//===- FuncToLLVM.cpp - Func to LLVM dialect conversion -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a pass to convert MLIR Func and builtin dialects // into the LLVM IR dialect. // //===----------------------------------------------------------------------===// #include "../PassDetail.h" #include "mlir/Analysis/DataLayoutAnalysis.h" #include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h" #include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h" #include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h" #include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h" #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" #include "mlir/Conversion/LLVMCommon/Pattern.h" #include "mlir/Conversion/LLVMCommon/VectorPattern.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/Utils/StaticValueUtils.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BlockAndValueMapping.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Support/MathExtras.h" #include "mlir/Transforms/DialectConversion.h" #include "mlir/Transforms/Passes.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Type.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormatVariadic.h" #include #include using namespace mlir; #define PASS_NAME "convert-func-to-llvm" /// Only retain those attributes that are not constructed by /// `LLVMFuncOp::build`. If `filterArgAttrs` is set, also filter out argument /// attributes. static void filterFuncAttributes(ArrayRef attrs, bool filterArgAndResAttrs, SmallVectorImpl &result) { for (const auto &attr : attrs) { if (attr.getName() == SymbolTable::getSymbolAttrName() || attr.getName() == FunctionOpInterface::getTypeAttrName() || attr.getName() == "func.varargs" || (filterArgAndResAttrs && (attr.getName() == FunctionOpInterface::getArgDictAttrName() || attr.getName() == FunctionOpInterface::getResultDictAttrName()))) continue; result.push_back(attr); } } /// Helper function for wrapping all attributes into a single DictionaryAttr static auto wrapAsStructAttrs(OpBuilder &b, ArrayAttr attrs) { return DictionaryAttr::get( b.getContext(), b.getNamedAttr(LLVM::LLVMDialect::getStructAttrsAttrName(), attrs)); } /// Combines all result attributes into a single DictionaryAttr /// and prepends to argument attrs. /// This is intended to be used to format the attributes for a C wrapper /// function when the result(s) is converted to the first function argument /// (in the multiple return case, all returns get wrapped into a single /// argument). The total number of argument attributes should be equal to /// (number of function arguments) + 1. static void prependResAttrsToArgAttrs(OpBuilder &builder, SmallVectorImpl &attributes, size_t numArguments) { auto allAttrs = SmallVector( numArguments + 1, DictionaryAttr::get(builder.getContext())); NamedAttribute *argAttrs = nullptr; for (auto *it = attributes.begin(); it != attributes.end();) { if (it->getName() == FunctionOpInterface::getArgDictAttrName()) { auto arrayAttrs = it->getValue().cast(); assert(arrayAttrs.size() == numArguments && "Number of arg attrs and args should match"); std::copy(arrayAttrs.begin(), arrayAttrs.end(), allAttrs.begin() + 1); argAttrs = it; } else if (it->getName() == FunctionOpInterface::getResultDictAttrName()) { auto arrayAttrs = it->getValue().cast(); assert(!arrayAttrs.empty() && "expected array to be non-empty"); allAttrs[0] = (arrayAttrs.size() == 1) ? arrayAttrs[0] : wrapAsStructAttrs(builder, arrayAttrs); it = attributes.erase(it); continue; } it++; } auto newArgAttrs = builder.getNamedAttr(FunctionOpInterface::getArgDictAttrName(), builder.getArrayAttr(allAttrs)); if (!argAttrs) { attributes.emplace_back(newArgAttrs); return; } *argAttrs = newArgAttrs; } /// Creates an auxiliary function with pointer-to-memref-descriptor-struct /// arguments instead of unpacked arguments. This function can be called from C /// by passing a pointer to a C struct corresponding to a memref descriptor. /// Similarly, returned memrefs are passed via pointers to a C struct that is /// passed as additional argument. /// Internally, the auxiliary function unpacks the descriptor into individual /// components and forwards