cp + 1, "GOT", 3) == 0)
+ {
+ i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
+ len = 3;
+ }
+ else
+ as_bad (_("Bad reloc specifier in expression"));
+
+ /* Replace the relocation token with ' ', so that errors like
+ foo@GOTOFF1 will be detected. */
+ first = cp - input_line_pointer;
+ tmpbuf = (char *) alloca (strlen(input_line_pointer));
+ memcpy (tmpbuf, input_line_pointer, first);
+ tmpbuf[first] = ' ';
+ strcpy (tmpbuf + first + 1, cp + 1 + len);
+ input_line_pointer = tmpbuf;
+ }
+ }
+#endif
+
+ exp_seg = expression (exp);
+
+#ifdef BFD_ASSEMBLER
+ /* We do this to make sure that the section symbol is in
+ the symbol table. We will ultimately change the relocation
+ to be relative to the beginning of the section */
+ if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
+ {
+ if (S_IS_LOCAL(exp->X_add_symbol)
+ && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
+ section_symbol(exp->X_add_symbol->bsym->section);
+ assert (exp->X_op == O_symbol);
+ exp->X_op = O_subtract;
+ exp->X_op_symbol = GOT_symbol;
+ i.disp_reloc[this_operand] = BFD_RELOC_32;
+ }
+#endif
+
+ if (*input_line_pointer)
+ as_bad (_("Ignoring junk `%s' after expression"),
+ input_line_pointer);
+#if GCC_ASM_O_HACK
+ RESTORE_END_STRING (disp_end + 1);
+#endif
+ RESTORE_END_STRING (disp_end);
+ input_line_pointer = save_input_line_pointer;
+
+ if (exp->X_op == O_constant)
+ {
+ if (fits_in_signed_byte (exp->X_add_number))
+ i.types[this_operand] |= Disp8;
+ }
+#ifdef OBJ_AOUT
+ else if (exp_seg != text_section
+ && exp_seg != data_section
+ && exp_seg != bss_section
+ && exp_seg != undefined_section)
+ {
+ as_bad (_ ("Unimplemented segment type %d in operand"), exp_seg);
+ return 0;
+ }
+#endif
+ return 1;
+}
+
+static int i386_operand_modifier PARAMS ((char **, int));
+
+static int
+i386_operand_modifier (op_string, got_a_float)
+ char **op_string;
+ int got_a_float;
+{
+ if (!strncasecmp (*op_string, "BYTE PTR", 8))
+ {
+ i.suffix = BYTE_MNEM_SUFFIX;
+ *op_string += 8;
+ return BYTE_PTR;
+
+ }
+ else if (!strncasecmp (*op_string, "WORD PTR", 8))
+ {
+ i.suffix = WORD_MNEM_SUFFIX;
+ *op_string += 8;
+ return WORD_PTR;
+ }
+
+ else if (!strncasecmp (*op_string, "DWORD PTR", 9))
+ {
+ if (got_a_float)
+ i.suffix = SHORT_MNEM_SUFFIX;
+ else
+ i.suffix = DWORD_MNEM_SUFFIX;
+ *op_string += 9;
+ return DWORD_PTR;
+ }
+
+ else if (!strncasecmp (*op_string, "QWORD PTR", 9))
+ {
+ i.suffix = INTEL_DWORD_MNEM_SUFFIX;
+ *op_string += 9;
+ return QWORD_PTR;
+ }
+
+ else if (!strncasecmp (*op_string, "XWORD PTR", 9))
+ {
+ i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
+ *op_string += 9;
+ return XWORD_PTR;
+ }
+
+ else if (!strncasecmp (*op_string, "SHORT", 5))
+ {
+ *op_string += 5;
+ return SHORT;
+ }
+
+ else if (!strncasecmp (*op_string, "OFFSET FLAT:", 12))
+ {
+ *op_string += 12;
+ return OFFSET_FLAT;
+ }
+
+ else if (!strncasecmp (*op_string, "FLAT", 4))
+ {
+ *op_string += 4;
+ return FLAT;
+ }
+
+ else return NONE_FOUND;
+}
+
+static char * build_displacement_string PARAMS ((int, char *));
+
+static char *
+build_displacement_string (initial_disp, op_string)
+ int initial_disp;
+ char *op_string;
+{
+ char *temp_string = (char *) malloc (strlen (op_string) + 1);
+ char *end_of_operand_string;
+ char *tc;
+ char *temp_disp;
+
+ temp_string[0] = '\0';
+ tc = end_of_operand_string = strchr (op_string, '[');
+ if ( initial_disp && !end_of_operand_string)
+ {
+ strcpy (temp_string, op_string);
+ return (temp_string);
+ }
+
+ /* Build the whole displacement string */
+ if (initial_disp)
+ {
+ strncpy (temp_string, op_string, end_of_operand_string - op_string);
+ temp_string[end_of_operand_string - op_string] = '\0';
+ temp_disp = tc;
+ }
+ else
+ temp_disp = op_string;
+
+ while (*temp_disp != '\0')
+ {
+ int add_minus = (*temp_disp == '-');
+
+ if (*temp_disp == '+' || *temp_disp == '-' || *temp_disp == '[')
+ temp_disp++;
+
+ if (is_space_char (*temp_disp))
+ temp_disp++;
+
+ /* Don't consider registers */
+ if (*temp_disp != REGISTER_PREFIX
+ && !(allow_naked_reg && i386_is_reg (temp_disp)))
+ {
+ char *string_start = temp_disp;
+
+ while (*temp_disp != ']'
+ && *temp_disp != '+'
+ && *temp_disp != '-'
+ && *temp_disp != '*')
+ ++temp_disp;
+
+ if (add_minus)
+ strcat (temp_string, "-");
+ else
+ strcat (temp_string, "+");
+
+ strncat (temp_string, string_start, temp_disp - string_start);
+ if (*temp_disp == '+' || *temp_disp == '-')
+ --temp_disp;
+ }
+
+ while (*temp_disp != '\0'
+ && *temp_disp != '+'
+ && *temp_disp != '-')
+ ++temp_disp;
+ }
+
+ return temp_string;
+}
+
+static int i386_parse_seg PARAMS ((char *));
+
+static int
+i386_parse_seg (op_string)
+ char *op_string;
+{
+ if (is_space_char (*op_string))
+ ++op_string;
+
+ /* Should be one of es, cs, ss, ds fs or gs */
+ switch (*op_string++)
+ {
+ case 'e':
+ i.seg[i.mem_operands] = &es;
+ break;
+ case 'c':
+ i.seg[i.mem_operands] = &cs;
