summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/RISCV/AsmParser/RISCVAsmParser.cpp
blob: 2e80dca45407bcd692d704713e16591ab71841b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
//===-- RISCVAsmParser.cpp - Parse RISCV assembly to MCInst instructions --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/RISCVBaseInfo.h"
#include "MCTargetDesc/RISCVMCExpr.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "MCTargetDesc/RISCVTargetStreamer.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"

#include <limits>

using namespace llvm;

// Include the auto-generated portion of the compress emitter.
#define GEN_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"

namespace {
struct RISCVOperand;

class RISCVAsmParser : public MCTargetAsmParser {
  SMLoc getLoc() const { return getParser().getTok().getLoc(); }
  bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }

  RISCVTargetStreamer &getTargetStreamer() {
    MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
    return static_cast<RISCVTargetStreamer &>(TS);
  }

  unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
                                      unsigned Kind) override;

  bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
                                  int64_t Lower, int64_t Upper, Twine Msg);

  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                               OperandVector &Operands, MCStreamer &Out,
                               uint64_t &ErrorInfo,
                               bool MatchingInlineAsm) override;

  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;

  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                        SMLoc NameLoc, OperandVector &Operands) override;

  bool ParseDirective(AsmToken DirectiveID) override;

  // Helper to actually emit an instruction to the MCStreamer. Also, when
  // possible, compression of the instruction is performed.
  void emitToStreamer(MCStreamer &S, const MCInst &Inst);

  // Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
  // synthesize the desired immedate value into the destination register.
  void emitLoadImm(unsigned DestReg, int64_t Value, MCStreamer &Out);

  // Helper to emit pseudo instruction "lla" used in PC-rel addressing.
  void emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);

  /// Helper for processing MC instructions that have been successfully matched
  /// by MatchAndEmitInstruction. Modifications to the emitted instructions,
  /// like the expansion of pseudo instructions (e.g., "li"), can be performed
  /// in this method.
  bool processInstruction(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);

// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "RISCVGenAsmMatcher.inc"

  OperandMatchResultTy parseImmediate(OperandVector &Operands);
  OperandMatchResultTy parseRegister(OperandVector &Operands,
                                     bool AllowParens = false);
  OperandMatchResultTy parseMemOpBaseReg(OperandVector &Operands);
  OperandMatchResultTy parseOperandWithModifier(OperandVector &Operands);
  OperandMatchResultTy parseBareSymbol(OperandVector &Operands);
  OperandMatchResultTy parseJALOffset(OperandVector &Operands);

  bool parseOperand(OperandVector &Operands, StringRef Mnemonic);

  bool parseDirectiveOption();

  void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
    if (!(getSTI().getFeatureBits()[Feature])) {
      MCSubtargetInfo &STI = copySTI();
      setAvailableFeatures(
          ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
    }
  }

  void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
    if (getSTI().getFeatureBits()[Feature]) {
      MCSubtargetInfo &STI = copySTI();
      setAvailableFeatures(
          ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
    }
  }
public:
  enum RISCVMatchResultTy {
    Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "RISCVGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
  };

  static bool classifySymbolRef(const MCExpr *Expr,
                                RISCVMCExpr::VariantKind &Kind,
                                int64_t &Addend);

  RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
                 const MCInstrInfo &MII, const MCTargetOptions &Options)
      : MCTargetAsmParser(Options, STI, MII) {
    Parser.addAliasForDirective(".half", ".2byte");
    Parser.addAliasForDirective(".hword", ".2byte");
    Parser.addAliasForDirective(".word", ".4byte");
    Parser.addAliasForDirective(".dword", ".8byte");
    setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
  }
};

/// RISCVOperand - Instances of this class represent a parsed machine
/// instruction
struct RISCVOperand : public MCParsedAsmOperand {

  enum KindTy {
    Token,
    Register,
    Immediate,
  } Kind;

  bool IsRV64;

  struct RegOp {
    unsigned RegNum;
  };

  struct ImmOp {
    const MCExpr *Val;
  };

  SMLoc StartLoc, EndLoc;
  union {
    StringRef Tok;
    RegOp Reg;
    ImmOp Imm;
  };

  RISCVOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}

public:
  RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
    Kind = o.Kind;
    IsRV64 = o.IsRV64;
    StartLoc = o.StartLoc;
    EndLoc = o.EndLoc;
    switch (Kind) {
    case Register:
      Reg = o.Reg;
      break;
    case Immediate:
      Imm = o.Imm;
      break;
    case Token:
      Tok = o.Tok;
      break;
    }
  }

  bool isToken() const override { return Kind == Token; }
  bool isReg() const override { return Kind == Register; }
  bool isImm() const override { return Kind == Immediate; }
  bool isMem() const override { return false; }

  static bool evaluateConstantImm(const MCExpr *Expr, int64_t &Imm,
                                  RISCVMCExpr::VariantKind &VK) {
    if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
      VK = RE->getKind();
      return RE->evaluateAsConstant(Imm);
    }

    if (auto CE = dyn_cast<MCConstantExpr>(Expr)) {
      VK = RISCVMCExpr::VK_RISCV_None;
      Imm = CE->getValue();
      return true;
    }

    return false;
  }

  // True if operand is a symbol with no modifiers, or a constant with no
  // modifiers and isShiftedInt<N-1, 1>(Op).
  template <int N> bool isBareSimmNLsb0() const {
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    if (!isImm())
      return false;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    bool IsValid;
    if (!IsConstantImm)
      IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
    else
      IsValid = isShiftedInt<N - 1, 1>(Imm);
    return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
  }

