aboutsummaryrefslogtreecommitdiff
path: root/lld/ELF/Arch/ARM.cpp
blob: f7d4c3b8a70aec5b8978b61d5f5490f27ae1371c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
//===- ARM.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;

namespace {
class ARM final : public TargetInfo {
public:
  ARM();
  uint32_t calcEFlags() const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  void addPltSymbols(InputSection &isec, uint64_t off) const override;
  void addPltHeaderSymbols(InputSection &isd) const override;
  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
                  uint64_t branchAddr, const Symbol &s,
                  int64_t a) const override;
  uint32_t getThunkSectionSpacing() const override;
  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
  void relocate(uint8_t *loc, const Relocation &rel,
                uint64_t val) const override;
};
} // namespace

ARM::ARM() {
  copyRel = R_ARM_COPY;
  relativeRel = R_ARM_RELATIVE;
  iRelativeRel = R_ARM_IRELATIVE;
  gotRel = R_ARM_GLOB_DAT;
  pltRel = R_ARM_JUMP_SLOT;
  symbolicRel = R_ARM_ABS32;
  tlsGotRel = R_ARM_TLS_TPOFF32;
  tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
  tlsOffsetRel = R_ARM_TLS_DTPOFF32;
  pltHeaderSize = 32;
  pltEntrySize = 16;
  ipltEntrySize = 16;
  trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
  needsThunks = true;
  defaultMaxPageSize = 65536;
}

uint32_t ARM::calcEFlags() const {
  // The ABIFloatType is used by loaders to detect the floating point calling
  // convention.
  uint32_t abiFloatType = 0;
  if (config->armVFPArgs == ARMVFPArgKind::Base ||
      config->armVFPArgs == ARMVFPArgKind::Default)
    abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
  else if (config->armVFPArgs == ARMVFPArgKind::VFP)
    abiFloatType = EF_ARM_ABI_FLOAT_HARD;

  // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
  // but we don't have any firm guarantees of conformance. Linux AArch64
  // kernels (as of 2016) require an EABI version to be set.
  return EF_ARM_EABI_VER5 | abiFloatType;
}

RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
                        const uint8_t *loc) const {
  switch (type) {
  case R_ARM_ABS32:
  case R_ARM_MOVW_ABS_NC:
  case R_ARM_MOVT_ABS:
  case R_ARM_THM_MOVW_ABS_NC:
  case R_ARM_THM_MOVT_ABS:
    return R_ABS;
  case R_ARM_THM_JUMP8:
  case R_ARM_THM_JUMP11:
    return R_PC;
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_PREL31:
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
  case R_ARM_THM_CALL:
    return R_PLT_PC;
  case R_ARM_GOTOFF32:
    // (S + A) - GOT_ORG
    return R_GOTREL;
  case R_ARM_GOT_BREL:
    // GOT(S) + A - GOT_ORG
    return R_GOT_OFF;
  case R_ARM_GOT_PREL:
  case R_ARM_TLS_IE32:
    // GOT(S) + A - P
    return R_GOT_PC;
  case R_ARM_SBREL32:
    return R_ARM_SBREL;
  case R_ARM_TARGET1:
    return config->target1Rel ? R_PC : R_ABS;
  case R_ARM_TARGET2:
    if (config->target2 == Target2Policy::Rel)
      return R_PC;
    if (config->target2 == Target2Policy::Abs)
      return R_ABS;
    return R_GOT_PC;
  case R_ARM_TLS_GD32:
    return R_TLSGD_PC;
  case R_ARM_TLS_LDM32:
    return R_TLSLD_PC;
  case R_ARM_TLS_LDO32:
    return R_DTPREL;
  case R_ARM_BASE_PREL:
    // B(S) + A - P
    // FIXME: currently B(S) assumed to be .got, this may not hold for all
    // platforms.
    return R_GOTONLY_PC;
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVT_PREL:
  case R_ARM_REL32:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVT_PREL:
    return R_PC;
  case R_ARM_ALU_PC_G0:
  case R_ARM_ALU_PC_G0_NC:
  case R_ARM_ALU_PC_G1:
  case R_ARM_ALU_PC_G1_NC:
  case R_ARM_ALU_PC_G2:
  case R_ARM_LDR_PC_G0:
  case R_ARM_LDR_PC_G1:
  case R_ARM_LDR_PC_G2:
  case R_ARM_LDRS_PC_G0:
  case R_ARM_LDRS_PC_G1:
  case R_ARM_LDRS_PC_G2:
  case R_ARM_THM_ALU_PREL_11_0:
  case R_ARM_THM_PC8:
  case R_ARM_THM_PC12:
    return R_ARM_PCA;
  case R_ARM_MOVW_BREL_NC:
  case R_ARM_MOVW_BREL:
  case R_ARM_MOVT_BREL:
  case R_ARM_THM_MOVW_BREL_NC:
  case R_ARM_THM_MOVW_BREL:
  case R_ARM_THM_MOVT_BREL:
    return R_ARM_SBREL;
  case R_ARM_NONE:
    return R_NONE;
  case R_ARM_TLS_LE32:
    return R_TPREL;
  case R_ARM_V4BX:
    // V4BX is just a marker to indicate there's a "bx rN" instruction at the
    // given address. It can be used to implement a special linker mode which
    // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
    // not ARMv4 output, we can just ignore it.
    return R_NONE;
  default:
    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
          ") against symbol " + toString(s));
    return R_NONE;
  }
}