+ break;
+ case 's':
+ i.seg[i.mem_operands] = &ss;
+ break;
+ case 'd':
+ i.seg[i.mem_operands] = &ds;
+ break;
+ case 'f':
+ i.seg[i.mem_operands] = &fs;
+ break;
+ case 'g':
+ i.seg[i.mem_operands] = &gs;
+ break;
+ default:
+ as_bad (_("bad segment name `%s'"), op_string);
+ return 0;
+ }
+
+ if (*op_string++ != 's')
+ {
+ as_bad (_("bad segment name `%s'"), op_string);
+ return 0;
+ }
+
+ if (is_space_char (*op_string))
+ ++op_string;
+
+ if (*op_string != ':')
+ {
+ as_bad (_("bad segment name `%s'"), op_string);
+ return 0;
+ }
+
+ return 1;
+
+}
+
+static int i386_intel_memory_operand PARAMS ((char *));
+
+static int
+i386_intel_memory_operand (op_string)
+ char *op_string;
+{
+
+ char *end_of_operand_string;
+
+ if (is_digit_char (*op_string)
+ && strchr (op_string, '[') == 0)
+ {
+ if (!i386_immediate (op_string))
+ return 0;
+ else
+ return 1;
+ }
+
+ /* Look for displacement preceding open bracket */
+ if (*op_string != '[')
+ {
+ char *end_seg;
+ char *temp_string;
+
+ end_seg = strchr (op_string, ':');
+ if (end_seg)
+ {
+ if (!i386_parse_seg (op_string))
+ return 0;
+ op_string = end_seg + 1;
+ }
+
+ temp_string = build_displacement_string (true, op_string);
+ if (!i386_displacement (temp_string, temp_string + strlen (temp_string)))
+ return 0;
+
+ end_of_operand_string = strchr (op_string, '[');
+ if (!end_of_operand_string)
+ end_of_operand_string = op_string + strlen (op_string);
+
+ if (is_space_char (*end_of_operand_string))
+ --end_of_operand_string;
+
+ op_string = end_of_operand_string;
+ }
+
+ if (*op_string == '[')
+ {
+ ++op_string;
+
+ /* Pick off each component and figure out where it belongs */
+
+ end_of_operand_string = op_string;
+
+ while (*op_string != ']')
+ {
+
+ while (*end_of_operand_string != '+'
+ && *end_of_operand_string != '-'
+ && *end_of_operand_string != '*'
+ && *end_of_operand_string != ']')
+ end_of_operand_string++;
+
+ if (*op_string == '+')
+ {
+ char *temp_string = op_string + 1;
+ if (is_space_char (*temp_string))
+ ++temp_string;
+ if (*temp_string == REGISTER_PREFIX
+ || (allow_naked_reg && i386_is_reg (temp_string)))
+ ++op_string;
+ }
+
+ if (*op_string == REGISTER_PREFIX
+ || (allow_naked_reg && i386_is_reg (op_string)))
+ {
+ const reg_entry *temp_reg;
+ char *end_op;
+
+ END_STRING_AND_SAVE (end_of_operand_string);
+ temp_reg = parse_register (op_string, &end_op);
+ RESTORE_END_STRING (end_of_operand_string);
+
+ if (temp_reg == NULL)
+ return 0;
+
+ if (i.base_reg == NULL)
+ i.base_reg = temp_reg;
+ else
+ i.index_reg = temp_reg;
+
+ i.types[this_operand] |= BaseIndex;
+
+ }
+ else if (is_digit_char (*op_string) || *op_string == '+' || *op_string == '-')
+ {
+
+ char *temp_string = build_displacement_string (false, op_string);
+
+ if (*temp_string == '+')
+ ++temp_string;
+
+ if (!i386_displacement (temp_string, temp_string + strlen (temp_string)))
+ return 0;
+
+ ++op_string;
+ end_of_operand_string = op_string;
+ while (*end_of_operand_string != ']'
+ && *end_of_operand_string != '+'
+ && *end_of_operand_string != '-'
+ && *end_of_operand_string != '*')
+ ++end_of_operand_string;
+ }
+ else if (*op_string == '*')
+ {
+ ++op_string;
+
+ if (i.base_reg && !i.index_reg)
+ {
+ i.index_reg = i.base_reg;
+ i.base_reg = 0;
+ }
+
+ if (!i386_scale (op_string))
+ return 0;
+ }
+ op_string = end_of_operand_string;
+ ++end_of_operand_string;
+ }
+ }
+
+ return 1;
+}
+
+static int i386_intel_operand PARAMS ((char *, int));
+
+static int
+i386_intel_operand (operand_string, got_a_float)
+ char *operand_string;
+ int got_a_float;
+{
+ char *op_string = operand_string;
+
+ int operand_modifier = i386_operand_modifier (&op_string, got_a_float);
+ if (is_space_char (*op_string))
+ ++op_string;
+
+ switch (operand_modifier)
+ {
+ case BYTE_PTR:
+ case WORD_PTR:
+ case DWORD_PTR:
+ case QWORD_PTR:
+ case XWORD_PTR:
+ if ((i.mem_operands == 1
+ && (current_templates->start->opcode_modifier & IsString) == 0)
+ || i.mem_operands == 2)
+ {
+ as_bad (_("too many memory references for `%s'"),
+ current_templates->start->name);
+ return 0;
+ }
+
+ if (!i386_intel_memory_operand (op_string))
+ return 0;
+
+ i.mem_operands++;
+ break;
+
+ case FLAT:
+
+ case OFFSET_FLAT:
+ if (!i386_immediate (op_string))
+ return 0;
+ break;
+
+ case SHORT:
+
+ case NONE_FOUND:
+ /* Should be register or immediate */
+ if (is_digit_char (*op_string)
+ && strchr (op_string, '[') == 0)
+ {
+ if (!i386_immediate (op_string))
+ return 0;
+ }
+ else if (*op_string == REGISTER_PREFIX
+ || (allow_naked_reg
+ && i386_is_reg (op_string)))
+ {
+
+ register const reg_entry * r;
+ char *end_op;
+
+ r = parse_register (op_string, &end_op);
+ if (r == NULL)
+ return 0;
+
+ /* Check for a segment override by searching for ':' after a
+ segment register. */
+ op_string = end_op;
+ if (is_space_char (*op_string))
+ ++op_string;
+ if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
