aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
blob: aab003b57efffa5c220df99c8e97f5683e073c4c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
//===- Sparsification.cpp - Implementation of sparsification --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements converting sparse tensor types to actual sparse code.
//
//===----------------------------------------------------------------------===//

#include "CodegenUtils.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TensorEncoding.h"
#include "llvm/ADT/SmallBitVector.h"

using namespace mlir;
using namespace mlir::sparse_tensor;

//===----------------------------------------------------------------------===//
// Declarations of data structures.
//===----------------------------------------------------------------------===//

namespace {

// Iteration graph sorting.
enum SortMask {
  kSparseOnly = 0x0,
  kIncludeDense = 0x1,
  kIncludeUndef = 0x2,
  kIncludeAll = 0x3
};

// Reduction kinds.
enum Reduction { kNoReduc, kSum, kProduct, kAnd, kOr, kXor };

// Code generation.
struct CodeGen {
  CodeGen(SparsificationOptions o, unsigned numTensors, unsigned numLoops,
          OpOperand *op, unsigned nest)
      : options(o), loops(numLoops), sizes(numLoops), buffers(numTensors),
        pointers(numTensors, std::vector<Value>(numLoops)),
        indices(numTensors, std::vector<Value>(numLoops)),
        highs(numTensors, std::vector<Value>(numLoops)),
        pidxs(numTensors, std::vector<Value>(numLoops)),
        idxs(numTensors, std::vector<Value>(numLoops)), redVal(), sparseOut(op),
        outerParNest(nest), lexIdx(), lexVal(), expValues(), expFilled(),
        expAdded(), expCount(), curVecMask() {}
  /// Sparsification options.
  SparsificationOptions options;
  /// Universal dense indices and upper bounds (by index). The loops array
  /// is updated with the value of the universal dense index in the current
  /// loop. The sizes array is set once with the inferred dimension sizes.
  std::vector<Value> loops;
  std::vector<Value> sizes;
  /// Buffers for storing dense and sparse numerical values (by tensor).
  /// This array is set once during bufferization of all tensors.
  std::vector<Value> buffers;
  /// Sparse storage schemes (1-D): pointers and indices (by tensor and index).
  /// This array is set once during bufferization of all sparse tensors.
  std::vector<std::vector<Value>> pointers;
  std::vector<std::vector<Value>> indices;
  /// Sparse iteration information (by tensor and index). These arrays
  /// are updated to remain current within the current loop.
  std::vector<std::vector<Value>> highs;
  std::vector<std::vector<Value>> pidxs;
  std::vector<std::vector<Value>> idxs;
  /// Current reduction, updated during code generation. When indices of a
  /// reduction are exhausted, all inner loops can use a scalarized reduction.
  unsigned redExp = -1u;
  Value redVal;
  Reduction redKind = kNoReduc;
  // Sparse tensor as output. Implemented either through direct injective
  // insertion in lexicographic index order (where indices are updated
  // in the temporary array `lexIdx`) or through access pattern expansion
  // in the innermost loop nest (`expValues` through `expCount`).
  OpOperand *sparseOut;
  unsigned outerParNest;
  Value lexIdx;
  Value lexVal;
  Value expValues;
  Value expFilled;
  Value expAdded;
  Value expCount;
  // Current vector length and mask.
  unsigned curVecLength = 1;
  Value curVecMask;
};

} // namespace

//===----------------------------------------------------------------------===//
// Sparse compiler analysis methods.
//===----------------------------------------------------------------------===//

/// Helper method to construct a permuted dimension ordering
/// that adheres to the given topological sort.
static AffineMap permute(MLIRContext *context, AffineMap m,
                         std::vector<unsigned> &topSort) {
  unsigned sz = topSort.size();
  assert(m.getNumResults() == sz && "TopoSort/AffineMap size mismatch");
  // Construct the inverse of `m`; to avoid the asymptotic complexity
  // of calling `m.getPermutedPosition` repeatedly.
  SmallVector<unsigned, 4> inv(sz);
  for (unsigned i = 0; i < sz; i++)
    inv[i] = m.getDimPosition(i);
  // Construct the permutation.
  SmallVector<unsigned, 4> perm(sz);
  for (unsigned i = 0; i < sz; i++)
    perm[i] = inv[topSort[i]];
  return AffineMap::getPermutationMap(perm, context);
}

/// Helper method to apply dimension ordering permutation.
static unsigned perm(const SparseTensorEncodingAttr &enc, unsigned d) {
  if (enc) {
    auto order = enc.getDimOrdering();
    if (order) {
      assert(order.isPermutation());
      return order.getDimPosition(d);
    }
  }
  return d;
}