them to `newFuncOp` and forwards the results to /// the extra arguments. static void wrapForExternalCallers(OpBuilder &rewriter, Location loc, LLVMTypeConverter &typeConverter, func::FuncOp funcOp, LLVM::LLVMFuncOp newFuncOp) { auto type = funcOp.getFunctionType(); SmallVector attributes; filterFuncAttributes(funcOp->getAttrs(), /*filterArgAndResAttrs=*/false, attributes); Type wrapperFuncType; bool resultIsNowArg; std::tie(wrapperFuncType, resultIsNowArg) = typeConverter.convertFunctionTypeCWrapper(type); if (resultIsNowArg) prependResAttrsToArgAttrs(rewriter, attributes, funcOp.getNumArguments()); auto wrapperFuncOp = rewriter.create( loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(), wrapperFuncType, LLVM::Linkage::External, /*dsoLocal*/ false, /*cconv*/ LLVM::CConv::C, attributes); OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPointToStart(wrapperFuncOp.addEntryBlock()); SmallVector args; size_t argOffset = resultIsNowArg ? 1 : 0; for (auto &en : llvm::enumerate(type.getInputs())) { Value arg = wrapperFuncOp.getArgument(en.index() + argOffset); if (auto memrefType = en.value().dyn_cast()) { Value loaded = rewriter.create(loc, arg); MemRefDescriptor::unpack(rewriter, loc, loaded, memrefType, args); continue; } if (en.value().isa()) { Value loaded = rewriter.create(loc, arg); UnrankedMemRefDescriptor::unpack(rewriter, loc, loaded, args); continue; } args.push_back(arg); } auto call = rewriter.create(loc, newFuncOp, args); if (resultIsNowArg) { rewriter.create(loc, call.getResult(0), wrapperFuncOp.getArgument(0)); rewriter.create(loc, ValueRange{}); } else { rewriter.create(loc, call.getResults()); } } /// Creates an auxiliary function with pointer-to-memref-descriptor-struct /// arguments instead of unpacked arguments. Creates a body for the (external) /// `newFuncOp` that allocates a memref descriptor on stack, packs the /// individual arguments into this descriptor and passes a pointer to it into /// the auxiliary function. If the result of the function cannot be directly /// returned, we write it to a special first argument that provides a pointer /// to a corresponding struct. This auxiliary external function is now /// compatible with functions defined in C using pointers to C structs /// corresponding to a memref descriptor. static void wrapExternalFunction(OpBuilder &builder, Location loc, LLVMTypeConverter &typeConverter, func::FuncOp funcOp, LLVM::LLVMFuncOp newFuncOp) { OpBuilder::InsertionGuard guard(builder); Type wrapperType; bool resultIsNowArg; std::tie(wrapperType, resultIsNowArg) = typeConverter.convertFunctionTypeCWrapper(funcOp.getFunctionType()); // This conversion can only fail if it could not convert one of the argument // types. But since it has been applied to a non-wrapper function before, it // should have failed earlier and not reach this point at all. assert(wrapperType && "unexpected type conversion failure"); SmallVector attributes; filterFuncAttributes(funcOp->getAttrs(), /*filterArgAndResAttrs=*/false, attributes); if (resultIsNowArg) prependResAttrsToArgAttrs(builder, attributes, funcOp.getNumArguments()); // Create the auxiliary function. auto wrapperFunc = builder.create( loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(), wrapperType, LLVM::Linkage::External, /*dsoLocal*/ false, /*cconv*/ LLVM::CConv::C, attributes); builder.setInsertionPointToStart(newFuncOp.addEntryBlock()); // Get a ValueRange containing arguments. FunctionType type = funcOp.getFunctionType(); SmallVector args; args.reserve(type.getNumInputs()); ValueRange wrapperArgsRange(newFuncOp.getArguments()); if (resultIsNowArg) { // Allocate the struct on the stack and pass the pointer. Type resultType = wrapperType.cast().getParamType(0); Value one = builder.create( loc, typeConverter.convertType(builder.getIndexType()), builder.getIntegerAttr(builder.getIndexType(), 1)); Value result = builder.create(loc, resultType, one); args.push_back(result); } // Iterate over the inputs of the original function and pack values into // memref descriptors if the original type is a memref. for (auto &en : llvm::enumerate(type.getInputs())) { Value arg; int numToDrop = 1; auto