+ {
+ switch (r->reg_num)
+ {
+ case 0:
+ i.seg[i.mem_operands] = &es;
+ break;
+ case 1:
+ i.seg[i.mem_operands] = &cs;
+ break;
+ case 2:
+ i.seg[i.mem_operands] = &ss;
+ break;
+ case 3:
+ i.seg[i.mem_operands] = &ds;
+ break;
+ case 4:
+ i.seg[i.mem_operands] = &fs;
+ break;
+ case 5:
+ i.seg[i.mem_operands] = &gs;
+ break;
+ }
+
+ }
+ i.types[this_operand] |= r->reg_type & ~BaseIndex;
+ i.regs[this_operand] = r;
+ i.reg_operands++;
+ }
+
+ else
+ {
+
+ if (!i386_intel_memory_operand (op_string))
+ return 0;
+
+ i.mem_operands++;
+ }
+ break;
+
+ } /* end switch */
+ /* Special case for (%dx) while doing input/output op. */
+ if (i.base_reg
+ && i.base_reg->reg_type == (Reg16 | InOutPortReg)
+ && i.index_reg == 0
+ && i.log2_scale_factor == 0
+ && i.seg[i.mem_operands] == 0
+ && (i.types[this_operand] & Disp) == 0)
+ {
+ i.types[this_operand] = InOutPortReg;
+ return 1;
+ }
+ /* Make sure the memory operand we've been dealt is valid. */
+ if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
+ {
+ if ((i.base_reg
+ && ((i.base_reg->reg_type & (Reg16|BaseIndex))
+ != (Reg16|BaseIndex)))
+ || (i.index_reg
+ && (((i.index_reg->reg_type & (Reg16|BaseIndex))
+ != (Reg16|BaseIndex))
+ || ! (i.base_reg
+ && i.base_reg->reg_num < 6
+ && i.index_reg->reg_num >= 6
+ && i.log2_scale_factor == 0))))
+ {
+ as_bad (_("`%s' is not a valid %s bit base/index expression"),
+ operand_string, "16");
+ return 0;
+ }
+ }
+ else
+ {
+ if ((i.base_reg
+ && (i.base_reg->reg_type & Reg32) == 0)
+ || (i.index_reg
+ && ((i.index_reg->reg_type & (Reg32|BaseIndex))
+ != (Reg32|BaseIndex))))
+ {
+ as_bad (_("`%s' is not a valid %s bit base/index expression"),
+ operand_string, "32");
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
+ on error. */
+
+static int i386_operand PARAMS ((char *));
+
+static int
+i386_operand (operand_string)
+ char *operand_string;
+{
+ char *op_string = operand_string;
+
+ if (is_space_char (*op_string))
+ ++op_string;
+
+ /* We check for an absolute prefix (differentiating,
+ for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
+ if (*op_string == ABSOLUTE_PREFIX)
+ {
+ ++op_string;
+ if (is_space_char (*op_string))
+ ++op_string;
+ i.types[this_operand] |= JumpAbsolute;
+ }
+
+ /* Check if operand is a register. */
+ if (*op_string == REGISTER_PREFIX
+ || (allow_naked_reg && i386_is_reg (op_string)))
+ {
+ register const reg_entry *r;
+ char *end_op;
+
+ r = parse_register (op_string, &end_op);
+ if (r == NULL)
+ return 0;
+
+ /* Check for a segment override by searching for ':' after a
+ segment register. */
+ op_string = end_op;
+ if (is_space_char (*op_string))
+ ++op_string;
+ if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
+ {
+ switch (r->reg_num)
+ {
+ case 0:
+ i.seg[i.mem_operands] = &es;
+ break;
+ case 1:
+ i.seg[i.mem_operands] = &cs;
+ break;
+ case 2:
+ i.seg[i.mem_operands] = &ss;
+ break;
+ case 3:
+ i.seg[i.mem_operands] = &ds;
+ break;
+ case 4:
+ i.seg[i.mem_operands] = &fs;
+ break;
+ case 5:
+ i.seg[i.mem_operands] = &gs;
+ break;
+ }
+
+ /* Skip the ':' and whitespace. */
+ ++op_string;
+ if (is_space_char (*op_string))
+ ++op_string;
+
+ /* Pretend given string starts here. */
+ operand_string = op_string;
+ if (!is_digit_char (*op_string)
+ && !is_identifier_char (*op_string)
+ && *op_string != '('
+ && *op_string != ABSOLUTE_PREFIX)
+ {
+ as_bad (_("bad memory operand `%s'"), op_string);
+ return 0;
+ }
+ /* Handle case of %es:*foo. */
+ if (*op_string == ABSOLUTE_PREFIX)
+ {
+ ++op_string;
+ if (is_space_char (*op_string))
+ ++op_string;
+ i.types[this_operand] |= JumpAbsolute;
+ }
+ goto do_memory_reference;
+ }
+ if (*op_string)
+ {
+ as_bad (_("Junk `%s' after register"), op_string);
+ return 0;
+ }
+ i.types[this_operand] |= r->reg_type & ~BaseIndex;
+ i.regs[this_operand] = r;
+ i.reg_operands++;
+ }
+ else if (*op_string == IMMEDIATE_PREFIX)
+ { /* ... or an immediate */
+ ++op_string;
+ if (!i386_immediate (op_string))
+ return 0;
+ }
+ else if (is_digit_char (*op_string)
+ || is_identifier_char (*op_string)
+ || *op_string == '(' )
+ {
+ /* This is a memory reference of some sort. */
+ char *end_of_operand_string;
+ register char *base_string;
+ int found_base_index_form;
+
+ /* Start and end of displacement string expression (if found). */
+ char *displacement_string_start;
+ char *displacement_string_end;
+
+ do_memory_reference:
+
+ if ((i.mem_operands == 1
+ && (current_templates->start->opcode_modifier & IsString) == 0)
+ || i.mem_operands == 2)
+ {
+ as_bad (_("too many memory references for `%s'"),
+ current_templates->start->name);
+ return 0;
+ }
+
+ /* Check for base index form. We detect the base index form by
+ looking for an ')' at the end of the operand, searching
+ for the '(' matching it, and finding a REGISTER_PREFIX or ','
+ after the '('. */
+ found_base_index_form = 0;
+ end_of_operand_string = op_string + strlen (op_string);