  // Predicate methods for AsmOperands defined in RISCVInstrInfo.td

  bool isBareSymbol() const {
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    // Must be of 'immediate' type but not a constant.
    if (!isImm() || evaluateConstantImm(getImm(), Imm, VK))
      return false;
    return RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm) &&
           VK == RISCVMCExpr::VK_RISCV_None;
  }

  /// Return true if the operand is a valid for the fence instruction e.g.
  /// ('iorw').
  bool isFenceArg() const {
    if (!isImm())
      return false;
    const MCExpr *Val = getImm();
    auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
    if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
      return false;

    StringRef Str = SVal->getSymbol().getName();
    // Letters must be unique, taken from 'iorw', and in ascending order. This
    // holds as long as each individual character is one of 'iorw' and is
    // greater than the previous character.
    char Prev = '\0';
    for (char c : Str) {
      if (c != 'i' && c != 'o' && c != 'r' && c != 'w')
        return false;
      if (c <= Prev)
        return false;
      Prev = c;
    }
    return true;
  }

  /// Return true if the operand is a valid floating point rounding mode.
  bool isFRMArg() const {
    if (!isImm())
      return false;
    const MCExpr *Val = getImm();
    auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
    if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
      return false;

    StringRef Str = SVal->getSymbol().getName();

    return RISCVFPRndMode::stringToRoundingMode(Str) != RISCVFPRndMode::Invalid;
  }

  bool isImmXLen() const {
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    if (!isImm())
      return false;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    // Given only Imm, ensuring that the actually specified constant is either
    // a signed or unsigned 64-bit number is unfortunately impossible.
    bool IsInRange = isRV64() ? true : isInt<32>(Imm) || isUInt<32>(Imm);
    return IsConstantImm && IsInRange && VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isUImmLog2XLen() const {
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    if (!isImm())
      return false;
    if (!evaluateConstantImm(getImm(), Imm, VK) ||
        VK != RISCVMCExpr::VK_RISCV_None)
      return false;
    return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
  }

  bool isUImmLog2XLenNonZero() const {
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    if (!isImm())
      return false;
    if (!evaluateConstantImm(getImm(), Imm, VK) ||
        VK != RISCVMCExpr::VK_RISCV_None)
      return false;
    if (Imm == 0)
      return false;
    return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
  }

  bool isUImm5() const {
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    if (!isImm())
      return false;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && isUInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isUImm5NonZero() const {
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    if (!isImm())
      return false;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && isUInt<5>(Imm) && (Imm != 0) &&
           VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isSImm6() const {
    if (!isImm())
      return false;
    RISCVMCExpr::VariantKind VK;
    int64_t Imm;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && isInt<6>(Imm) &&
           VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isSImm6NonZero() const {
    if (!isImm())
      return false;
    RISCVMCExpr::VariantKind VK;
    int64_t Imm;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && isInt<6>(Imm) && (Imm != 0) &&
           VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isCLUIImm() const {
    if (!isImm())
      return false;
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && (Imm != 0) &&
           (isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
            VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isUImm7Lsb00() const {
    if (!isImm())
      return false;
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
           VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isUImm8Lsb00() const {
    if (!isImm())
      return false;
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
           VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isUImm8Lsb000() const {
    if (!isImm())
      return false;
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
           VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }

  bool isUImm9Lsb000() const {
    if (!isImm())
      return false;
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
           VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isUImm10Lsb00NonZero() const {
    if (!isImm())
      return false;
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
           VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isSImm12() const {
    RISCVMCExpr::VariantKind VK;
    int64_t Imm;
    bool IsValid;
    if (!isImm())
      return false;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    if (!IsConstantImm)
      IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
    else
      IsValid = isInt<12>(Imm);
    return IsValid && ((IsConstantImm && VK == RISCVMCExpr::VK_RISCV_None) ||
                       VK == RISCVMCExpr::VK_RISCV_LO ||
                       VK == RISCVMCExpr::VK_RISCV_PCREL_LO);
  }

  bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }

  bool isUImm12() const {
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    if (!isImm())
      return false;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && isUInt<12>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }

  bool isSImm10Lsb0000NonZero() const {
    if (!isImm())
      return false;
    int64_t Imm;
    RISCVMCExpr::VariantKind VK;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
           VK == RISCVMCExpr::VK_RISCV_None;
  }

