summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp
blob: 2f88033c807f0f0cfbccb2c7e81eadd6d031bf2b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This contains a MachineSchedStrategy implementation for maximizing wave
/// occupancy on GCN hardware.
//===----------------------------------------------------------------------===//

#include "GCNSchedStrategy.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"

#define DEBUG_TYPE "misched"

using namespace llvm;

GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
    const MachineSchedContext *C) :
    GenericScheduler(C) { }

static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
                            const MachineFunction &MF) {

  const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
                                      ST.getOccupancyWithNumVGPRs(VGPRs));
  return std::min(MinRegOccupancy,
                  ST.getOccupancyWithLocalMemSize(MFI->getLDSSize()));
}

void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
                                     bool AtTop, const RegPressureTracker &RPTracker,
                                     const SIRegisterInfo *SRI,
                                     int SGPRPressure,
                                     int VGPRPressure,
                                     int SGPRExcessLimit,
                                     int VGPRExcessLimit,
                                     int SGPRCriticalLimit,
                                     int VGPRCriticalLimit) {

  Cand.SU = SU;
  Cand.AtTop = AtTop;

  // getDownwardPressure() and getUpwardPressure() make temporary changes to
  // the the tracker, so we need to pass those function a non-const copy.
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);

  std::vector<unsigned> Pressure;
  std::vector<unsigned> MaxPressure;

  if (AtTop)
    TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
  else {
    // FIXME: I think for bottom up scheduling, the register pressure is cached
    // and can be retrieved by DAG->getPressureDif(SU).
    TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
  }

  int NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
  int NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];

  // If two instructions increase the pressure of different register sets
  // by the same amount, the generic scheduler will prefer to schedule the
  // instruction that increases the set with the least amount of registers,
  // which in our case would be SGPRs.  This is rarely what we want, so
  // when we report excess/critical register pressure, we do it either
  // only for VGPRs or only for SGPRs.

  // FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
  const int MaxVGPRPressureInc = 16;
  bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
  bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;


  // FIXME: We have to enter REG-EXCESS before we reach the actual threshold
  // to increase the likelihood we don't go over the limits.  We should improve
  // the analysis to look through dependencies to find the path with the least
  // register pressure.
  // FIXME: This is also necessary, because some passes that run after
  // scheduling and before regalloc increase register pressure.
  const int ErrorMargin = 3;
  VGPRExcessLimit -= ErrorMargin;
  SGPRExcessLimit -= ErrorMargin;

  // We only need to update the RPDelata for instructions that increase
  // register pressure.  Instructions that decrease or keep reg pressure
  // the same will be marked as RegExcess in tryCandidate() when they
  // are compared with instructions that increase the register pressure.
  if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
    Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
    Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
  }

  if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
    Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
    Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure = SGPRExcessLimit);
  }

  // Register pressure is considered 'CRITICAL' if it is approaching a value
  // that would reduce the wave occupancy for the execution unit.  When
  // register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
  // has the same cost, so we don't need to prefer one over the other.

  VGPRCriticalLimit -= ErrorMargin;
  SGPRCriticalLimit -= ErrorMargin;

  int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
  int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;

  if (SGPRDelta >= 0 || VGPRDelta >= 0) {
    if (SGPRDelta > VGPRDelta) {
      Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
      Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
    } else {
      Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
      Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
    }
  }
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNodeFromQueue()
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
                                         const CandPolicy &ZonePolicy,
                                         const RegPressureTracker &RPTracker,
                                         SchedCandidate &Cand) {
  const SISubtarget &ST = DAG->MF.getSubtarget<SISubtarget>();
  const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
  ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
  unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
  unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
  unsigned SGPRExcessLimit =
      Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
  unsigned VGPRExcessLimit =
      Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);
  unsigned MaxWaves = getMaxWaves(SGPRPressure, VGPRPressure, DAG->MF);
  unsigned SGPRCriticalLimit = SRI->getMaxNumSGPRs(ST, MaxWaves, true);
  unsigned VGPRCriticalLimit = SRI->getMaxNumVGPRs(MaxWaves);