/// Helper method to translate dim level type to internal representation.
static Dim toDim(const SparseTensorEncodingAttr &enc, unsigned d) {
  if (enc) {
    SparseTensorEncodingAttr::DimLevelType tp = enc.getDimLevelType()[d];
    if (tp == SparseTensorEncodingAttr::DimLevelType::Compressed)
      return Dim::kSparse;
  }
  return Dim::kDense;
}

/// Helper method to inspect affine expressions. Rejects cases where the
/// same index is used more than once. Also rejects affine expressions
/// that are not a direct index for annotated tensors.
// TODO: accept more affine cases for sparse tensors
static bool findAffine(Merger &merger, unsigned tensor, AffineExpr a, Dim dim,
                       bool isDense) {
  switch (a.getKind()) {
  case AffineExprKind::DimId: {
    unsigned idx = a.cast<AffineDimExpr>().getPosition();
    if (!merger.isDim(tensor, idx, Dim::kUndef))
      return false; // used more than once
    merger.setDim(tensor, idx, dim);
    return true;
  }
  case AffineExprKind::Add:
  case AffineExprKind::Mul: {
    if (!isDense)
      return false;
    auto binOp = a.cast<AffineBinaryOpExpr>();
    return findAffine(merger, tensor, binOp.getLHS(), dim, isDense) &&
           findAffine(merger, tensor, binOp.getRHS(), dim, isDense);
  }
  case AffineExprKind::Constant:
    return isDense;
  default:
    return false;
  }
}

/// Helper method to inspect sparse encodings in the tensor types.
/// Fills the per-dimension sparsity information for all tensors.
/// Returns true if the sparse annotations and affine subscript
/// expressions of all tensors are admissable. Returns false if
/// no annotations are found or inadmissable constructs occur.
static bool findSparseAnnotations(Merger &merger, linalg::GenericOp op) {
  bool annotated = false;
  for (OpOperand *t : op.getInputAndOutputOperands()) {
    auto map = op.getTiedIndexingMap(t);
    auto enc = getSparseTensorEncoding(t->get().getType());
    if (enc)
      annotated = true;
    assert(map.getNumResults() == op.getRank(t));
    for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
      unsigned tensor = t->getOperandNumber();
      AffineExpr a = map.getResult(perm(enc, d));
      if (!findAffine(merger, tensor, a, toDim(enc, d), !enc))
        return false; // inadmissable affine expression
    }
  }
  return annotated;
}

/// A DFS helper to compute a topological sort. Note that recursion is
/// bounded by the number of implicit loops, which is always small.
/// Returns false when a cycle is detected.
static bool topSortDFS(unsigned i, std::vector<unsigned> &visit,
                       std::vector<unsigned> &topSort,
                       std::vector<std::vector<bool>> &adjM) {
  if (visit[i] != 0)
    return visit[i] != 1; // 1 denotes cycle!
  visit[i] = 1;
  for (unsigned j = 0, e = visit.size(); j < e; j++)
    if (adjM[i][j])
      if (!topSortDFS(j, visit, topSort, adjM))
        return false;
  visit[i] = 2;
  topSort.push_back(i);
  return true;
}

/// Helper method to add all constraints from the indices in one affine
/// expression before all indices in the other affine expression. For
/// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
                               AffineExpr a, AffineExpr b, unsigned fidx) {
  switch (a.getKind()) {
  case AffineExprKind::DimId: {
    unsigned idx = a.cast<AffineDimExpr>().getPosition();
    if (b)
      addAffineOrderings(adjM, b, AffineExpr(), idx);
    else
      adjM[fidx][idx] = true;
    break;
  }
  case AffineExprKind::Add:
  case AffineExprKind::Mul: {
    auto binOp = a.cast<AffineBinaryOpExpr>();
    addAffineOrderings(adjM, binOp.getLHS(), b, fidx);
    addAffineOrderings(adjM, binOp.getRHS(), b, fidx);
    break;
  }
  default:
    break;
  }
}

/// Computes a topologically sorted iteration graph for the linalg operation.
/// Ensures all tensors are visited in natural index order. This is essential
/// for sparse storage formats since these only support access along fixed
/// dimensions. Even for dense storage formats, however, the natural index
/// order yields innermost unit-stride access with better spatial locality.
static bool computeIterationGraph(Merger &merger, linalg::GenericOp op,
                                  std::vector<unsigned> &topSort, unsigned mask,
                                  OpOperand *skip = nullptr) {
  // Set up an n x n from/to adjacency matrix of the iteration graph
  // for the implicit loop indices i_0 .. i_n-1.
  unsigned n = op.getNumLoops();
  std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));