  bool isUImm20LUI() const {
    RISCVMCExpr::VariantKind VK;
    int64_t Imm;
    bool IsValid;
    if (!isImm())
      return false;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    if (!IsConstantImm) {
      IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
      return IsValid && VK == RISCVMCExpr::VK_RISCV_HI;
    } else {
      return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
                                 VK == RISCVMCExpr::VK_RISCV_HI);
    }
  }

  bool isUImm20AUIPC() const {
    RISCVMCExpr::VariantKind VK;
    int64_t Imm;
    bool IsValid;
    if (!isImm())
      return false;
    bool IsConstantImm = evaluateConstantImm(getImm(), Imm, VK);
    if (!IsConstantImm) {
      IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
      return IsValid && VK == RISCVMCExpr::VK_RISCV_PCREL_HI;
    } else {
      return isUInt<20>(Imm) && (VK == RISCVMCExpr::VK_RISCV_None ||
                                 VK == RISCVMCExpr::VK_RISCV_PCREL_HI);
    }
  }

  bool isSImm21Lsb0JAL() const { return isBareSimmNLsb0<21>(); }

  /// getStartLoc - Gets location of the first token of this operand
  SMLoc getStartLoc() const override { return StartLoc; }
  /// getEndLoc - Gets location of the last token of this operand
  SMLoc getEndLoc() const override { return EndLoc; }
  /// True if this operand is for an RV64 instruction
  bool isRV64() const { return IsRV64; }

  unsigned getReg() const override {
    assert(Kind == Register && "Invalid type access!");
    return Reg.RegNum;
  }

  const MCExpr *getImm() const {
    assert(Kind == Immediate && "Invalid type access!");
    return Imm.Val;
  }

  StringRef getToken() const {
    assert(Kind == Token && "Invalid type access!");
    return Tok;
  }

  void print(raw_ostream &OS) const override {
    switch (Kind) {
    case Immediate:
      OS << *getImm();
      break;
    case Register:
      OS << "<register x";
      OS << getReg() << ">";
      break;
    case Token:
      OS << "'" << getToken() << "'";
      break;
    }
  }

  static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S,
                                                   bool IsRV64) {
    auto Op = make_unique<RISCVOperand>(Token);
    Op->Tok = Str;
    Op->StartLoc = S;
    Op->EndLoc = S;
    Op->IsRV64 = IsRV64;
    return Op;
  }

  static std::unique_ptr<RISCVOperand> createReg(unsigned RegNo, SMLoc S,
                                                 SMLoc E, bool IsRV64) {
    auto Op = make_unique<RISCVOperand>(Register);
    Op->Reg.RegNum = RegNo;
    Op->StartLoc = S;
    Op->EndLoc = E;
    Op->IsRV64 = IsRV64;
    return Op;
  }

  static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
                                                 SMLoc E, bool IsRV64) {
    auto Op = make_unique<RISCVOperand>(Immediate);
    Op->Imm.Val = Val;
    Op->StartLoc = S;
    Op->EndLoc = E;
    Op->IsRV64 = IsRV64;
    return Op;
  }

  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
    assert(Expr && "Expr shouldn't be null!");
    int64_t Imm = 0;
    RISCVMCExpr::VariantKind VK;
    bool IsConstant = evaluateConstantImm(Expr, Imm, VK);

    if (IsConstant)
      Inst.addOperand(MCOperand::createImm(Imm));
    else
      Inst.addOperand(MCOperand::createExpr(Expr));
  }

  // Used by the TableGen Code
  void addRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(getReg()));
  }

  void addImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addFenceArgOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    // isFenceArg has validated the operand, meaning this cast is safe
    auto SE = cast<MCSymbolRefExpr>(getImm());

    unsigned Imm = 0;
    for (char c : SE->getSymbol().getName()) {
      switch (c) {
        default: llvm_unreachable("FenceArg must contain only [iorw]");
        case 'i': Imm |= RISCVFenceField::I; break;
        case 'o': Imm |= RISCVFenceField::O; break;
        case 'r': Imm |= RISCVFenceField::R; break;
        case 'w': Imm |= RISCVFenceField::W; break;
      }
    }
    Inst.addOperand(MCOperand::createImm(Imm));
  }

  // Returns the rounding mode represented by this RISCVOperand. Should only
  // be called after checking isFRMArg.
  RISCVFPRndMode::RoundingMode getRoundingMode() const {
    // isFRMArg has validated the operand, meaning this cast is safe.
    auto SE = cast<MCSymbolRefExpr>(getImm());
    RISCVFPRndMode::RoundingMode FRM =
        RISCVFPRndMode::stringToRoundingMode(SE->getSymbol().getName());
    assert(FRM != RISCVFPRndMode::Invalid && "Invalid rounding mode");
    return FRM;
  }

  void addFRMArgOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createImm(getRoundingMode()));
  }
};
} // end anonymous namespace.