+
+ --end_of_operand_string;
+ if (is_space_char (*end_of_operand_string))
+ --end_of_operand_string;
+
+ base_string = end_of_operand_string;
+
+ if (*base_string == ')')
+ {
+ unsigned int parens_balanced = 1;
+ /* We've already checked that the number of left & right ()'s are
+ equal, so this loop will not be infinite. */
+ do
+ {
+ base_string--;
+ if (*base_string == ')')
+ parens_balanced++;
+ if (*base_string == '(')
+ parens_balanced--;
+ }
+ while (parens_balanced);
+
+ /* If there is a displacement set-up for it to be parsed later. */
+ displacement_string_start = op_string;
+ displacement_string_end = base_string;
+
+ /* Skip past '(' and whitespace. */
+ ++base_string;
+ if (is_space_char (*base_string))
+ ++base_string;
+
+ if (*base_string == REGISTER_PREFIX
+ || (allow_naked_reg && i386_is_reg (base_string))
+ || *base_string == ',')
+ found_base_index_form = 1;
+ }
+
+ /* If we can't parse a base index register expression, we've found
+ a pure displacement expression. We set up displacement_string_start
+ and displacement_string_end for the code below. */
+ if (!found_base_index_form)
+ {
+ displacement_string_start = op_string;
+ displacement_string_end = end_of_operand_string + 1;
+ }
+ else
+ {
+ i.types[this_operand] |= BaseIndex;
+
+ /* Find base register (if any). */
+ if (*base_string != ',')
+ {
+ char *end_op;
+
+ /* Trim off the closing ')' so that parse_register won't
+ see it. */
+ END_STRING_AND_SAVE (end_of_operand_string);
+ i.base_reg = parse_register (base_string, &end_op);
+ RESTORE_END_STRING (end_of_operand_string);
+
+ if (i.base_reg == NULL)
+ return 0;
+
+ base_string = end_op;
+ if (is_space_char (*base_string))
+ ++base_string;
+ }
+
+ /* There may be an index reg or scale factor here. */
+ if (*base_string == ',')
+ {
+ ++base_string;
+ if (is_space_char (*base_string))
+ ++base_string;
+
+ if (*base_string == REGISTER_PREFIX
+ || (allow_naked_reg && i386_is_reg (base_string)))
+ {
+ char *end_op;
+
+ END_STRING_AND_SAVE (end_of_operand_string);
+ i.index_reg = parse_register (base_string, &end_op);
+ RESTORE_END_STRING (end_of_operand_string);
+
+ if (i.index_reg == NULL)
+ return 0;
+
+ base_string = end_op;
+ if (is_space_char (*base_string))
+ ++base_string;
+ if (*base_string == ',')
+ {
+ ++base_string;
+ if (is_space_char (*base_string))
+ ++base_string;
+ }
+ else if (*base_string != ')' )
+ {
+ as_bad (_("expecting `,' or `)' after index register in `%s'"),
+ operand_string);
+ return 0;
+ }
+ }
+
+ /* Check for scale factor. */
+ if (isdigit ((unsigned char) *base_string))
+ {
+ if (!i386_scale (base_string))
+ return 0;
+
+ ++base_string;
+ if (is_space_char (*base_string))
+ ++base_string;
+ if (*base_string != ')')
+ {
+ as_bad (_("expecting `)' after scale factor in `%s'"),
+ operand_string);
+ return 0;
+ }
+ }
+ else if (!i.index_reg)
+ {
+ as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
+ *base_string);
+ return 0;
+ }
+ }
+ else if (*base_string != ')')
+ {
+ as_bad (_("expecting `,' or `)' after base register in `%s'"),
+ operand_string);
+ return 0;
+ }
+ }
+
+ /* If there's an expression beginning the operand, parse it,
+ assuming displacement_string_start and
+ displacement_string_end are meaningful. */
+ if (displacement_string_start != displacement_string_end)
+ {
+ if (!i386_displacement (displacement_string_start,
+ displacement_string_end))
+ return 0;
+ }
+
+ /* Special case for (%dx) while doing input/output op. */
+ if (i.base_reg
+ && i.base_reg->reg_type == (Reg16 | InOutPortReg)
+ && i.index_reg == 0
+ && i.log2_scale_factor == 0
+ && i.seg[i.mem_operands] == 0
+ && (i.types[this_operand] & Disp) == 0)
+ {
+ i.types[this_operand] = InOutPortReg;
+ return 1;
+ }
+ /* Make sure the memory operand we've been dealt is valid. */
+ if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
+ {
+ if ((i.base_reg
+ && ((i.base_reg->reg_type & (Reg16|BaseIndex))
+ != (Reg16|BaseIndex)))
+ || (i.index_reg
+ && (((i.index_reg->reg_type & (Reg16|BaseIndex))
+ != (Reg16|BaseIndex))
+ || ! (i.base_reg
+ && i.base_reg->reg_num < 6
+ && i.index_reg->reg_num >= 6
+ && i.log2_scale_factor == 0))))
+ {
+ as_bad (_("`%s' is not a valid %s bit base/index expression"),
+ operand_string, "16");
+ return 0;
+ }
+ }
+ else
+ {
+ if ((i.base_reg
+ && (i.base_reg->reg_type & Reg32) == 0)
+ || (i.index_reg
+ && ((i.index_reg->reg_type & (Reg32|BaseIndex))
+ != (Reg32|BaseIndex))))
+ {
+ as_bad (_("`%s' is not a valid %s bit base/index expression"),
+ operand_string, "32");
+ return 0;
+ }
+ }
+ i.mem_operands++;
+ }
+ else
+ { /* it's not a memory operand; argh! */
+ as_bad (_("invalid char %s beginning operand %d `%s'"),
+ output_invalid (*op_string),
+ this_operand + 1,
+ op_string);
+ return 0;
+ }
+ return 1; /* normal return */
+}
+
+/*
+ * md_estimate_size_before_relax()
+ *
+ * Called just before relax().