RelType ARM::getDynRel(RelType type) const {
  if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
    return R_ARM_ABS32;
  return R_ARM_NONE;
}

void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
  write32le(buf, in.plt->getVA());
}

void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
  // An ARM entry is the address of the ifunc resolver function.
  write32le(buf, s.getVA());
}

// Long form PLT Header that does not have any restrictions on the displacement
// of the .plt from the .plt.got.
static void writePltHeaderLong(uint8_t *buf) {
  const uint8_t pltData[] = {
      0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
      0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
      0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
      0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
      0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
      0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
      0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
      0xd4, 0xd4, 0xd4, 0xd4};
  memcpy(buf, pltData, sizeof(pltData));
  uint64_t gotPlt = in.gotPlt->getVA();
  uint64_t l1 = in.plt->getVA() + 8;
  write32le(buf + 16, gotPlt - l1 - 8);
}

// The default PLT header requires the .plt.got to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePltHeader(uint8_t *buf) const {
  // Use a similar sequence to that in writePlt(), the difference is the calling
  // conventions mean we use lr instead of ip. The PLT entry is responsible for
  // saving lr on the stack, the dynamic loader is responsible for reloading
  // it.
  const uint32_t pltData[] = {
      0xe52de004, // L1: str lr, [sp,#-4]!
      0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
      0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
      0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
  };

  uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
  if (!llvm::isUInt<27>(offset)) {
    // We cannot encode the Offset, use the long form.
    writePltHeaderLong(buf);
    return;
  }
  write32le(buf + 0, pltData[0]);
  write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
  write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
  write32le(buf + 12, pltData[3] | (offset & 0xfff));
  memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
  memcpy(buf + 20, trapInstr.data(), 4);
  memcpy(buf + 24, trapInstr.data(), 4);
  memcpy(buf + 28, trapInstr.data(), 4);
}

void ARM::addPltHeaderSymbols(InputSection &isec) const {
  addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
  addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
}

// Long form PLT entries that do not have any restrictions on the displacement
// of the .plt from the .plt.got.
static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
                         uint64_t pltEntryAddr) {
  const uint8_t pltData[] = {
      0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
      0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
      0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
      0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
  };
  memcpy(buf, pltData, sizeof(pltData));
  uint64_t l1 = pltEntryAddr + 4;
  write32le(buf + 12, gotPltEntryAddr - l1 - 8);
}

// The default PLT entries require the .plt.got to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePlt(uint8_t *buf, const Symbol &sym,
                   uint64_t pltEntryAddr) const {
  // The PLT entry is similar to the example given in Appendix A of ELF for
  // the Arm Architecture. Instead of using the Group Relocations to find the
  // optimal rotation for the 8-bit immediate used in the add instructions we
  // hard code the most compact rotations for simplicity. This saves a load
  // instruction over the long plt sequences.
  const uint32_t pltData[] = {
      0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.plt.got) - L1 - 8
      0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.plt.got) - L1 - 8
      0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
  };

  uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
  if (!llvm::isUInt<27>(offset)) {
    // We cannot encode the Offset, use the long form.
    writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
    return;
  }
  write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
  write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
  write32le(buf + 8, pltData[2] | (offset & 0xfff));
  memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
}

void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
  addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
  addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
}

bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
                     uint64_t branchAddr, const Symbol &s,
                     int64_t a) const {
  // If s is an undefined weak symbol and does not have a PLT entry then it will
  // be resolved as a branch to the next instruction. If it is hidden, its
  // binding has been converted to local, so we just check isUndefined() here. A
  // undefined non-weak symbol will have been errored.
  if (s.isUndefined() && !s.isInPlt())
    return false;
  // A state change from ARM to Thumb and vice versa must go through an
  // interworking thunk if the relocation type is not R_ARM_CALL or
  // R_ARM_THM_CALL.
  switch (type) {
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_JUMP24:
    // Source is ARM, all PLT entries are ARM so no interworking required.
    // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
    if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
      return true;
    [[fallthrough]];
  case R_ARM_CALL: {
    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
    return !inBranchRange(type, branchAddr, dst + a);
  }
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
    // Source is Thumb, all PLT entries are ARM so interworking is required.
    // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
    if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
      return true;
    [[fallthrough]];
  case R_ARM_THM_CALL: {
    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
    return !inBranchRange(type, branchAddr, dst + a);
  }
  }
  return false;
}

uint32_t ARM::getThunkSectionSpacing() const {
  // The placing of pre-created ThunkSections is controlled by the value
  // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
  // place the ThunkSection such that all branches from the InputSections
  // prior to the ThunkSection can reach a Thunk placed at the end of the
  // ThunkSection. Graphically:
  // | up to thunkSectionSpacing .text input sections |
  // | ThunkSection                                   |
  // | up to thunkSectionSpacing .text input sections |
  // | ThunkSection                                   |

  // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
  // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
  // B.W:
  // ARM B, BL, BLX range +/- 32MiB
  // Thumb B.W, BL, BLX range +/- 16MiB
  // Thumb B<cc>.W range +/- 1MiB
  // If a branch cannot reach a pre-created ThunkSection a new one will be
  // created so we can handle the rare cases of a Thumb 2 conditional branch.
  // We intentionally use a lower size for thunkSectionSpacing than the maximum
  // branch range so the end of the ThunkSection is more likely to be within
  // range of the branch instruction that is furthest away. The value we shorten
  // thunkSectionSpacing by is set conservatively to allow us to create 16,384
  // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
  // one of the Thunks going out of range.

  // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
  // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
  // ARMv6T2) the range is +/- 4MiB.

  return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
                                         : 0x400000 - 0x7500;
}

bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
  if ((dst & 0x1) == 0)
    // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
    // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
    // destination will be 4 byte aligned.
    src &= ~0x3;
  else
    // Bit 0 == 1 denotes Thumb state, it is not part of the range.
    dst &= ~0x1;

  int64_t offset = dst - src;
  switch (type) {
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_JUMP24:
  case R_ARM_CALL:
    return llvm::isInt<26>(offset);
  case R_ARM_THM_JUMP19:
    return llvm::isInt<21>(offset);
  case R_ARM_THM_JUMP24:
  case R_ARM_THM_CALL:
    return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
                                         : llvm::isInt<23>(offset);
  default:
    return true;
  }
}

// Helper to produce message text when LLD detects that a CALL relocation to
// a non STT_FUNC symbol that may result in incorrect interworking between ARM
// or Thumb.
static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
  assert(!s.isFunc());
  const ErrorPlace place = getErrorPlace(loc);
  std::string hint;
  if (!place.srcLoc.empty())
    hint = "; " + place.srcLoc;
  if (s.isSection()) {
    // Section symbols must be defined and in a section. Users cannot change
    // the type. Use the section name as getName() returns an empty string.
    warn(place.loc + "branch and link relocation: " + toString(relt) +
         " to STT_SECTION symbol " + cast<Defined>(s).section->name +
         " ; interworking not performed" + hint);
  } else {
    // Warn with hint on how to alter the symbol type.
    warn(getErrorLocation(loc) + "branch and link relocation: " +
         toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
         " interworking not performed; consider using directive '.type " +
         s.getName() +
         ", %function' to give symbol type STT_FUNC if interworking between "
         "ARM and Thumb is required" +
         hint);
  }
}