#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "RISCVGenAsmMatcher.inc"

// Return the matching FPR64 register for the given FPR32.
// FIXME: Ideally this function could be removed in favour of using
// information from TableGen.
unsigned convertFPR32ToFPR64(unsigned Reg) {
  switch (Reg) {
    default:
      llvm_unreachable("Not a recognised FPR32 register");
    case RISCV::F0_32: return RISCV::F0_64;
    case RISCV::F1_32: return RISCV::F1_64;
    case RISCV::F2_32: return RISCV::F2_64;
    case RISCV::F3_32: return RISCV::F3_64;
    case RISCV::F4_32: return RISCV::F4_64;
    case RISCV::F5_32: return RISCV::F5_64;
    case RISCV::F6_32: return RISCV::F6_64;
    case RISCV::F7_32: return RISCV::F7_64;
    case RISCV::F8_32: return RISCV::F8_64;
    case RISCV::F9_32: return RISCV::F9_64;
    case RISCV::F10_32: return RISCV::F10_64;
    case RISCV::F11_32: return RISCV::F11_64;
    case RISCV::F12_32: return RISCV::F12_64;
    case RISCV::F13_32: return RISCV::F13_64;
    case RISCV::F14_32: return RISCV::F14_64;
    case RISCV::F15_32: return RISCV::F15_64;
    case RISCV::F16_32: return RISCV::F16_64;
    case RISCV::F17_32: return RISCV::F17_64;
    case RISCV::F18_32: return RISCV::F18_64;
    case RISCV::F19_32: return RISCV::F19_64;
    case RISCV::F20_32: return RISCV::F20_64;
    case RISCV::F21_32: return RISCV::F21_64;
    case RISCV::F22_32: return RISCV::F22_64;
    case RISCV::F23_32: return RISCV::F23_64;
    case RISCV::F24_32: return RISCV::F24_64;
    case RISCV::F25_32: return RISCV::F25_64;
    case RISCV::F26_32: return RISCV::F26_64;
    case RISCV::F27_32: return RISCV::F27_64;
    case RISCV::F28_32: return RISCV::F28_64;
    case RISCV::F29_32: return RISCV::F29_64;
    case RISCV::F30_32: return RISCV::F30_64;
    case RISCV::F31_32: return RISCV::F31_64;
  }
}

unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
                                                    unsigned Kind) {
  RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
  if (!Op.isReg())
    return Match_InvalidOperand;

  unsigned Reg = Op.getReg();
  bool IsRegFPR32 =
      RISCVMCRegisterClasses[RISCV::FPR32RegClassID].contains(Reg);
  bool IsRegFPR32C =
      RISCVMCRegisterClasses[RISCV::FPR32CRegClassID].contains(Reg);

  // As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
  // register from FPR32 to FPR64 or FPR32C to FPR64C if necessary.
  if ((IsRegFPR32 && Kind == MCK_FPR64) ||
      (IsRegFPR32C && Kind == MCK_FPR64C)) {
    Op.Reg.RegNum = convertFPR32ToFPR64(Reg);
    return Match_Success;
  }
  return Match_InvalidOperand;
}

bool RISCVAsmParser::generateImmOutOfRangeError(
    OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
    Twine Msg = "immediate must be an integer in the range") {
  SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
  return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
}

bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                                             OperandVector &Operands,
                                             MCStreamer &Out,
                                             uint64_t &ErrorInfo,
                                             bool MatchingInlineAsm) {
  MCInst Inst;

  auto Result =
    MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
  switch (Result) {
  default:
    break;
  case Match_Success:
    return processInstruction(Inst, IDLoc, Out);
  case Match_MissingFeature:
    return Error(IDLoc, "instruction use requires an option to be enabled");
  case Match_MnemonicFail:
    return Error(IDLoc, "unrecognized instruction mnemonic");
  case Match_InvalidOperand: {
    SMLoc ErrorLoc = IDLoc;
    if (ErrorInfo != ~0U) {
      if (ErrorInfo >= Operands.size())
        return Error(ErrorLoc, "too few operands for instruction");

      ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
      if (ErrorLoc == SMLoc())
        ErrorLoc = IDLoc;
    }
    return Error(ErrorLoc, "invalid operand for instruction");
  }
  }

  // Handle the case when the error message is of specific type
  // other than the generic Match_InvalidOperand, and the
  // corresponding operand is missing.
  if (Result > FIRST_TARGET_MATCH_RESULT_TY) {
    SMLoc ErrorLoc = IDLoc;
    if (ErrorInfo != ~0U && ErrorInfo >= Operands.size())
        return Error(ErrorLoc, "too few operands for instruction");
  }