  ReadyQueue &Q = Zone.Available;
  for (SUnit *SU : Q) {

    SchedCandidate TryCand(ZonePolicy);
    initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
                  SGPRPressure, VGPRPressure,
                  SGPRExcessLimit, VGPRExcessLimit,
                  SGPRCriticalLimit, VGPRCriticalLimit);
    // Pass SchedBoundary only when comparing nodes from the same boundary.
    SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
    GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
    if (TryCand.Reason != NoCand) {
      // Initialize resource delta if needed in case future heuristics query it.
      if (TryCand.ResDelta == SchedResourceDelta())
        TryCand.initResourceDelta(Zone.DAG, SchedModel);
      Cand.setBest(TryCand);
    }
  }
}

static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) {
  switch (Reason) {
  default:
    return Reason;
  case GenericSchedulerBase::RegCritical:
  case GenericSchedulerBase::RegExcess:
    return -Reason;
 }
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNodeBidirectional()
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
  // Schedule as far as possible in the direction of no choice. This is most
  // efficient, but also provides the best heuristics for CriticalPSets.
  if (SUnit *SU = Bot.pickOnlyChoice()) {
    IsTopNode = false;
    return SU;
  }
  if (SUnit *SU = Top.pickOnlyChoice()) {
    IsTopNode = true;
    return SU;
  }
  // Set the bottom-up policy based on the state of the current bottom zone and
  // the instructions outside the zone, including the top zone.
  CandPolicy BotPolicy;
  setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
  // Set the top-down policy based on the state of the current top zone and
  // the instructions outside the zone, including the bottom zone.
  CandPolicy TopPolicy;
  setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);

  // See if BotCand is still valid (because we previously scheduled from Top).
  DEBUG(dbgs() << "Picking from Bot:\n");
  if (!BotCand.isValid() || BotCand.SU->isScheduled ||
      BotCand.Policy != BotPolicy) {
    BotCand.reset(CandPolicy());
    pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
    assert(BotCand.Reason != NoCand && "failed to find the first candidate");
  } else {
    DEBUG(traceCandidate(BotCand));
  }

  // Check if the top Q has a better candidate.
  DEBUG(dbgs() << "Picking from Top:\n");
  if (!TopCand.isValid() || TopCand.SU->isScheduled ||
      TopCand.Policy != TopPolicy) {
    TopCand.reset(CandPolicy());
    pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
    assert(TopCand.Reason != NoCand && "failed to find the first candidate");
  } else {
    DEBUG(traceCandidate(TopCand));
  }

  // Pick best from BotCand and TopCand.
  DEBUG(
    dbgs() << "Top Cand: ";
    traceCandidate(BotCand);
    dbgs() << "Bot Cand: ";
    traceCandidate(TopCand);
  );
  SchedCandidate Cand;
  if (TopCand.Reason == BotCand.Reason) {
    Cand = BotCand;
    GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
    TopCand.Reason = NoCand;
    GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
    if (TopCand.Reason != NoCand) {
      Cand.setBest(TopCand);
    } else {
      TopCand.Reason = TopReason;
    }
  } else {
    if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
      Cand = TopCand;
    } else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
      Cand = BotCand;
    } else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
      Cand = TopCand;
    } else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
      Cand = BotCand;
    } else {
      int TopRank = getBidirectionalReasonRank(TopCand.Reason);
      int BotRank = getBidirectionalReasonRank(BotCand.Reason);
      if (TopRank > BotRank) {
        Cand = TopCand;
      } else {
        Cand = BotCand;
      }
    }
  }
  DEBUG(
    dbgs() << "Picking: ";
    traceCandidate(Cand);
  );

  IsTopNode = Cand.AtTop;
  return Cand.SU;
}

// This function is mostly cut and pasted from
// GenericScheduler::pickNode()
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(Top.Available.empty() && Top.Pending.empty() &&
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
    return nullptr;
  }
  SUnit *SU;
  do {
    if (RegionPolicy.OnlyTopDown) {
      SU = Top.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        TopCand.reset(NoPolicy);
        pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
        assert(TopCand.Reason != NoCand && "failed to find a candidate");
        SU = TopCand.SU;
      }
      IsTopNode = true;
    } else if (RegionPolicy.OnlyBottomUp) {
      SU = Bot.pickOnlyChoice();
      if (!SU) {
        CandPolicy NoPolicy;
        BotCand.reset(NoPolicy);
        pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
        assert(BotCand.Reason != NoCand && "failed to find a candidate");
        SU = BotCand.SU;
      }
      IsTopNode = false;
    } else {
      SU = pickNodeBidirectional(IsTopNode);
    }
  } while (SU->isScheduled);

  if (SU->isTopReady())
    Top.removeReady(SU);
  if (SU->isBottomReady())
    Bot.removeReady(SU);

  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
  return SU;
}