// Rotate a 32-bit unsigned value right by a specified amt of bits.
static uint32_t rotr32(uint32_t val, uint32_t amt) {
  assert(amt < 32 && "Invalid rotate amount");
  return (val >> amt) | (val << ((32 - amt) & 31));
}

static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group,
                                                         uint32_t val) {
  uint32_t rem, lz;
  do {
    lz = llvm::countLeadingZeros(val) & ~1;
    rem = val;
    if (lz == 32) // implies rem == 0
      break;
    val &= 0xffffff >> lz;
  } while (group--);
  return {rem, lz};
}

static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
                           int group, bool check) {
  // ADD/SUB (immediate) add = bit23, sub = bit22
  // immediate field carries is a 12-bit modified immediate, made up of a 4-bit
  // even rotate right and an 8-bit immediate.
  uint32_t opcode = 0x00800000;
  if (val >> 63) {
    opcode = 0x00400000;
    val = -val;
  }
  uint32_t imm, lz;
  std::tie(imm, lz) = getRemAndLZForGroup(group, val);
  uint32_t rot = 0;
  if (lz < 24) {
    imm = rotr32(imm, 24 - lz);
    rot = (lz + 8) << 7;
  }
  if (check && imm > 0xff)
    error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() +
          " for relocation " + toString(rel.type));
  write32le(loc, (read32le(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff));
}

static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
                           int group) {
  // R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
  // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
  // bottom bit to recover S + A - P.
  if (rel.sym->isFunc())
    val &= ~0x1;
  // LDR (literal) u = bit23
  uint32_t opcode = 0x00800000;
  if (val >> 63) {
    opcode = 0x0;
    val = -val;
  }
  uint32_t imm = getRemAndLZForGroup(group, val).first;
  checkUInt(loc, imm, 12, rel);
  write32le(loc, (read32le(loc) & 0xff7ff000) | opcode | imm);
}

static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
                            int group) {
  // R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
  // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
  // bottom bit to recover S + A - P.
  if (rel.sym->isFunc())
    val &= ~0x1;
  // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23
  uint32_t opcode = 0x00800000;
  if (val >> 63) {
    opcode = 0x0;
    val = -val;
  }
  uint32_t imm = getRemAndLZForGroup(group, val).first;
  checkUInt(loc, imm, 8, rel);
  write32le(loc, (read32le(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) |
                     (imm & 0xf));
}