memRefType = en.value().dyn_cast(); auto unrankedMemRefType = en.value().dyn_cast(); if (memRefType || unrankedMemRefType) { numToDrop = memRefType ? MemRefDescriptor::getNumUnpackedValues(memRefType) : UnrankedMemRefDescriptor::getNumUnpackedValues(); Value packed = memRefType ? MemRefDescriptor::pack(builder, loc, typeConverter, memRefType, wrapperArgsRange.take_front(numToDrop)) : UnrankedMemRefDescriptor::pack( builder, loc, typeConverter, unrankedMemRefType, wrapperArgsRange.take_front(numToDrop)); auto ptrTy = LLVM::LLVMPointerType::get(packed.getType()); Value one = builder.create( loc, typeConverter.convertType(builder.getIndexType()), builder.getIntegerAttr(builder.getIndexType(), 1)); Value allocated = builder.create(loc, ptrTy, one, /*alignment=*/0); builder.create(loc, packed, allocated); arg = allocated; } else { arg = wrapperArgsRange[0]; } args.push_back(arg); wrapperArgsRange = wrapperArgsRange.drop_front(numToDrop); } assert(wrapperArgsRange.empty() && "did not map some of the arguments"); auto call = builder.create(loc, wrapperFunc, args); if (resultIsNowArg) { Value result = builder.create(loc, args.front()); builder.create(loc, ValueRange{result}); } else { builder.create(loc, call.getResults()); } } namespace { struct FuncOpConversionBase : public ConvertOpToLLVMPattern { protected: using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; // Convert input FuncOp to LLVMFuncOp by using the LLVMTypeConverter provided // to this legalization pattern. LLVM::LLVMFuncOp convertFuncOpToLLVMFuncOp(func::FuncOp funcOp, ConversionPatternRewriter &rewriter) const { // Convert the original function arguments. They are converted using the // LLVMTypeConverter provided to this legalization pattern. auto varargsAttr = funcOp->getAttrOfType("func.varargs"); TypeConverter::SignatureConversion result(funcOp.getNumArguments()); auto llvmType = getTypeConverter()->convertFunctionSignature( funcOp.getFunctionType(), varargsAttr && varargsAttr.getValue(), result); if (!llvmType) return nullptr; // Propagate argument/result attributes to all converted arguments/result // obtained after converting a given original argument/result. SmallVector attributes; filterFuncAttributes(funcOp->getAttrs(), /*filterArgAndResAttrs=*/true, attributes); if (ArrayAttr resAttrDicts = funcOp.getAllResultAttrs()) { assert(!resAttrDicts.empty() && "expected array to be non-empty"); auto newResAttrDicts = (funcOp.getNumResults() == 1) ? resAttrDicts : rewriter.getArrayAttr( {wrapAsStructAttrs(rewriter, resAttrDicts)}); attributes.push_back(rewriter.getNamedAttr( FunctionOpInterface::getResultDictAttrName(), newResAttrDicts)); } if (ArrayAttr argAttrDicts = funcOp.getAllArgAttrs()) { SmallVector newArgAttrs( llvmType.cast().getNumParams()); for (unsigned i = 0, e = funcOp.getNumArguments(); i < e; ++i) { auto mapping = result.getInputMapping(i); assert(mapping && "unexpected deletion of function argument"); for (size_t j = 0; j < mapping->size; ++j) newArgAttrs[mapping->inputNo + j] = argAttrDicts[i]; } attributes.push_back( rewriter.getNamedAttr(FunctionOpInterface::getArgDictAttrName(), rewriter.getArrayAttr(newArgAttrs))); } for (const auto &pair : llvm::enumerate(attributes)) { if (pair.value().getName() == "llvm.linkage") { attributes.erase(attributes.begin() + pair.index()); break; } } // Create an LLVM function, use external linkage by default until MLIR // functions have linkage. LLVM::Linkage linkage = LLVM::Linkage::External; if (funcOp->hasAttr("llvm.linkage")) { auto attr = funcOp->getAttr("llvm.linkage").dyn_cast(); if (!attr) { funcOp->emitError() << "Contains llvm.linkage attribute not of type LLVM::LinkageAttr"; return nullptr; } linkage = attr.getLinkage(); } auto newFuncOp = rewriter.create( funcOp.getLoc(), funcOp.getName(), llvmType, linkage, /*dsoLocal*/ false, /*cconv*/ LLVM::CConv::C, attributes); rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(), newFuncOp.end()); if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), *typeConverter, &result))) return nullptr; return newFuncOp; } }; /// FuncOp legalization pattern that converts MemRef arguments to pointers to /// MemRef descriptors (LLVM struct data types) containing all the MemRef type /// information. struct FuncOpConversion : public FuncOpConversionBase { FuncOpConversion(LLVMTypeConverter &converter) : FuncOpConversionBase(converter) {} LogicalResult matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter); if (!newFuncOp) return failure(); if (funcOp->getAttrOfType( LLVM::LLVMDialect::getEmitCWrapperAttrName())) { if (newFuncOp.isVarArg()) return funcOp->emitError("C interface for variadic functions is not " "supported yet."); if (newFuncOp.isExternal()) wrapExternalFunction(rewriter, funcOp.getLoc(), *getTypeConverter(), funcOp, newFuncOp); else wrapForExternalCallers(rewriter, funcOp.getLoc(), *getTypeConverter(), funcOp, newFuncOp); } rewriter.eraseOp(funcOp); return success(); } }; /// FuncOp legalization pattern that converts MemRef arguments to bare pointers /// to the MemRef element type. This will impact the calling convention and ABI. struct BarePtrFuncOpConversion : public FuncOpConversionBase { using FuncOpConversionBase::FuncOpConversionBase; LogicalResult matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { // TODO: bare ptr conversion could be handled by argument materialization // and most of the code below would go away. But to do this, we would need a // way to distinguish between FuncOp and other regions in the // addArgumentMaterialization hook. // Store the type of memref-typed arguments before the conversion so that we // can promote them to MemRef descriptor at the beginning of the function. SmallVector oldArgTypes = llvm::to_vector<8>(funcOp.getFunctionType().getInputs()); auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter); if (!newFuncOp) return failure(); if (newFuncOp.getBody().empty()) { rewriter.eraseOp(funcOp); return success(); } // Promote bare pointers from memref arguments to memref descriptors at the // beginning of the function so that all the memrefs in the function have a // uniform representation. Block *entryBlock = &newFuncOp.getBody().front(); auto blockArgs = entryBlock->getArguments(); assert(blockArgs.size() == oldArgTypes.size() && "The number of arguments and types doesn't match"); OpBuilder::InsertionGuard guard(rewriter); rewriter.setInsertionPointToStart(entryBlock); for (auto it : llvm::zip(blockArgs, oldArgTypes)) { BlockArgument arg = std::get<0>(it); Type argTy = std::get<1>(it); // Unranked memrefs are not supported in the bare pointer calling // convention. We should have bailed out before in the presence of // unranked memrefs. assert(!argTy.isa() && "Unranked memref is not supported"); auto memrefTy = argTy.dyn_cast(); if (!memrefTy) continue; // Replace barePtr with a placeholder (undef), promote barePtr to a ranked // or unranked memref descriptor and replace placeholder with the last // instruction of the memref descriptor. // TODO: The placeholder is needed to avoid replacing barePtr uses in the // MemRef descriptor instructions. We may want to have a utility in the // rewriter to properly handle this use case. Location loc = funcOp.getLoc(); auto placeholder = rewriter.create( loc, getTypeConverter()->convertType(memrefTy)); rewriter.replaceUsesOfBlockArgument(arg, placeholder); Value desc = MemRefDescriptor::fromStaticShape( rewriter, loc, *getTypeConverter(), memrefTy, arg); rewriter.replaceOp(placeholder, {desc}); } rewriter.eraseOp(funcOp); return success(); } }; struct ConstantOpLowering : public ConvertOpToLLVMPattern { using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; LogicalResult matchAndRewrite(func::ConstantOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { auto type = typeConverter->convertType(op.getResult().getType()); if (!type || !LLVM::isCompatibleType(type)) return rewriter.notifyMatchFailure(op, "failed to convert result type"); auto newOp = rewriter.create(op.getLoc(), type, op.getValue()); for (const NamedAttribute &attr : op->getAttrs()) { if (attr.getName().strref() == "value") continue; newOp->setAttr(attr.getName(), attr.getValue()); } rewriter.replaceOp(op, newOp->getResults()); return success(); } }; // A CallOp automatically promotes MemRefType to a sequence of alloca/store and // passes the pointer to the MemRef across function boundaries. template struct CallOpInterfaceLowering : public ConvertOpToLLVMPattern { using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; using Super = CallOpInterfaceLowering; using Base = ConvertOpToLLVMPattern; LogicalResult matchAndRewrite(CallOpType callOp, typename CallOpType::Adaptor adaptor, ConversionPatternRewriter &rewriter) const override { // Pack the result types into a struct. Type packedResult = nullptr; unsigned numResults = callOp.getNumResults(); auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes()); if (numResults != 0) { if (!