  switch(Result) {
  default:
    break;
  case Match_InvalidImmXLen:
    if (isRV64()) {
      SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
      return Error(ErrorLoc, "operand must be a constant 64-bit integer");
    }
    return generateImmOutOfRangeError(Operands, ErrorInfo,
                                      std::numeric_limits<int32_t>::min(),
                                      std::numeric_limits<uint32_t>::max());
  case Match_InvalidUImmLog2XLen:
    if (isRV64())
      return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
    return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
  case Match_InvalidUImmLog2XLenNonZero:
    if (isRV64())
      return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
    return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
  case Match_InvalidUImm5:
    return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
  case Match_InvalidSImm6:
    return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
                                      (1 << 5) - 1);
  case Match_InvalidSImm6NonZero:
    return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
                                      (1 << 5) - 1,
        "immediate must be non-zero in the range");
  case Match_InvalidCLUIImm:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, 1, (1 << 5) - 1,
        "immediate must be in [0xfffe0, 0xfffff] or");
  case Match_InvalidUImm7Lsb00:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, 0, (1 << 7) - 4,
        "immediate must be a multiple of 4 bytes in the range");
  case Match_InvalidUImm8Lsb00:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, 0, (1 << 8) - 4,
        "immediate must be a multiple of 4 bytes in the range");
  case Match_InvalidUImm8Lsb000:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, 0, (1 << 8) - 8,
        "immediate must be a multiple of 8 bytes in the range");
  case Match_InvalidSImm9Lsb0:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
        "immediate must be a multiple of 2 bytes in the range");
  case Match_InvalidUImm9Lsb000:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, 0, (1 << 9) - 8,
        "immediate must be a multiple of 8 bytes in the range");
  case Match_InvalidUImm10Lsb00NonZero:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, 4, (1 << 10) - 4,
        "immediate must be a multiple of 4 bytes in the range");
  case Match_InvalidSImm10Lsb0000NonZero:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
        "immediate must be a multiple of 16 bytes and non-zero in the range");
  case Match_InvalidSImm12:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, -(1 << 11), (1 << 11) - 1,
        "operand must be a symbol with %lo/%pcrel_lo modifier or an integer in "
        "the range");
  case Match_InvalidSImm12Lsb0:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
        "immediate must be a multiple of 2 bytes in the range");
  case Match_InvalidUImm12:
    return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1);
  case Match_InvalidSImm13Lsb0:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
        "immediate must be a multiple of 2 bytes in the range");
  case Match_InvalidUImm20LUI:
    return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1,
                                      "operand must be a symbol with %hi() "
                                      "modifier or an integer in the range");
  case Match_InvalidUImm20AUIPC:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, 0, (1 << 20) - 1,
        "operand must be a symbol with %pcrel_hi() modifier or an integer in "
        "the range");
  case Match_InvalidSImm21Lsb0JAL:
    return generateImmOutOfRangeError(
        Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
        "immediate must be a multiple of 2 bytes in the range");
  case Match_InvalidFenceArg: {
    SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
    return Error(
        ErrorLoc,
        "operand must be formed of letters selected in-order from 'iorw'");
  }
  case Match_InvalidFRMArg: {
    SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
    return Error(
        ErrorLoc,
        "operand must be a valid floating point rounding mode mnemonic");
  }
  case Match_InvalidBareSymbol: {
    SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
    return Error(ErrorLoc, "operand must be a bare symbol name");
  }
  }

  llvm_unreachable("Unknown match type detected!");
}

bool RISCVAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
                                   SMLoc &EndLoc) {
  const AsmToken &Tok = getParser().getTok();
  StartLoc = Tok.getLoc();
  EndLoc = Tok.getEndLoc();
  RegNo = 0;
  StringRef Name = getLexer().getTok().getIdentifier();

  if (!MatchRegisterName(Name) || !MatchRegisterAltName(Name)) {
    getParser().Lex(); // Eat identifier token.
    return false;
  }

  return Error(StartLoc, "invalid register name");
}

OperandMatchResultTy RISCVAsmParser::parseRegister(OperandVector &Operands,
                                                   bool AllowParens) {
  SMLoc FirstS = getLoc();
  bool HadParens = false;
  AsmToken Buf[2];

  // If this a parenthesised register name is allowed, parse it atomically
  if (AllowParens && getLexer().is(AsmToken::LParen)) {
    size_t ReadCount = getLexer().peekTokens(Buf);
    if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
      HadParens = true;
      getParser().Lex(); // Eat '('
    }
  }

  switch (getLexer().getKind()) {
  default:
    return MatchOperand_NoMatch;
  case AsmToken::Identifier:
    StringRef Name = getLexer().getTok().getIdentifier();
    unsigned RegNo = MatchRegisterName(Name);
    if (RegNo == 0) {
      RegNo = MatchRegisterAltName(Name);
      if (RegNo == 0) {
        if (HadParens)
          getLexer().UnLex(Buf[0]);
        return MatchOperand_NoMatch;
      }
    }
    if (HadParens)
      Operands.push_back(RISCVOperand::createToken("(", FirstS, isRV64()));
    SMLoc S = getLoc();
    SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
    getLexer().Lex();
    Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
  }

  if (HadParens) {
    getParser().Lex(); // Eat ')'
    Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
  }

  return MatchOperand_Success;
}

OperandMatchResultTy RISCVAsmParser::parseImmediate(OperandVector &Operands) {
  SMLoc S = getLoc();
  SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
  const MCExpr *Res;

  switch (getLexer().getKind()) {
  default:
    return MatchOperand_NoMatch;
  case AsmToken::LParen:
  case AsmToken::Minus:
  case AsmToken::Plus:
  case AsmToken::Integer:
  case AsmToken::String:
    if (getParser().parseExpression(Res))
      return MatchOperand_ParseFail;
    break;
  case AsmToken::Identifier: {
    StringRef Identifier;
    if (getParser().parseIdentifier(Identifier))
      return MatchOperand_ParseFail;
    MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
    Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
    break;
  }
  case AsmToken::Percent:
    return parseOperandWithModifier(Operands);
  }

  Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
  return MatchOperand_Success;
}

OperandMatchResultTy
RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
  SMLoc S = getLoc();
  SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);

  if (getLexer().getKind() != AsmToken::Percent) {
    Error(getLoc(), "expected '%' for operand modifier");
    return MatchOperand_ParseFail;
  }

  getParser().Lex(); // Eat '%'

  if (getLexer().getKind() != AsmToken::Identifier) {
    Error(getLoc(), "expected valid identifier for operand modifier");
    return MatchOperand_ParseFail;
  }
  StringRef Identifier = getParser().getTok().getIdentifier();
  RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
  if (VK == RISCVMCExpr::VK_RISCV_Invalid) {
    Error(getLoc(), "unrecognized operand modifier");
    return MatchOperand_ParseFail;
  }

  getParser().Lex(); // Eat the identifier
  if (getLexer().getKind() != AsmToken::LParen) {
    Error(getLoc(), "expected '('");
    return MatchOperand_ParseFail;
  }
  getParser().Lex(); // Eat '('

  const MCExpr *SubExpr;
  if (getParser().parseParenExpression(SubExpr, E)) {
    return MatchOperand_ParseFail;
  }

  const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
  Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
  return MatchOperand_Success;
}

OperandMatchResultTy RISCVAsmParser::parseBareSymbol(OperandVector &Operands) {
  SMLoc S = getLoc();
  SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
  const MCExpr *Res;

  if (getLexer().getKind() != AsmToken::Identifier)
    return MatchOperand_NoMatch;

  StringRef Identifier;
  if (getParser().parseIdentifier(Identifier))
    return MatchOperand_ParseFail;

  MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
  Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
  Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
  return MatchOperand_Success;
}

OperandMatchResultTy RISCVAsmParser::parseJALOffset(OperandVector &Operands) {
  // Parsing jal operands is fiddly due to the `jal foo` and `jal ra, foo`
  // both being acceptable forms. When parsing `jal ra, foo` this function
  // will be called for the `ra` register operand in an attempt to match the
  // single-operand alias. parseJALOffset must fail for this case. It would
  // seem logical to try parse the operand using parseImmediate and return
  // NoMatch if the next token is a comma (meaning we must be parsing a jal in
  // the second form rather than the first). We can't do this as there's no
  // way of rewinding the lexer state. Instead, return NoMatch if this operand
  // is an identifier and is followed by a comma.
  if (getLexer().is(AsmToken::Identifier) &&
      getLexer().peekTok().is(AsmToken::Comma))
    return MatchOperand_NoMatch;

  return parseImmediate(Operands);
}

OperandMatchResultTy
RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
  if (getLexer().isNot(AsmToken::LParen)) {
    Error(getLoc(), "expected '('");
    return MatchOperand_ParseFail;
  }

  getParser().Lex(); // Eat '('
  Operands.push_back(RISCVOperand::createToken("(", getLoc(), isRV64()));

  if (parseRegister(Operands) != MatchOperand_Success) {
    Error(getLoc(), "expected register");
    return MatchOperand_ParseFail;
  }

  if (getLexer().isNot(AsmToken::RParen)) {
    Error(getLoc(), "expected ')'");
    return MatchOperand_ParseFail;
  }

  getParser().Lex(); // Eat ')'
  Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));

  return MatchOperand_Success;
}

/// Looks at a token type and creates the relevant operand from this
/// information, adding to Operands. If operand was parsed, returns false, else
/// true.
bool RISCVAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
  // Check if the current operand has a custom associated parser, if so, try to
  // custom parse the operand, or fallback to the general approach.
  OperandMatchResultTy Result =
      MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/true);
  if (Result == MatchOperand_Success)
    return false;
  if (Result == MatchOperand_ParseFail)
    return true;

  // Attempt to parse token as a register.
  if (parseRegister(Operands, true) == MatchOperand_Success)
    return false;

  // Attempt to parse token as an immediate
  if (parseImmediate(Operands) == MatchOperand_Success) {
    // Parse memory base register if present
    if (getLexer().is(AsmToken::LParen))
      return parseMemOpBaseReg(Operands) != MatchOperand_Success;
    return false;
  }

