aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Conversion/LLVMCommon/Pattern.cpp
blob: 7c99402cc62c726ea7c009df5023edf85c3f51c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
//===- Pattern.cpp - Conversion pattern to the LLVM dialect ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinAttributes.h"

using namespace mlir;

//===----------------------------------------------------------------------===//
// ConvertToLLVMPattern
//===----------------------------------------------------------------------===//

ConvertToLLVMPattern::ConvertToLLVMPattern(StringRef rootOpName,
                                           MLIRContext *context,
                                           LLVMTypeConverter &typeConverter,
                                           PatternBenefit benefit)
    : ConversionPattern(typeConverter, rootOpName, benefit, context) {}

LLVMTypeConverter *ConvertToLLVMPattern::getTypeConverter() const {
  return static_cast<LLVMTypeConverter *>(
      ConversionPattern::getTypeConverter());
}

LLVM::LLVMDialect &ConvertToLLVMPattern::getDialect() const {
  return *getTypeConverter()->getDialect();
}

Type ConvertToLLVMPattern::getIndexType() const {
  return getTypeConverter()->getIndexType();
}

Type ConvertToLLVMPattern::getIntPtrType(unsigned addressSpace) const {
  return IntegerType::get(&getTypeConverter()->getContext(),
                          getTypeConverter()->getPointerBitwidth(addressSpace));
}

Type ConvertToLLVMPattern::getVoidType() const {
  return LLVM::LLVMVoidType::get(&getTypeConverter()->getContext());
}

Type ConvertToLLVMPattern::getVoidPtrType() const {
  return LLVM::LLVMPointerType::get(
      IntegerType::get(&getTypeConverter()->getContext(), 8));
}

Value ConvertToLLVMPattern::createIndexAttrConstant(OpBuilder &builder,
                                                    Location loc,
                                                    Type resultType,
                                                    int64_t value) {
  return builder.create<LLVM::ConstantOp>(
      loc, resultType, builder.getIntegerAttr(builder.getIndexType(), value));
}

Value ConvertToLLVMPattern::createIndexConstant(
    ConversionPatternRewriter &builder, Location loc, uint64_t value) const {
  return createIndexAttrConstant(builder, loc, getIndexType(), value);
}

Value ConvertToLLVMPattern::getStridedElementPtr(
    Location loc, MemRefType type, Value memRefDesc, ValueRange indices,
    ConversionPatternRewriter &rewriter) const {

  int64_t offset;
  SmallVector<int64_t, 4> strides;
  auto successStrides = getStridesAndOffset(type, strides, offset);
  assert(succeeded(successStrides) && "unexpected non-strided memref");
  (void)successStrides;

  MemRefDescriptor memRefDescriptor(memRefDesc);
  Value base = memRefDescriptor.alignedPtr(rewriter, loc);

  Value index;
  if (offset != 0) // Skip if offset is zero.
    index = ShapedType::isDynamicStrideOrOffset(offset)
                ? memRefDescriptor.offset(rewriter, loc)
                : createIndexConstant(rewriter, loc, offset);

  for (int i = 0, e = indices.size(); i < e; ++i) {
    Value increment = indices[i];
    if (strides[i] != 1) { // Skip if stride is 1.
      Value stride = ShapedType::isDynamicStrideOrOffset(strides[i])
                         ? memRefDescriptor.stride(rewriter, loc, i)
                         : createIndexConstant(rewriter, loc, strides[i]);
      increment = rewriter.create<LLVM::MulOp>(loc, increment, stride);
    }
    index =
        index ? rewriter.create<LLVM::AddOp>(loc, index, increment) : increment;
  }

  Type elementPtrType = memRefDescriptor.getElementPtrType();
  return index ? rewriter.create<LLVM::GEPOp>(loc, elementPtrType, base, index)
               : base;
}

// Check if the MemRefType `type` is supported by the lowering. We currently
// only support memrefs with identity maps.
bool ConvertToLLVMPattern::isConvertibleAndHasIdentityMaps(
    MemRefType type) const {
  if (!typeConverter->convertType(type.getElementType()))
    return false;
  return type.getLayout().isIdentity();
}

Type ConvertToLLVMPattern::getElementPtrType(MemRefType type) const {
  auto elementType = type.getElementType();
  auto structElementType = typeConverter->convertType(elementType);
  return LLVM::LLVMPointerType::get(structElementType,
                                    type.getMemorySpaceAsInt());
}

void ConvertToLLVMPattern::getMemRefDescriptorSizes(
    Location loc, MemRefType memRefType, ValueRange dynamicSizes,
    ConversionPatternRewriter &rewriter, SmallVectorImpl<Value> &sizes,
    SmallVectorImpl<Value> &strides, Value &sizeBytes) const {
  assert(isConvertibleAndHasIdentityMaps(memRefType) &&
         "layout maps must have been normalized away");
  assert(count(memRefType.getShape(), ShapedType::kDynamicSize) ==
             static_cast<ssize_t>(dynamicSizes.size()) &&
         "dynamicSizes size doesn't match dynamic sizes count in memref shape");

  sizes.reserve(memRefType.getRank());
  unsigned dynamicIndex = 0;
  for (int64_t size : memRefType.getShape()) {
    sizes.push_back(size == ShapedType::kDynamicSize
                        ? dynamicSizes[dynamicIndex++]
                        : createIndexConstant(rewriter, loc, size));
  }