(packedResult = this->getTypeConverter()->packFunctionResults(resultTypes))) return failure(); } auto promoted = this->getTypeConverter()->promoteOperands( callOp.getLoc(), /*opOperands=*/callOp->getOperands(), adaptor.getOperands(), rewriter); auto newOp = rewriter.create( callOp.getLoc(), packedResult ? TypeRange(packedResult) : TypeRange(), promoted, callOp->getAttrs()); SmallVector results; if (numResults < 2) { // If < 2 results, packing did not do anything and we can just return. results.append(newOp.result_begin(), newOp.result_end()); } else { // Otherwise, it had been converted to an operation producing a structure. // Extract individual results from the structure and return them as list. results.reserve(numResults); for (unsigned i = 0; i < numResults; ++i) { auto type = this->typeConverter->convertType(callOp.getResult(i).getType()); results.push_back(rewriter.create( callOp.getLoc(), type, newOp->getResult(0), rewriter.getI64ArrayAttr(i))); } } if (this->getTypeConverter()->getOptions().useBarePtrCallConv) { // For the bare-ptr calling convention, promote memref results to // descriptors. assert(results.size() == resultTypes.size() && "The number of arguments and types doesn't match"); this->getTypeConverter()->promoteBarePtrsToDescriptors( rewriter, callOp.getLoc(), resultTypes, results); } else if (failed(this->copyUnrankedDescriptors(rewriter, callOp.getLoc(), resultTypes, results, /*toDynamic=*/false))) { return failure(); } rewriter.replaceOp(callOp, results); return success(); } }; struct CallOpLowering : public CallOpInterfaceLowering { using Super::Super; }; struct CallIndirectOpLowering : public CallOpInterfaceLowering { using Super::Super; }; struct UnrealizedConversionCastOpLowering : public ConvertOpToLLVMPattern { using ConvertOpToLLVMPattern< UnrealizedConversionCastOp>::ConvertOpToLLVMPattern; LogicalResult matchAndRewrite(UnrealizedConversionCastOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { SmallVector convertedTypes; if (succeeded(typeConverter->convertTypes(op.getOutputs().getTypes(), convertedTypes)) && convertedTypes == adaptor.getInputs().getTypes()) { rewriter.replaceOp(op, adaptor.getInputs()); return success(); } convertedTypes.clear(); if (succeeded(typeConverter->convertTypes(adaptor.getInputs().getTypes(), convertedTypes)) && convertedTypes == op.getOutputs().getType()) { rewriter.replaceOp(op, adaptor.getInputs()); return success(); } return failure(); } }; // Special lowering pattern for `ReturnOps`. Unlike all other operations, // `ReturnOp` interacts with the function signature and must have as many // operands as the function has return values. Because in LLVM IR, functions // can only return 0 or 1 value, we pack multiple values into a structure type. // Emit `UndefOp` followed by `InsertValueOp`s to create such structure if // necessary before returning it struct ReturnOpLowering : public ConvertOpToLLVMPattern { using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; LogicalResult matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op.getLoc(); unsigned numArguments = op.getNumOperands(); SmallVector updatedOperands; if (getTypeConverter()->getOptions().useBarePtrCallConv) { // For the bare-ptr calling convention, extract the aligned pointer to // be returned from the memref descriptor. for (auto it : llvm::zip(op->getOperands(), adaptor.getOperands())) { Type oldTy = std::get<0>(it).getType(); Value newOperand = std::get<1>(it); if (oldTy.isa() && getTypeConverter()->canConvertToBarePtr( oldTy.cast())) { MemRefDescriptor