+ * Any symbol that is now undefined will not become defined.
+ * Return the correct fr_subtype in the frag.
+ * Return the initial "guess for fr_var" to caller.
+ * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
+ * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
+ * Although it may not be explicit in the frag, pretend fr_var starts with a
+ * 0 value.
+ */
+int
+md_estimate_size_before_relax (fragP, segment)
+ register fragS *fragP;
+ register segT segment;
+{
+ register unsigned char *opcode;
+ register int old_fr_fix;
+
+ old_fr_fix = fragP->fr_fix;
+ opcode = (unsigned char *) fragP->fr_opcode;
+ /* We've already got fragP->fr_subtype right; all we have to do is
+ check for un-relaxable symbols. */
+ if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
+ {
+ /* symbol is undefined in this segment */
+ int code16 = fragP->fr_subtype & CODE16;
+ int size = code16 ? 2 : 4;
+ int pcrel_reloc = code16 ? BFD_RELOC_16_PCREL : BFD_RELOC_32_PCREL;
+
+ switch (opcode[0])
+ {
+ case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */
+ opcode[0] = 0xe9; /* dword disp jmp */
+ fragP->fr_fix += size;
+ fix_new (fragP, old_fr_fix, size,
+ fragP->fr_symbol,
+ fragP->fr_offset, 1,
+ (GOT_symbol && /* Not quite right - we should switch on
+ presence of @PLT, but I cannot see how
+ to get to that from here. We should have
+ done this in md_assemble to really
+ get it right all of the time, but I
+ think it does not matter that much, as
+ this will be right most of the time. ERY*/
+ S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)
+ ? BFD_RELOC_386_PLT32 : pcrel_reloc);
+ break;
+
+ default:
+ /* This changes the byte-displacement jump 0x7N -->
+ the dword-displacement jump 0x0f8N */
+ opcode[1] = opcode[0] + 0x10;
+ opcode[0] = TWO_BYTE_OPCODE_ESCAPE; /* two-byte escape */
+ fragP->fr_fix += 1 + size; /* we've added an opcode byte */
+ fix_new (fragP, old_fr_fix + 1, size,
+ fragP->fr_symbol,
+ fragP->fr_offset, 1,
+ (GOT_symbol && /* Not quite right - we should switch on
+ presence of @PLT, but I cannot see how
+ to get to that from here. ERY */
+ S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)
+ ? BFD_RELOC_386_PLT32 : pcrel_reloc);
+ break;
+ }
+ frag_wane (fragP);
+ }
+ return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
+} /* md_estimate_size_before_relax() */
+
+/*
+ * md_convert_frag();
+ *
+ * Called after relax() is finished.
+ * In: Address of frag.
+ * fr_type == rs_machine_dependent.
+ * fr_subtype is what the address relaxed to.
+ *
+ * Out: Any fixSs and constants are set up.
+ * Caller will turn frag into a ".space 0".
+ */
+#ifndef BFD_ASSEMBLER
+void
+md_convert_frag (headers, sec, fragP)
+ object_headers *headers;
+ segT sec;
+ register fragS *fragP;
+#else
+void
+md_convert_frag (abfd, sec, fragP)
+ bfd *abfd;
+ segT sec;
+ register fragS *fragP;
+#endif
+{
+ register unsigned char *opcode;
+ unsigned char *where_to_put_displacement = NULL;
+ unsigned int target_address;
+ unsigned int opcode_address;
+ unsigned int extension = 0;
+ int displacement_from_opcode_start;
+
+ opcode = (unsigned char *) fragP->fr_opcode;
+
+ /* Address we want to reach in file space. */
+ target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
+#ifdef BFD_ASSEMBLER /* not needed otherwise? */
+ target_address += fragP->fr_symbol->sy_frag->fr_address;
+#endif
+
+ /* Address opcode resides at in file space. */
+ opcode_address = fragP->fr_address + fragP->fr_fix;
+
+ /* Displacement from opcode start to fill into instruction. */
+ displacement_from_opcode_start = target_address - opcode_address;
+
+ switch (fragP->fr_subtype)
+ {
+ case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
+ case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
+ /* don't have to change opcode */
+ extension = 1; /* 1 opcode + 1 displacement */
+ where_to_put_displacement = &opcode[1];
+ break;
+
+ case ENCODE_RELAX_STATE (COND_JUMP, BIG):
+ extension = 5; /* 2 opcode + 4 displacement */
+ opcode[1] = opcode[0] + 0x10;
+ opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
+ where_to_put_displacement = &opcode[2];
+ break;
+
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
+ extension = 4; /* 1 opcode + 4 displacement */
+ opcode[0] = 0xe9;
+ where_to_put_displacement = &opcode[1];
+ break;
+
+ case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
+ extension = 3; /* 2 opcode + 2 displacement */
+ opcode[1] = opcode[0] + 0x10;
+ opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
+ where_to_put_displacement = &opcode[2];
+ break;
+
+ case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
+ extension = 2; /* 1 opcode + 2 displacement */
+ opcode[0] = 0xe9;
+ where_to_put_displacement = &opcode[1];
+ break;
+
+ default:
+ BAD_CASE (fragP->fr_subtype);
+ break;
+ }
+ /* now put displacement after opcode */
+ md_number_to_chars ((char *) where_to_put_displacement,
+ (valueT) (displacement_from_opcode_start - extension),
+ SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
+ fragP->fr_fix += extension;
+}
+
+
+int md_short_jump_size = 2; /* size of byte displacement jmp */
+int md_long_jump_size = 5; /* size of dword displacement jmp */
+const int md_reloc_size = 8; /* Size of relocation record */
+
+void
+md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
+ char *ptr;
+ addressT from_addr, to_addr;
+ fragS *frag;
+ symbolS *to_symbol;
+{
+ long offset;
+
+ offset = to_addr - (from_addr + 2);
+ md_number_to_chars (ptr, (valueT) 0xeb, 1); /* opcode for byte-disp jump */
+ md_number_to_chars (ptr + 1, (valueT) offset, 1);
+}
+
+void
+md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
+ char *ptr;
+ addressT from_addr, to_addr;
+ fragS *frag;
+ symbolS *to_symbol;
+{
+ long offset;
+
+ if (flag_do_long_jump)
+ {
+ offset = to_addr - S_GET_VALUE (to_symbol);
+ md_number_to_chars (ptr, (valueT) 0xe9, 1);/* opcode for long jmp */
+ md_number_to_chars (ptr + 1, (valueT) offset, 4);
+ fix_new (frag, (ptr + 1) - frag->fr_literal, 4,
+ to_symbol, (offsetT) 0, 0, BFD_RELOC_32);
+ }
+ else
+ {
+ offset = to_addr - (from_addr + 5);
+ md_number_to_chars (ptr, (valueT) 0xe9, 1);
+ md_number_to_chars (ptr + 1, (valueT) offset, 4);
+ }
+}
+
+/* Apply a fixup (fixS) to segment data, once it has been determined
+ by our caller that we have all the info we need to fix it up.