void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
  switch (rel.type) {
  case R_ARM_ABS32:
  case R_ARM_BASE_PREL:
  case R_ARM_GOTOFF32:
  case R_ARM_GOT_BREL:
  case R_ARM_GOT_PREL:
  case R_ARM_REL32:
  case R_ARM_RELATIVE:
  case R_ARM_SBREL32:
  case R_ARM_TARGET1:
  case R_ARM_TARGET2:
  case R_ARM_TLS_GD32:
  case R_ARM_TLS_IE32:
  case R_ARM_TLS_LDM32:
  case R_ARM_TLS_LDO32:
  case R_ARM_TLS_LE32:
  case R_ARM_TLS_TPOFF32:
  case R_ARM_TLS_DTPOFF32:
    write32le(loc, val);
    break;
  case R_ARM_PREL31:
    checkInt(loc, val, 31, rel);
    write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
    break;
  case R_ARM_CALL: {
    // R_ARM_CALL is used for BL and BLX instructions, for symbols of type
    // STT_FUNC we choose whether to write a BL or BLX depending on the
    // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
    // not of type STT_FUNC then we must preserve the original instruction.
    // PLT entries are always ARM state so we know we don't need to interwork.
    assert(rel.sym); // R_ARM_CALL is always reached via relocate().
    bool bit0Thumb = val & 1;
    bool isBlx = (read32le(loc) & 0xfe000000) == 0xfa000000;
    // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
    // even when type not STT_FUNC.
    if (!rel.sym->isFunc() && isBlx != bit0Thumb)
      stateChangeWarning(loc, rel.type, *rel.sym);
    if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
      // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
      checkInt(loc, val, 26, rel);
      write32le(loc, 0xfa000000 |                    // opcode
                         ((val & 2) << 23) |         // H
                         ((val >> 2) & 0x00ffffff)); // imm24
      break;
    }
    // BLX (always unconditional) instruction to an ARM Target, select an
    // unconditional BL.
    write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
    // fall through as BL encoding is shared with B
  }
    [[fallthrough]];
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
    checkInt(loc, val, 26, rel);
    write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
    break;
  case R_ARM_THM_JUMP8:
    // We do a 9 bit check because val is right-shifted by 1 bit.
    checkInt(loc, val, 9, rel);
    write16le(loc, (read32le(loc) & 0xff00) | ((val >> 1) & 0x00ff));
    break;
  case R_ARM_THM_JUMP11:
    // We do a 12 bit check because val is right-shifted by 1 bit.
    checkInt(loc, val, 12, rel);
    write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
    break;
  case R_ARM_THM_JUMP19:
    // Encoding T3: Val = S:J2:J1:imm6:imm11:0
    checkInt(loc, val, 21, rel);
    write16le(loc,
              (read16le(loc) & 0xfbc0) |   // opcode cond
                  ((val >> 10) & 0x0400) | // S
                  ((val >> 12) & 0x003f)); // imm6
    write16le(loc + 2,
              0x8000 |                    // opcode
                  ((val >> 8) & 0x0800) | // J2
                  ((val >> 5) & 0x2000) | // J1
                  ((val >> 1) & 0x07ff)); // imm11
    break;
  case R_ARM_THM_CALL: {
    // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
    // STT_FUNC we choose whether to write a BL or BLX depending on the
    // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
    // not of type STT_FUNC then we must preserve the original instruction.
    // PLT entries are always ARM state so we know we need to interwork.
    assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
    bool bit0Thumb = val & 1;
    bool isBlx = (read16le(loc + 2) & 0x1000) == 0;
    // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
    // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
    if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
      stateChangeWarning(loc, rel.type, *rel.sym);
    if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
      // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
      // the BLX instruction may only be two byte aligned. This must be done
      // before overflow check.
      val = alignTo(val, 4);
      write16le(loc + 2, read16le(loc + 2) & ~0x1000);
    } else {
      write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | 1 << 12);
    }
    if (!config->armJ1J2BranchEncoding) {
      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
      // different encoding rules and range due to J1 and J2 always being 1.
      checkInt(loc, val, 23, rel);
      write16le(loc,
                0xf000 |                     // opcode
                    ((val >> 12) & 0x07ff)); // imm11
      write16le(loc + 2,
                (read16le(loc + 2) & 0xd000) | // opcode