memrefDesc(newOperand); newOperand = memrefDesc.alignedPtr(rewriter, loc); } else if (oldTy.isa()) { // Unranked memref is not supported in the bare pointer calling // convention. return failure(); } updatedOperands.push_back(newOperand); } } else { updatedOperands = llvm::to_vector<4>(adaptor.getOperands()); (void)copyUnrankedDescriptors(rewriter, loc, op.getOperands().getTypes(), updatedOperands, /*toDynamic=*/true); } // If ReturnOp has 0 or 1 operand, create it and return immediately. if (numArguments == 0) { rewriter.replaceOpWithNewOp(op, TypeRange(), ValueRange(), op->getAttrs()); return success(); } if (numArguments == 1) { rewriter.replaceOpWithNewOp( op, TypeRange(), updatedOperands, op->getAttrs()); return success(); } // Otherwise, we need to pack the arguments into an LLVM struct type before // returning. auto packedType = getTypeConverter()->packFunctionResults( llvm::to_vector<4>(op.getOperandTypes())); Value packed = rewriter.create(loc, packedType); for (unsigned i = 0; i < numArguments; ++i) { packed = rewriter.create( loc, packedType, packed, updatedOperands[i], rewriter.getI64ArrayAttr(i)); } rewriter.replaceOpWithNewOp(op, TypeRange(), packed, op->getAttrs()); return success(); } }; } // namespace void mlir::populateFuncToLLVMFuncOpConversionPattern( LLVMTypeConverter &converter, RewritePatternSet &patterns) { if (converter.getOptions().useBarePtrCallConv) patterns.add(converter); else patterns.add(converter); } void mlir::populateFuncToLLVMConversionPatterns(LLVMTypeConverter &converter, RewritePatternSet &patterns) { populateFuncToLLVMFuncOpConversionPattern(converter, patterns); // clang-format off patterns.add< CallIndirectOpLowering, CallOpLowering, ConstantOpLowering, ReturnOpLowering>(converter); // clang-format on } namespace { /// A pass converting Func operations into the LLVM IR dialect. struct ConvertFuncToLLVMPass : public ConvertFuncToLLVMBase { ConvertFuncToLLVMPass() = default; ConvertFuncToLLVMPass(bool useBarePtrCallConv, unsigned indexBitwidth, bool useAlignedAlloc, const llvm::DataLayout &dataLayout) { this->useBarePtrCallConv = useBarePtrCallConv; this->indexBitwidth = indexBitwidth; this->dataLayout = dataLayout.getStringRepresentation(); } /// Run the dialect converter on the module. void runOnOperation() override { if (failed(LLVM::LLVMDialect::verifyDataLayoutString( this->dataLayout, [this](const Twine &message) { getOperation().emitError() << message.str(); }))) { signalPassFailure(); return; } ModuleOp m = getOperation(); const auto &dataLayoutAnalysis = getAnalysis(); LowerToLLVMOptions options(&getContext(), dataLayoutAnalysis.getAtOrAbove(m)); options.useBarePtrCallConv = useBarePtrCallConv; if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout) options.overrideIndexBitwidth(indexBitwidth); options.dataLayout = llvm::DataLayout(this->dataLayout); LLVMTypeConverter typeConverter(&getContext(), options, &dataLayoutAnalysis); RewritePatternSet patterns(&getContext()); populateFuncToLLVMConversionPatterns(typeConverter, patterns); // TODO: Remove these in favor of their dedicated conversion passes. arith::populateArithmeticToLLVMConversionPatterns(typeConverter, patterns); cf::populateControlFlowToLLVMConversionPatterns(typeConverter, patterns); LLVMConversionTarget target(getContext()); if (failed(applyPartialConversion(m, target, std::move(patterns)))) signalPassFailure(); m->setAttr(LLVM::LLVMDialect::getDataLayoutAttrName(), StringAttr::get(m.getContext(), this->dataLayout)); } }; } // namespace std::unique_ptr> mlir::createConvertFuncToLLVMPass() { return std::make_unique(); } std::unique_ptr> mlir::createConvertFuncToLLVMPass(const LowerToLLVMOptions &options) { auto allocLowering = options.allocLowering; // There is no way to provide additional patterns for pass, so // AllocLowering::None will always fail. assert(allocLowering != LowerToLLVMOptions::AllocLowering::None && "ConvertFuncToLLVMPass doesn't support AllocLowering::None"); bool useAlignedAlloc = (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc); return std::make_unique( options.useBarePtrCallConv, options.getIndexBitwidth(), useAlignedAlloc, options.dataLayout); }