+
+ On the 386, immediates, displacements, and data pointers are all in
+ the same (little-endian) format, so we don't need to care about which
+ we are handling. */
+
+int
+md_apply_fix3 (fixP, valp, seg)
+ fixS *fixP; /* The fix we're to put in. */
+ valueT *valp; /* Pointer to the value of the bits. */
+ segT seg; /* Segment fix is from. */
+{
+ register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
+ valueT value = *valp;
+
+ if (fixP->fx_r_type == BFD_RELOC_32 && fixP->fx_pcrel)
+ fixP->fx_r_type = BFD_RELOC_32_PCREL;
+
+#if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
+ /*
+ * This is a hack. There should be a better way to
+ * handle this.
+ */
+ if (fixP->fx_r_type == BFD_RELOC_32_PCREL && fixP->fx_addsy)
+ {
+#ifndef OBJ_AOUT
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour
+#ifdef TE_PE
+ || OUTPUT_FLAVOR == bfd_target_coff_flavour
+#endif
+ )
+ value += fixP->fx_where + fixP->fx_frag->fr_address;
+#endif
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour
+ && (S_GET_SEGMENT (fixP->fx_addsy) == seg
+ || (fixP->fx_addsy->bsym->flags & BSF_SECTION_SYM) != 0)
+ && ! S_IS_EXTERNAL (fixP->fx_addsy)
+ && ! S_IS_WEAK (fixP->fx_addsy)
+ && S_IS_DEFINED (fixP->fx_addsy)
+ && ! S_IS_COMMON (fixP->fx_addsy))
+ {
+ /* Yes, we add the values in twice. This is because
+ bfd_perform_relocation subtracts them out again. I think
+ bfd_perform_relocation is broken, but I don't dare change
+ it. FIXME. */
+ value += fixP->fx_where + fixP->fx_frag->fr_address;
+ }
+#endif
+#if defined (OBJ_COFF) && defined (TE_PE)
+ /* For some reason, the PE format does not store a section
+ address offset for a PC relative symbol. */
+ if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
+ value += md_pcrel_from (fixP);
+#endif
+ }
+
+ /* Fix a few things - the dynamic linker expects certain values here,
+ and we must not dissappoint it. */
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ if (OUTPUT_FLAVOR == bfd_target_elf_flavour
+ && fixP->fx_addsy)
+ switch (fixP->fx_r_type) {
+ case BFD_RELOC_386_PLT32:
+ /* Make the jump instruction point to the address of the operand. At
+ runtime we merely add the offset to the actual PLT entry. */
+ value = 0xfffffffc;
+ break;
+ case BFD_RELOC_386_GOTPC:
+/*
+ * This is tough to explain. We end up with this one if we have
+ * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
+ * here is to obtain the absolute address of the GOT, and it is strongly
+ * preferable from a performance point of view to avoid using a runtime
+ * relocation for this. The actual sequence of instructions often look
+ * something like:
+ *
+ * call .L66
+ * .L66:
+ * popl %ebx
+ * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
+ *
+ * The call and pop essentially return the absolute address of
+ * the label .L66 and store it in %ebx. The linker itself will
+ * ultimately change the first operand of the addl so that %ebx points to
+ * the GOT, but to keep things simple, the .o file must have this operand
+ * set so that it generates not the absolute address of .L66, but the
+ * absolute address of itself. This allows the linker itself simply
+ * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
+ * added in, and the addend of the relocation is stored in the operand
+ * field for the instruction itself.
+ *
+ * Our job here is to fix the operand so that it would add the correct
+ * offset so that %ebx would point to itself. The thing that is tricky is
+ * that .-.L66 will point to the beginning of the instruction, so we need
+ * to further modify the operand so that it will point to itself.
+ * There are other cases where you have something like:
+ *
+ * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
+ *
+ * and here no correction would be required. Internally in the assembler
+ * we treat operands of this form as not being pcrel since the '.' is
+ * explicitly mentioned, and I wonder whether it would simplify matters
+ * to do it this way. Who knows. In earlier versions of the PIC patches,
+ * the pcrel_adjust field was used to store the correction, but since the
+ * expression is not pcrel, I felt it would be confusing to do it this way.