  // Finally we have exhausted all options and must declare defeat.
  Error(getLoc(), "unknown operand");
  return true;
}

bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
                                      StringRef Name, SMLoc NameLoc,
                                      OperandVector &Operands) {
  // First operand is token for instruction
  Operands.push_back(RISCVOperand::createToken(Name, NameLoc, isRV64()));

  // If there are no more operands, then finish
  if (getLexer().is(AsmToken::EndOfStatement))
    return false;

  // Parse first operand
  if (parseOperand(Operands, Name))
    return true;

  // Parse until end of statement, consuming commas between operands
  unsigned OperandIdx = 1;
  while (getLexer().is(AsmToken::Comma)) {
    // Consume comma token
    getLexer().Lex();

    // Parse next operand
    if (parseOperand(Operands, Name))
      return true;

    ++OperandIdx;
  }

  if (getLexer().isNot(AsmToken::EndOfStatement)) {
    SMLoc Loc = getLexer().getLoc();
    getParser().eatToEndOfStatement();
    return Error(Loc, "unexpected token");
  }

  getParser().Lex(); // Consume the EndOfStatement.
  return false;
}

bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
                                       RISCVMCExpr::VariantKind &Kind,
                                       int64_t &Addend) {
  Kind = RISCVMCExpr::VK_RISCV_None;
  Addend = 0;

  if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
    Kind = RE->getKind();
    Expr = RE->getSubExpr();
  }

  // It's a simple symbol reference or constant with no addend.
  if (isa<MCConstantExpr>(Expr) || isa<MCSymbolRefExpr>(Expr))
    return true;

  const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr);
  if (!BE)
    return false;

  if (!isa<MCSymbolRefExpr>(BE->getLHS()))
    return false;

  if (BE->getOpcode() != MCBinaryExpr::Add &&
      BE->getOpcode() != MCBinaryExpr::Sub)
    return false;

  // We are able to support the subtraction of two symbol references
  if (BE->getOpcode() == MCBinaryExpr::Sub &&
      isa<MCSymbolRefExpr>(BE->getRHS()))
    return true;

  // See if the addend is a constant, otherwise there's more going
  // on here than we can deal with.
  auto AddendExpr = dyn_cast<MCConstantExpr>(BE->getRHS());
  if (!AddendExpr)
    return false;

  Addend = AddendExpr->getValue();
  if (BE->getOpcode() == MCBinaryExpr::Sub)
    Addend = -Addend;

  // It's some symbol reference + a constant addend
  return Kind != RISCVMCExpr::VK_RISCV_Invalid;
}

bool RISCVAsmParser::ParseDirective(AsmToken DirectiveID) {
  // This returns false if this function recognizes the directive
  // regardless of whether it is successfully handles or reports an
  // error. Otherwise it returns true to give the generic parser a
  // chance at recognizing it.
  StringRef IDVal = DirectiveID.getString();

  if (IDVal == ".option")
    return parseDirectiveOption();

  return true;
}

bool RISCVAsmParser::parseDirectiveOption() {
  MCAsmParser &Parser = getParser();
  // Get the option token.
  AsmToken Tok = Parser.getTok();
  // At the moment only identifiers are supported.
  if (Tok.isNot(AsmToken::Identifier))
    return Error(Parser.getTok().getLoc(),
                 "unexpected token, expected identifier");

  StringRef Option = Tok.getIdentifier();

  if (Option == "rvc") {
    getTargetStreamer().emitDirectiveOptionRVC();

    Parser.Lex();
    if (Parser.getTok().isNot(AsmToken::EndOfStatement))
      return Error(Parser.getTok().getLoc(),
                   "unexpected token, expected end of statement");

    setFeatureBits(RISCV::FeatureStdExtC, "c");
    return false;
  }

  if (Option == "norvc") {
    getTargetStreamer().emitDirectiveOptionNoRVC();

    Parser.Lex();
    if (Parser.getTok().isNot(AsmToken::EndOfStatement))
      return Error(Parser.getTok().getLoc(),
                   "unexpected token, expected end of statement");

    clearFeatureBits(RISCV::FeatureStdExtC, "c");
    return false;
  }

  // Unknown option.
  Warning(Parser.getTok().getLoc(),
          "unknown option, expected 'rvc' or 'norvc'");
  Parser.eatToEndOfStatement();
  return false;
}

void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
  MCInst CInst;
  bool Res = compressInst(CInst, Inst, getSTI(), S.getContext());
  CInst.setLoc(Inst.getLoc());
  S.EmitInstruction((Res ? CInst : Inst), getSTI());
}

void RISCVAsmParser::emitLoadImm(unsigned DestReg, int64_t Value,
                                 MCStreamer &Out) {
  if (isInt<32>(Value)) {
    // Emits the MC instructions for loading a 32-bit constant into a register.
    //
    // Depending on the active bits in the immediate Value v, the following
    // instruction sequences are emitted:
    //
    // v == 0                        : ADDI(W)
    // v[0,12) != 0 && v[12,32) == 0 : ADDI(W)
    // v[0,12) == 0 && v[12,32) != 0 : LUI
    // v[0,32) != 0                  : LUI+ADDI(W)
    //
    int64_t Hi20 = ((Value + 0x800) >> 12) & 0xFFFFF;
    int64_t Lo12 = SignExtend64<12>(Value);
    unsigned SrcReg = RISCV::X0;