                    0x2800 |                   // J1 == J2 == 1
                    ((val >> 1) & 0x07ff));    // imm11
      break;
    }
  }
    // Fall through as rest of encoding is the same as B.W
    [[fallthrough]];
  case R_ARM_THM_JUMP24:
    // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
    checkInt(loc, val, 25, rel);
    write16le(loc,
              0xf000 |                     // opcode
                  ((val >> 14) & 0x0400) | // S
                  ((val >> 12) & 0x03ff)); // imm10
    write16le(loc + 2,
              (read16le(loc + 2) & 0xd000) |                  // opcode
                  (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
                  (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
                  ((val >> 1) & 0x07ff));                     // imm11
    break;
  case R_ARM_MOVW_ABS_NC:
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVW_BREL_NC:
    write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
                       (val & 0x0fff));
    break;
  case R_ARM_MOVT_ABS:
  case R_ARM_MOVT_PREL:
  case R_ARM_MOVT_BREL:
    write32le(loc, (read32le(loc) & ~0x000f0fff) |
                       (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
    break;
  case R_ARM_THM_MOVT_ABS:
  case R_ARM_THM_MOVT_PREL:
  case R_ARM_THM_MOVT_BREL:
    // Encoding T1: A = imm4:i:imm3:imm8
    write16le(loc,
              0xf2c0 |                     // opcode
                  ((val >> 17) & 0x0400) | // i
                  ((val >> 28) & 0x000f)); // imm4
    write16le(loc + 2,
              (read16le(loc + 2) & 0x8f00) | // opcode
                  ((val >> 12) & 0x7000) |   // imm3
                  ((val >> 16) & 0x00ff));   // imm8
    break;
  case R_ARM_THM_MOVW_ABS_NC:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVW_BREL_NC:
    // Encoding T3: A = imm4:i:imm3:imm8
    write16le(loc,
              0xf240 |                     // opcode
                  ((val >> 1) & 0x0400) |  // i
                  ((val >> 12) & 0x000f)); // imm4
    write16le(loc + 2,
              (read16le(loc + 2) & 0x8f00) | // opcode
                  ((val << 4) & 0x7000) |    // imm3
                  (val & 0x00ff));           // imm8
    break;
  case R_ARM_ALU_PC_G0:
    encodeAluGroup(loc, rel, val, 0, true);
    break;
  case R_ARM_ALU_PC_G0_NC:
    encodeAluGroup(loc, rel, val, 0, false);
    break;
  case R_ARM_ALU_PC_G1:
    encodeAluGroup(loc, rel, val, 1, true);
    break;
  case R_ARM_ALU_PC_G1_NC:
    encodeAluGroup(loc, rel, val, 1, false);
    break;
  case R_ARM_ALU_PC_G2:
    encodeAluGroup(loc, rel, val, 2, true);
    break;
  case R_ARM_LDR_PC_G0:
    encodeLdrGroup(loc, rel, val, 0);
    break;
  case R_ARM_LDR_PC_G1:
    encodeLdrGroup(loc, rel, val, 1);
    break;
  case R_ARM_LDR_PC_G2:
    encodeLdrGroup(loc, rel, val, 2);
    break;
  case R_ARM_LDRS_PC_G0:
    encodeLdrsGroup(loc, rel, val, 0);
    break;
  case R_ARM_LDRS_PC_G1:
    encodeLdrsGroup(loc, rel, val, 1);
    break;
  case R_ARM_LDRS_PC_G2:
    encodeLdrsGroup(loc, rel, val, 2);
    break;
  case R_ARM_THM_ALU_PREL_11_0: {
    // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
    int64_t imm = val;
    uint16_t sub = 0;
    if (imm < 0) {
      imm = -imm;
      sub = 0x00a0;
    }
    checkUInt(loc, imm, 12, rel);
    write16le(loc, (read16le(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
    write16le(loc + 2,
              (read16le(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
    break;
  }
  case R_ARM_THM_PC8:
    // ADR and LDR literal encoding T1 positive offset only imm8:00
    // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
    // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
    // bottom bit to recover S + A - Pa.
    if (rel.sym->isFunc())
      val &= ~0x1;
    checkUInt(loc, val, 10, rel);
    checkAlignment(loc, val, 4, rel);
    write16le(loc, (read16le(loc) & 0xff00) | (val & 0x3fc) >> 2);
    break;
  case R_ARM_THM_PC12: {
    // LDR (literal) encoding T2, add = (U == '1') imm12
    // imm12 is unsigned
    // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
    // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
    // bottom bit to recover S + A - Pa.
    if (rel.sym->isFunc())
      val &= ~0x1;
    int64_t imm12 = val;
    uint16_t u = 0x0080;
    if (imm12 < 0) {
      imm12 = -imm12;
      u = 0;
    }
    checkUInt(loc, imm12, 12, rel);
    write16le(loc, read16le(loc) | u);
    write16le(loc + 2, (read16le(loc + 2) & 0xf000) | imm12);
    break;
  }
  default:
    llvm_unreachable("unknown relocation");
  }
}