+ */
+ value -= 1;
+ break;
+ case BFD_RELOC_386_GOT32:
+ value = 0; /* Fully resolved at runtime. No addend. */
+ break;
+ case BFD_RELOC_386_GOTOFF:
+ break;
+
+ case BFD_RELOC_VTABLE_INHERIT:
+ case BFD_RELOC_VTABLE_ENTRY:
+ fixP->fx_done = 0;
+ return 1;
+
+ default:
+ break;
+ }
+#endif
+
+#endif
+ md_number_to_chars (p, value, fixP->fx_size);
+
+ return 1;
+}
+
+#if 0
+/* This is never used. */
+long /* Knows about the byte order in a word. */
+md_chars_to_number (con, nbytes)
+ unsigned char con[]; /* Low order byte 1st. */
+ int nbytes; /* Number of bytes in the input. */
+{
+ long retval;
+ for (retval = 0, con += nbytes - 1; nbytes--; con--)
+ {
+ retval <<= BITS_PER_CHAR;
+ retval |= *con;
+ }
+ return retval;
+}
+#endif /* 0 */
+
+
+#define MAX_LITTLENUMS 6
+
+/* Turn the string pointed to by litP into a floating point constant of type
+ type, and emit the appropriate bytes. The number of LITTLENUMS emitted
+ is stored in *sizeP . An error message is returned, or NULL on OK. */
+char *
+md_atof (type, litP, sizeP)
+ char type;
+ char *litP;
+ int *sizeP;
+{
+ int prec;
+ LITTLENUM_TYPE words[MAX_LITTLENUMS];
+ LITTLENUM_TYPE *wordP;
+ char *t;
+
+ switch (type)
+ {
+ case 'f':
+ case 'F':
+ prec = 2;
+ break;
+
+ case 'd':
+ case 'D':
+ prec = 4;
+ break;
+
+ case 'x':
+ case 'X':
+ prec = 5;
+ break;
+
+ default:
+ *sizeP = 0;
+ return _("Bad call to md_atof ()");
+ }
+ t = atof_ieee (input_line_pointer, type, words);
+ if (t)
+ input_line_pointer = t;
+
+ *sizeP = prec * sizeof (LITTLENUM_TYPE);
+ /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
+ the bigendian 386. */
+ for (wordP = words + prec - 1; prec--;)
+ {
+ md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
+ litP += sizeof (LITTLENUM_TYPE);
+ }
+ return 0;
+}
+
+char output_invalid_buf[8];
+
+static char * output_invalid PARAMS ((int));
+
+static char *
+output_invalid (c)
+ int c;
+{
+ if (isprint (c))
+ sprintf (output_invalid_buf, "'%c'", c);
+ else
+ sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
+ return output_invalid_buf;
+}
+
+/* REG_STRING starts *before* REGISTER_PREFIX. */
+
+static const reg_entry * parse_register PARAMS ((char *, char **));
+
+static const reg_entry *
+parse_register (reg_string, end_op)
+ char *reg_string;
+ char **end_op;
+{
+ register char *s = reg_string;
+ register char *p;
+ char reg_name_given[MAX_REG_NAME_SIZE + 1];
+ const reg_entry *r;
+
+ /* Skip possible REGISTER_PREFIX and possible whitespace. */
+ if (*s == REGISTER_PREFIX)
+ ++s;
+
+ if (is_space_char (*s))
+ ++s;
+
+ p = reg_name_given;
+ while ((*p++ = register_chars[(unsigned char) *s++]) != '\0')
+ {
+ if (p >= reg_name_given + MAX_REG_NAME_SIZE)
+ {
+ if (!allow_naked_reg)
+ {
+ *p = '\0';
+ as_bad (_("bad register name `%s'"), reg_name_given);
+ }
+ return (const reg_entry *) NULL;
+ }
+ }
+
+ *end_op = s - 1;
+
+ r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
+
+ if (r == NULL)
+ {
+ if (!allow_naked_reg)
+ as_bad (_("bad register name `%s'"), reg_name_given);
+ return (const reg_entry *) NULL;
+ }
+
+ return r;
+}
+
+#ifdef OBJ_ELF
+CONST char *md_shortopts = "kmVQ:";
+#else
+CONST char *md_shortopts = "m";
+#endif
+struct option md_longopts[] = {
+ {NULL, no_argument, NULL, 0}
+};
+size_t md_longopts_size = sizeof (md_longopts);
+
+int
+md_parse_option (c, arg)
+ int c;
+ char *arg;
+{
+ switch (c)
+ {
+ case 'm':
+ flag_do_long_jump = 1;
+ break;
+
+#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
+ /* -k: Ignore for FreeBSD compatibility. */
+ case 'k':
+ break;
+
+ /* -V: SVR4 argument to print version ID. */
+ case 'V':
+ print_version_id ();
+ break;
+
+ /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
+ should be emitted or not. FIXME: Not implemented. */
+ case 'Q':
+ break;
+#endif
+
+ default:
+ return 0;
+ }
+ return 1;
+}
+
+void
+md_show_usage (stream)
+ FILE *stream;
+{
+ fprintf (stream, _("\
+-m do long jump\n"));
+}
+
+#ifdef BFD_ASSEMBLER
+#ifdef OBJ_MAYBE_ELF
+#ifdef OBJ_MAYBE_COFF
+
+/* Pick the target format to use. */
+
+const char *
+i386_target_format ()
+{
+ switch (OUTPUT_FLAVOR)
+ {
+ case bfd_target_coff_flavour:
+ return "coff-i386";
+ case bfd_target_elf_flavour:
+ return "elf32-i386";
+ default:
+ abort ();
+ return NULL;
+ }
+}
+
+#endif /* OBJ_MAYBE_COFF */
+#endif /* OBJ_MAYBE_ELF */
+#endif /* BFD_ASSEMBLER */
+
+/* ARGSUSED */
+symbolS *
+md_undefined_symbol (name)
+ char *name;
+{
+ if (*name == '_' && *(name+1) == 'G'
+ && strcmp(name, GLOBAL_OFFSET_TABLE_NAME) == 0)
+ {
+ if (!GOT_symbol)
+ {
+ if (symbol_find (name))
+ as_bad (_("GOT already in symbol table"));
+ GOT_symbol = symbol_new (name, undefined_section,
+ (valueT) 0, &zero_address_frag);
+ };
+ return GOT_symbol;
+ }
+ return 0;
+}
+
+/* Round up a section size to the appropriate boundary. */
+valueT
+md_section_align (segment, size)
+ segT segment;