  // Strides: iterate sizes in reverse order and multiply.
  int64_t stride = 1;
  Value runningStride = createIndexConstant(rewriter, loc, 1);
  strides.resize(memRefType.getRank());
  for (auto i = memRefType.getRank(); i-- > 0;) {
    strides[i] = runningStride;

    int64_t size = memRefType.getShape()[i];
    if (size == 0)
      continue;
    bool useSizeAsStride = stride == 1;
    if (size == ShapedType::kDynamicSize)
      stride = ShapedType::kDynamicSize;
    if (stride != ShapedType::kDynamicSize)
      stride *= size;

    if (useSizeAsStride)
      runningStride = sizes[i];
    else if (stride == ShapedType::kDynamicSize)
      runningStride =
          rewriter.create<LLVM::MulOp>(loc, runningStride, sizes[i]);
    else
      runningStride = createIndexConstant(rewriter, loc, stride);
  }

  // Buffer size in bytes.
  Type elementPtrType = getElementPtrType(memRefType);
  Value nullPtr = rewriter.create<LLVM::NullOp>(loc, elementPtrType);
  Value gepPtr = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, nullPtr,
                                              ArrayRef<Value>{runningStride});
  sizeBytes = rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gepPtr);
}

Value ConvertToLLVMPattern::getSizeInBytes(
    Location loc, Type type, ConversionPatternRewriter &rewriter) const {
  // Compute the size of an individual element. This emits the MLIR equivalent
  // of the following sizeof(...) implementation in LLVM IR:
  //   %0 = getelementptr %elementType* null, %indexType 1
  //   %1 = ptrtoint %elementType* %0 to %indexType
  // which is a common pattern of getting the size of a type in bytes.
  auto convertedPtrType =
      LLVM::LLVMPointerType::get(typeConverter->convertType(type));
  auto nullPtr = rewriter.create<LLVM::NullOp>(loc, convertedPtrType);
  auto gep = rewriter.create<LLVM::GEPOp>(
      loc, convertedPtrType, nullPtr,
      ArrayRef<Value>{createIndexConstant(rewriter, loc, 1)});
  return rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gep);
}

Value ConvertToLLVMPattern::getNumElements(
    Location loc, ArrayRef<Value> shape,
    ConversionPatternRewriter &rewriter) const {
  // Compute the total number of memref elements.
  Value numElements =
      shape.empty() ? createIndexConstant(rewriter, loc, 1) : shape.front();
  for (unsigned i = 1, e = shape.size(); i < e; ++i)
    numElements = rewriter.create<LLVM::MulOp>(loc, numElements, shape[i]);
  return numElements;
}

/// Creates and populates the memref descriptor struct given all its fields.
MemRefDescriptor ConvertToLLVMPattern::createMemRefDescriptor(
    Location loc, MemRefType memRefType, Value allocatedPtr, Value alignedPtr,
    ArrayRef<Value> sizes, ArrayRef<Value> strides,
    ConversionPatternRewriter &rewriter) const {
  auto structType = typeConverter->convertType(memRefType);
  auto memRefDescriptor = MemRefDescriptor::undef(rewriter, loc, structType);

  // Field 1: Allocated pointer, used for malloc/free.
  memRefDescriptor.setAllocatedPtr(rewriter, loc, allocatedPtr);

  // Field 2: Actual aligned pointer to payload.
  memRefDescriptor.setAlignedPtr(rewriter, loc, alignedPtr);

  // Field 3: Offset in aligned pointer.
  memRefDescriptor.setOffset(rewriter, loc,
                             createIndexConstant(rewriter, loc, 0));

  // Fields 4: Sizes.
  for (const auto &en : llvm::enumerate(sizes))
    memRefDescriptor.setSize(rewriter, loc, en.index(), en.value());

  // Field 5: Strides.
  for (const auto &en : llvm::enumerate(strides))
    memRefDescriptor.setStride(rewriter, loc, en.index(), en.value());

  return memRefDescriptor;
}

LogicalResult ConvertToLLVMPattern::copyUnrankedDescriptors(
    OpBuilder &builder, Location loc, TypeRange origTypes,
    SmallVectorImpl<Value> &operands, bool toDynamic) const {
  assert(origTypes.size() == operands.size() &&
         "expected as may original types as operands");