int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
  switch (type) {
  default:
    internalLinkerError(getErrorLocation(buf),
                        "cannot read addend for relocation " + toString(type));
    return 0;
  case R_ARM_ABS32:
  case R_ARM_BASE_PREL:
  case R_ARM_GLOB_DAT:
  case R_ARM_GOTOFF32:
  case R_ARM_GOT_BREL:
  case R_ARM_GOT_PREL:
  case R_ARM_IRELATIVE:
  case R_ARM_REL32:
  case R_ARM_RELATIVE:
  case R_ARM_SBREL32:
  case R_ARM_TARGET1:
  case R_ARM_TARGET2:
  case R_ARM_TLS_DTPMOD32:
  case R_ARM_TLS_DTPOFF32:
  case R_ARM_TLS_GD32:
  case R_ARM_TLS_IE32:
  case R_ARM_TLS_LDM32:
  case R_ARM_TLS_LE32:
  case R_ARM_TLS_LDO32:
  case R_ARM_TLS_TPOFF32:
    return SignExtend64<32>(read32le(buf));
  case R_ARM_PREL31:
    return SignExtend64<31>(read32le(buf));
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
    return SignExtend64<26>(read32le(buf) << 2);
  case R_ARM_THM_JUMP8:
    return SignExtend64<9>(read16le(buf) << 1);
  case R_ARM_THM_JUMP11:
    return SignExtend64<12>(read16le(buf) << 1);
  case R_ARM_THM_JUMP19: {
    // Encoding T3: A = S:J2:J1:imm10:imm6:0
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    return SignExtend64<20>(((hi & 0x0400) << 10) | // S
                            ((lo & 0x0800) << 8) |  // J2
                            ((lo & 0x2000) << 5) |  // J1
                            ((hi & 0x003f) << 12) | // imm6
                            ((lo & 0x07ff) << 1));  // imm11:0
  }
  case R_ARM_THM_CALL:
    if (!config->armJ1J2BranchEncoding) {
      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
      // different encoding rules and range due to J1 and J2 always being 1.
      uint16_t hi = read16le(buf);
      uint16_t lo = read16le(buf + 2);
      return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
                              ((lo & 0x7ff) << 1));  // imm11:0
      break;
    }
    [[fallthrough]];
  case R_ARM_THM_JUMP24: {
    // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
    // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
                            (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
                            (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
                            ((hi & 0x003ff) << 12) |                   // imm0
                            ((lo & 0x007ff) << 1)); // imm11:0
  }
  // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
  // MOVT is in the range -32768 <= A < 32768
  case R_ARM_MOVW_ABS_NC:
  case R_ARM_MOVT_ABS:
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVT_PREL:
  case R_ARM_MOVW_BREL_NC:
  case R_ARM_MOVT_BREL: {
    uint64_t val = read32le(buf) & 0x000f0fff;
    return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
  }
  case R_ARM_THM_MOVW_ABS_NC:
  case R_ARM_THM_MOVT_ABS:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVT_PREL:
  case R_ARM_THM_MOVW_BREL_NC:
  case R_ARM_THM_MOVT_BREL: {
    // Encoding T3: A = imm4:i:imm3:imm8
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
                            ((hi & 0x0400) << 1) |  // i
                            ((lo & 0x7000) >> 4) |  // imm3
                            (lo & 0x00ff));         // imm8
  }
  case R_ARM_ALU_PC_G0:
  case R_ARM_ALU_PC_G0_NC:
  case R_ARM_ALU_PC_G1:
  case R_ARM_ALU_PC_G1_NC:
  case R_ARM_ALU_PC_G2: {
    // 12-bit immediate is a modified immediate made up of a 4-bit even
    // right rotation and 8-bit constant. After the rotation the value
    // is zero-extended. When bit 23 is set the instruction is an add, when
    // bit 22 is set it is a sub.
    uint32_t instr = read32le(buf);
    uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
    return (instr & 0x00400000) ? -val : val;
  }
  case R_ARM_LDR_PC_G0:
  case R_ARM_LDR_PC_G1:
  case R_ARM_LDR_PC_G2: {
    // ADR (literal) add = bit23, sub = bit22
    // LDR (literal) u = bit23 unsigned imm12
    bool u = read32le(buf) & 0x00800000;
    uint32_t imm12 = read32le(buf) & 0xfff;
    return u ? imm12 : -imm12;
  }
  case R_ARM_LDRS_PC_G0:
  case R_ARM_LDRS_PC_G1:
  case R_ARM_LDRS_PC_G2: {
    // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8
    uint32_t opcode = read32le(buf);
    bool u = opcode & 0x00800000;
    uint32_t imm4l = opcode & 0xf;
    uint32_t imm4h = (opcode & 0xf00) >> 4;
    return u ? (imm4h | imm4l) : -(imm4h | imm4l);
  }
  case R_ARM_THM_ALU_PREL_11_0: {
    // Thumb2 ADR, which is an alias for a sub or add instruction with an
    // unsigned immediate.
    // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    uint64_t imm = (hi & 0x0400) << 1 | // i
                   (lo & 0x7000) >> 4 | // imm3
                   (lo & 0x00ff);       // imm8
    // For sub, addend is negative, add is positive.
    return (hi & 0x00f0) ? -imm : imm;
  }
  case R_ARM_THM_PC8:
    // ADR and LDR (literal) encoding T1
    // From ELF for the ARM Architecture the initial signed addend is formed
    // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
    // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
    return ((((read16le(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
  case R_ARM_THM_PC12: {
    // LDR (literal) encoding T2, add = (U == '1') imm12
    bool u = read16le(buf) & 0x0080;
    uint64_t imm12 = read16le(buf + 2) & 0x0fff;
    return u ? imm12 : -imm12;
  }
  case R_ARM_NONE:
  case R_ARM_V4BX:
  case R_ARM_JUMP_SLOT:
    // These relocations are defined as not having an implicit addend.
    return 0;
  }
}

TargetInfo *elf::getARMTargetInfo() {
  static ARM target;
  return &target;
}