    if (Hi20) {
      emitToStreamer(Out,
                     MCInstBuilder(RISCV::LUI).addReg(DestReg).addImm(Hi20));
      SrcReg = DestReg;
    }

    if (Lo12 || Hi20 == 0) {
      unsigned AddiOpcode =
          STI->hasFeature(RISCV::Feature64Bit) ? RISCV::ADDIW : RISCV::ADDI;
      emitToStreamer(Out, MCInstBuilder(AddiOpcode)
                              .addReg(DestReg)
                              .addReg(SrcReg)
                              .addImm(Lo12));
    }
    return;
  }
  assert(STI->hasFeature(RISCV::Feature64Bit) &&
         "Target must be 64-bit to support a >32-bit constant");

  // In the worst case, for a full 64-bit constant, a sequence of 8 instructions
  // (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emmitted. Note
  // that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
  // while the following ADDI instructions contribute up to 12 bits each.
  //
  // On the first glance, implementing this seems to be possible by simply
  // emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
  // shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
  // fact that ADDI performs a sign extended addition, doing it like that would
  // only be possible when at most 11 bits of the ADDI instructions are used.
  // Using all 12 bits of the ADDI instructions, like done by GAS, actually
  // requires that the constant is processed starting with the least significant
  // bit.
  //
  // In the following, constants are processed from LSB to MSB but instruction
  // emission is performed from MSB to LSB by recursively calling
  // emitLoadImm. In each recursion, first the lowest 12 bits are removed
  // from the constant and the optimal shift amount, which can be greater than
  // 12 bits if the constant is sparse, is determined. Then, the shifted
  // remaining constant is processed recursively and gets emitted as soon as it
  // fits into 32 bits. The emission of the shifts and additions is subsequently
  // performed when the recursion returns.
  //
  int64_t Lo12 = SignExtend64<12>(Value);
  int64_t Hi52 = (Value + 0x800) >> 12;
  int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
  Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);

  emitLoadImm(DestReg, Hi52, Out);

  emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
                          .addReg(DestReg)
                          .addReg(DestReg)
                          .addImm(ShiftAmount));

  if (Lo12)
    emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
                            .addReg(DestReg)
                            .addReg(DestReg)
                            .addImm(Lo12));
}

void RISCVAsmParser::emitLoadLocalAddress(MCInst &Inst, SMLoc IDLoc,
                                          MCStreamer &Out) {
  // The local load address pseudo-instruction "lla" is used in PC-relative
  // addressing of symbols:
  //   lla rdest, symbol
  // expands to
  //   TmpLabel: AUIPC rdest, %pcrel_hi(symbol)
  //             ADDI rdest, %pcrel_lo(TmpLabel)
  MCContext &Ctx = getContext();

  MCSymbol *TmpLabel = Ctx.createTempSymbol(
      "pcrel_hi", /* AlwaysAddSuffix */ true, /* CanBeUnnamed */ false);
  Out.EmitLabel(TmpLabel);

  MCOperand DestReg = Inst.getOperand(0);
  const RISCVMCExpr *Symbol = RISCVMCExpr::create(
      Inst.getOperand(1).getExpr(), RISCVMCExpr::VK_RISCV_PCREL_HI, Ctx);

  emitToStreamer(
      Out, MCInstBuilder(RISCV::AUIPC).addOperand(DestReg).addExpr(Symbol));

  const MCExpr *RefToLinkTmpLabel =
      RISCVMCExpr::create(MCSymbolRefExpr::create(TmpLabel, Ctx),
                          RISCVMCExpr::VK_RISCV_PCREL_LO, Ctx);

  emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
                          .addOperand(DestReg)
                          .addOperand(DestReg)
                          .addExpr(RefToLinkTmpLabel));
}

bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
                                        MCStreamer &Out) {
  Inst.setLoc(IDLoc);

  if (Inst.getOpcode() == RISCV::PseudoLI) {
    auto Reg = Inst.getOperand(0).getReg();
    int64_t Imm = Inst.getOperand(1).getImm();
    // On RV32 the immediate here can either be a signed or an unsigned
    // 32-bit number. Sign extension has to be performed to ensure that Imm
    // represents the expected signed 64-bit number.
    if (!isRV64())
      Imm = SignExtend64<32>(Imm);
    emitLoadImm(Reg, Imm, Out);
    return false;
  } else if (Inst.getOpcode() == RISCV::PseudoLLA) {
    emitLoadLocalAddress(Inst, IDLoc, Out);
    return false;
  }

  emitToStreamer(Out, Inst);
  return false;
}

extern "C" void LLVMInitializeRISCVAsmParser() {
  RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
  RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
}