  // Iterate over the indexing maps of every tensor in the tensor expression.
  for (OpOperand *t : op.getInputAndOutputOperands()) {
    // Skip tensor during cycle resolution.
    if (t == skip)
      continue;
    // Get map and encoding.
    auto map = op.getTiedIndexingMap(t);
    auto enc = getSparseTensorEncoding(t->get().getType());
    assert(map.getNumDims() == n);
    // Skip dense tensor constraints when not requested.
    if (!(mask & SortMask::kIncludeDense) && !enc)
      continue;
    // Each tensor expression and optional dimension ordering (row-major
    // by default) puts an ordering constraint on the loop indices. For
    // example, the tensor expresion A_ijk forces the ordering i < j < k
    // on the loop indices if no explicit dimension ordering is given.
    for (unsigned d = 1, rank = map.getNumResults(); d < rank; d++) {
      AffineExpr f = map.getResult(perm(enc, d - 1));
      AffineExpr t = map.getResult(perm(enc, d));
      addAffineOrderings(adjM, f, t, 0);
    }
    // Push unrelated loops into sparse iteration space, so these
    // will be skipped more often.
    if (mask & SortMask::kIncludeUndef) {
      unsigned tensor = t->getOperandNumber();
      for (unsigned i = 0; i < n; i++)
        if (merger.isDim(tensor, i, Dim::kSparse))
          for (unsigned j = 0; j < n; j++)
            if (merger.isDim(tensor, j, Dim::kUndef))
              adjM[i][j] = true;
    }
  }

  // Topologically sort the iteration graph to determine loop order.
  // Report failure for a cyclic iteration graph.
  topSort.clear();
  topSort.reserve(n);
  std::vector<unsigned> visit(n, 0);
  for (unsigned i = 0; i < n; i++)
    if (visit[i] == 0)
      if (!topSortDFS(i, visit, topSort, adjM))
        return false; // cycle!
  std::reverse(std::begin(topSort), std::end(topSort));
  return true;
}

/// Returns true if tensor materializes uninitialized into the computation.
static bool isMaterializing(Value val) {
  return val.getDefiningOp<linalg::InitTensorOp>() ||
         val.getDefiningOp<bufferization::AllocTensorOp>();
}

/// Returns true when the tensor expression is admissable for codegen.
/// Since all sparse input tensors are admissable, we just need to check
/// whether the out tensor in the tensor expression codegen is admissable.
/// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective
/// nesting depth when a "truly dynamic" sparse tensor output occurs.
static bool isAdmissableTensorExp(Merger &merger, linalg::GenericOp op,
                                  std::vector<unsigned> &topSort, unsigned exp,
                                  OpOperand **sparseOut,
                                  unsigned &outerParNest) {
  OpOperand *lhs = op.getOutputOperand(0);
  unsigned tensor = lhs->getOperandNumber();
  auto enc = getSparseTensorEncoding(lhs->get().getType());
  // An non-annotated output tensor is assumed dense, and becomes a random
  // access n-dim memref. Admissable since insertions cannot occur.
  if (!enc)
    return true;
  // An all-dense annotated "sparse" output tensor becomes a linearized random
  // access 1-dim memref. Also admissable since insertions cannot occur.
  bool allDense = true;
  auto iteratorTypes = op.iterator_types().getValue();
  unsigned numLoops = iteratorTypes.size();
  for (unsigned i = 0; i < numLoops; i++)
    if (merger.isDim(tensor, i, Dim::kSparse)) {
      allDense = false;
      break;
    }
  if (allDense)
    return true;
  // A tensor expression with a sparse output tensor that changes its values
  // but not its nonzero structure, an operation called "simply dynamic" in
  // [Bik96,Ch9], is also admissable without special codegen.
  if (merger.isSingleCondition(tensor, exp))
    return true;
  // Accept "truly dynamic" if the output tensor materializes uninitialized
  // into the computation and insertions occur in lexicographic index order.
  if (isMaterializing(lhs->get())) {
    unsigned nest = 0;
    for (unsigned i = 0; i < numLoops; i++) {
      if (isReductionIterator(iteratorTypes[topSort[i]]))
        break; // terminate at first reduction
      nest++;
    }
    // Determine admissable dynamic insertion situations:
    // (1) fully injective, since there are no reductions,
    // (2) admissable 1-d expansion in innermost dimension.
    if (nest >= op.getRank(lhs) - 1) {
      *sparseOut = lhs;
      outerParNest = nest;
      return true;
    }
  }
  return false;
}

//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (reductions).
//===----------------------------------------------------------------------===//

/// Maps reduction kind to vector::CombiningKind.
static vector::CombiningKind getCombiningKind(Reduction kind) {
  switch (kind) {
  case kNoReduc:
    break;
  case kSum:
    return vector::CombiningKind::ADD;
  case kProduct:
    return vector::CombiningKind::MUL;
  case kAnd:
    return vector::CombiningKind::AND;
  case kOr:
    return vector::CombiningKind::OR;
  case kXor:
    return vector::CombiningKind::XOR;
  }
  llvm_unreachable("unknown reduction kind");
}