  // Find operands of unranked memref type and store them.
  SmallVector<UnrankedMemRefDescriptor, 4> unrankedMemrefs;
  for (unsigned i = 0, e = operands.size(); i < e; ++i)
    if (origTypes[i].isa<UnrankedMemRefType>())
      unrankedMemrefs.emplace_back(operands[i]);

  if (unrankedMemrefs.empty())
    return success();

  // Compute allocation sizes.
  SmallVector<Value, 4> sizes;
  UnrankedMemRefDescriptor::computeSizes(builder, loc, *getTypeConverter(),
                                         unrankedMemrefs, sizes);

  // Get frequently used types.
  MLIRContext *context = builder.getContext();
  Type voidPtrType = LLVM::LLVMPointerType::get(IntegerType::get(context, 8));
  auto i1Type = IntegerType::get(context, 1);
  Type indexType = getTypeConverter()->getIndexType();

  // Find the malloc and free, or declare them if necessary.
  auto module = builder.getInsertionPoint()->getParentOfType<ModuleOp>();
  LLVM::LLVMFuncOp freeFunc, mallocFunc;
  if (toDynamic)
    mallocFunc = LLVM::lookupOrCreateMallocFn(module, indexType);
  if (!toDynamic)
    freeFunc = LLVM::lookupOrCreateFreeFn(module);

  // Initialize shared constants.
  Value zero =
      builder.create<LLVM::ConstantOp>(loc, i1Type, builder.getBoolAttr(false));

  unsigned unrankedMemrefPos = 0;
  for (unsigned i = 0, e = operands.size(); i < e; ++i) {
    Type type = origTypes[i];
    if (!type.isa<UnrankedMemRefType>())
      continue;
    Value allocationSize = sizes[unrankedMemrefPos++];
    UnrankedMemRefDescriptor desc(operands[i]);

    // Allocate memory, copy, and free the source if necessary.
    Value memory =
        toDynamic
            ? builder.create<LLVM::CallOp>(loc, mallocFunc, allocationSize)
                  .getResult(0)
            : builder.create<LLVM::AllocaOp>(loc, voidPtrType, allocationSize,
                                             /*alignment=*/0);
    Value source = desc.memRefDescPtr(builder, loc);
    builder.create<LLVM::MemcpyOp>(loc, memory, source, allocationSize, zero);
    if (!toDynamic)
      builder.create<LLVM::CallOp>(loc, freeFunc, source);

    // Create a new descriptor. The same descriptor can be returned multiple
    // times, attempting to modify its pointer can lead to memory leaks
    // (allocated twice and overwritten) or double frees (the caller does not
    // know if the descriptor points to the same memory).
    Type descriptorType = getTypeConverter()->convertType(type);
    if (!descriptorType)
      return failure();
    auto updatedDesc =
        UnrankedMemRefDescriptor::undef(builder, loc, descriptorType);
    Value rank = desc.rank(builder, loc);
    updatedDesc.setRank(builder, loc, rank);
    updatedDesc.setMemRefDescPtr(builder, loc, memory);

    operands[i] = updatedDesc;
  }

  return success();
}

//===----------------------------------------------------------------------===//
// Detail methods
//===----------------------------------------------------------------------===//

/// Replaces the given operation "op" with a new operation of type "targetOp"
/// and given operands.
LogicalResult LLVM::detail::oneToOneRewrite(
    Operation *op, StringRef targetOp, ValueRange operands,
    LLVMTypeConverter &typeConverter, ConversionPatternRewriter &rewriter) {
  unsigned numResults = op->getNumResults();

  Type packedType;
  if (numResults != 0) {
    packedType = typeConverter.packFunctionResults(op->getResultTypes());
    if (!packedType)
      return failure();
  }

  // Create the operation through state since we don't know its C++ type.
  Operation *newOp =
      rewriter.create(op->getLoc(), rewriter.getStringAttr(targetOp), operands,
                      packedType, op->getAttrs());

  // If the operation produced 0 or 1 result, return them immediately.
  if (numResults == 0)
    return rewriter.eraseOp(op), success();
  if (numResults == 1)
    return rewriter.replaceOp(op, newOp->getResult(0)), success();

  // Otherwise, it had been converted to an operation producing a structure.
  // Extract individual results from the structure and return them as list.
  SmallVector<Value, 4> results;
  results.reserve(numResults);
  for (unsigned i = 0; i < numResults; ++i) {
    auto type = typeConverter.convertType(op->getResult(i).getType());
    results.push_back(rewriter.create<LLVM::ExtractValueOp>(
        op->getLoc(), type, newOp->getResult(0), rewriter.getI64ArrayAttr(i)));
  }
  rewriter.replaceOp(op, results);
  return success();
}