+ valueT size;
+{
+#ifdef OBJ_AOUT
+#ifdef BFD_ASSEMBLER
+ /* For a.out, force the section size to be aligned. If we don't do
+ this, BFD will align it for us, but it will not write out the
+ final bytes of the section. This may be a bug in BFD, but it is
+ easier to fix it here since that is how the other a.out targets
+ work. */
+ int align;
+
+ align = bfd_get_section_alignment (stdoutput, segment);
+ size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
+#endif
+#endif
+
+ return size;
+}
+
+/* On the i386, PC-relative offsets are relative to the start of the
+ next instruction. That is, the address of the offset, plus its
+ size, since the offset is always the last part of the insn. */
+
+long
+md_pcrel_from (fixP)
+ fixS *fixP;
+{
+ return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
+}
+
+#ifndef I386COFF
+
+static void
+s_bss (ignore)
+ int ignore;
+{
+ register int temp;
+
+ temp = get_absolute_expression ();
+ subseg_set (bss_section, (subsegT) temp);
+ demand_empty_rest_of_line ();
+}
+
+#endif
+
+
+#ifdef BFD_ASSEMBLER
+
+void
+i386_validate_fix (fixp)
+ fixS *fixp;
+{
+ if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
+ {
+ fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
+ fixp->fx_subsy = 0;
+ }
+}
+
+#define F(SZ,PCREL) (((SZ) << 1) + (PCREL))
+#define MAP(SZ,PCREL,TYPE) case F(SZ,PCREL): code = (TYPE); break
+
+arelent *
+tc_gen_reloc (section, fixp)
+ asection *section;
+ fixS *fixp;
+{
+ arelent *rel;
+ bfd_reloc_code_real_type code;
+
+ switch (fixp->fx_r_type)
+ {
+ case BFD_RELOC_386_PLT32:
+ case BFD_RELOC_386_GOT32:
+ case BFD_RELOC_386_GOTOFF:
+ case BFD_RELOC_386_GOTPC:
+ case BFD_RELOC_RVA:
+ case BFD_RELOC_VTABLE_ENTRY:
+ case BFD_RELOC_VTABLE_INHERIT:
+ code = fixp->fx_r_type;
+ break;
+ default:
+ switch (F (fixp->fx_size, fixp->fx_pcrel))
+ {
+ MAP (1, 0, BFD_RELOC_8);
+ MAP (2, 0, BFD_RELOC_16);
+ MAP (4, 0, BFD_RELOC_32);
+ MAP (1, 1, BFD_RELOC_8_PCREL);
+ MAP (2, 1, BFD_RELOC_16_PCREL);
+ MAP (4, 1, BFD_RELOC_32_PCREL);
+ default:
+ if (fixp->fx_pcrel)
+ as_bad (_("Can not do %d byte pc-relative relocation"),
+ fixp->fx_size);
+ else
+ as_bad (_("Can not do %d byte relocation"), fixp->fx_size);
+ code = BFD_RELOC_32;
+ break;
+ }
+ break;
+ }
+#undef MAP
+#undef F
+
+ if (code == BFD_RELOC_32
+ && GOT_symbol
+ && fixp->fx_addsy == GOT_symbol)
+ code = BFD_RELOC_386_GOTPC;
+
+ rel = (arelent *) xmalloc (sizeof (arelent));
+ rel->sym_ptr_ptr = &fixp->fx_addsy->bsym;
+
+ rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
+ /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
+ vtable entry to be used in the relocation's section offset. */
+ if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
+ rel->address = fixp->fx_offset;
+
+ if (fixp->fx_pcrel)
+ rel->addend = fixp->fx_addnumber;
+ else
+ rel->addend = 0;
+
+ rel->howto = bfd_reloc_type_lookup (stdoutput, code);
+ if (rel->howto == NULL)
+ {
+ as_bad_where (fixp->fx_file, fixp->fx_line,
+ _("Cannot represent relocation type %s"),
+ bfd_get_reloc_code_name (code));
+ /* Set howto to a garbage value so that we can keep going. */
+ rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
+ assert (rel->howto != NULL);
+ }
+
+ return rel;
+}
+
+#else /* ! BFD_ASSEMBLER */
+
+#if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
+void
+tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
+ char *where;
+ fixS *fixP;
+ relax_addressT segment_address_in_file;
+{
+ /*
+ * In: length of relocation (or of address) in chars: 1, 2 or 4.
+ * Out: GNU LD relocation length code: 0, 1, or 2.
+ */
+
+ static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
+ long r_symbolnum;
+
+ know (fixP->fx_addsy != NULL);
+
+ md_number_to_chars (where,
+ (valueT) (fixP->fx_frag->fr_address
+ + fixP->fx_where - segment_address_in_file),
+ 4);
+
+ r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
+ ? S_GET_TYPE (fixP->fx_addsy)
+ : fixP->fx_addsy->sy_number);
+
+ where[6] = (r_symbolnum >> 16) & 0x0ff;
+ where[5] = (r_symbolnum >> 8) & 0x0ff;
+ where[4] = r_symbolnum & 0x0ff;
+ where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
+ | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
+ | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
+}
+
+#endif /* OBJ_AOUT or OBJ_BOUT */
+
+#if defined (I386COFF)
+
+short
+tc_coff_fix2rtype (fixP)
+ fixS *fixP;
+{
+ if (fixP->fx_r_type == R_IMAGEBASE)
+ return R_IMAGEBASE;
+
+ return (fixP->fx_pcrel ?
+ (fixP->fx_size == 1 ? R_PCRBYTE :
+ fixP->fx_size == 2 ? R_PCRWORD :
+ R_PCRLONG) :
+ (fixP->fx_size == 1 ? R_RELBYTE :
+ fixP->fx_size == 2 ? R_RELWORD :
+ R_DIR32));
+}
+
+int
+tc_coff_sizemachdep (frag)
+ fragS *frag;
+{
+ if (frag->fr_next)
+ return (frag->fr_next->fr_address - frag->fr_address);
+ else
+ return 0;
+}
+
+#endif /* I386COFF */
+
+#endif /* BFD_ASSEMBLER? */
+
+/* end of tc-i386.c */