/// Maps operation to reduction.
static Reduction getReduction(Kind kind) {
  switch (kind) {
  case Kind::kAddF:
  case Kind::kAddC:
  case Kind::kAddI:
  case Kind::kSubF:
  case Kind::kSubC:
  case Kind::kSubI:
    return kSum;
  case Kind::kMulF:
  case Kind::kMulC:
  case Kind::kMulI:
    return kProduct;
  case Kind::kAndI:
    return kAnd;
  case Kind::kOrI:
    return kOr;
  case Kind::kXorI:
    return kXor;
  default:
    llvm_unreachable("unexpected reduction operator");
  }
}

/// Generates an initial value for a vector reduction, following the scheme
/// given in Chapter 5 of "The Software Vectorization Handbook", where the
/// initial scalar value is correctly embedded in the vector reduction value,
/// and a straightforward horizontal reduction will complete the operation.
static Value genVectorReducInit(CodeGen &codegen, OpBuilder &builder,
                                Location loc, VectorType vtp) {
  Value r = codegen.redVal;
  switch (codegen.redKind) {
  case kNoReduc:
    break;
  case kSum:
  case kXor:
    // Initialize reduction vector to: | 0 | .. | 0 | r |
    return builder.create<vector::InsertElementOp>(
        loc, r, constantZero(builder, loc, vtp),
        constantIndex(builder, loc, 0));
  case kProduct:
    // Initialize reduction vector to: | 1 | .. | 1 | r |
    return builder.create<vector::InsertElementOp>(
        loc, r, constantOne(builder, loc, vtp), constantIndex(builder, loc, 0));
  case kAnd:
  case kOr:
    // Initialize reduction vector to: | r | .. | r | r |
    return builder.create<vector::BroadcastOp>(loc, vtp, r);
  }
  llvm_unreachable("unknown reduction kind");
}

/// Generates final value for a vector reduction.
static Value genVectorReducEnd(CodeGen &codegen, OpBuilder &builder,
                               Location loc, VectorType vtp) {
  vector::CombiningKind kind = getCombiningKind(codegen.redKind);
  return builder.create<vector::ReductionOp>(loc, kind, codegen.redVal);
}

/// Updates scalarized reduction value.
static void updateReduc(Merger &merger, CodeGen &codegen, Value reduc) {
  assert(codegen.redKind != kNoReduc);
  codegen.redVal = merger.exp(codegen.redExp).val = reduc;
}

//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (statements and expressions).
//===----------------------------------------------------------------------===//

/// Generates buffer for the output tensor. Note that all sparse kernels
/// assume that when all elements are written to (viz. x(i) = y(i) * z(i)),
/// the output buffer is already initialized to all zeroes and only nonzeroes
/// values are computed and written out. For updates (viz. x(i) += y(i) * z(i)),
/// only nonzeroes values are used for the updates and no assumption on the
/// original contents of the output buffer is necessary.
static Value genOutputBuffer(CodeGen &codegen, OpBuilder &builder,
                             linalg::GenericOp op, MemRefType denseTp,
                             ArrayRef<Value> args) {
  Location loc = op.getLoc();
  OpOperand *lhs = op.getOutputOperand(0);
  Value tensor = lhs->get();
  bool isInit = op.isInitTensor(lhs);
  // An output tensor can simply materialize from the buffer of the tensor that
  // appears in the outs() clause. For updates, this has the advantage that only
  // the nonzero value are involved in the computation, keeping the operation
  // O(nnz). In all other cases, we are forced to zero out the buffer to enforce
  // the assumption above, which may negatively impact running complexity
  // (viz. O(n^2 + nnz) vs. O(nnz) for matrices).
  // TODO: use better analysis to avoid zeroing out the buffer?
  Value init = builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
  if (!isInit) {
    Value zero = constantZero(builder, loc, denseTp.getElementType());
    builder.create<linalg::FillOp>(loc, ValueRange{zero}, ValueRange{init});
  }
  return init;
}

/// Local bufferization of all dense and sparse data structures.
/// This code enables testing the first prototype sparse compiler.
// TODO: replace this with a proliferated bufferization strategy
static void genBuffers(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                       linalg::GenericOp op) {
  Location loc = op.getLoc();
  assert(op.getNumInputsAndOutputs() == op.getNumInputs() + 1);
  // For every tensor, find lower and upper bound on dimensions, set the
  // same bounds on loop indices, and obtain dense or sparse buffer(s).
  SmallVector<Value, 4> args;
  for (OpOperand *t : op.getInputAndOutputOperands()) {
    unsigned tensor = t->getOperandNumber();
    auto shape = op.getShape(t);
    auto map = op.getTiedIndexingMap(t);
    auto enc = getSparseTensorEncoding(t->get().getType());
    // Scan all dimensions of current tensor.
    args.clear();
    for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
      AffineExpr a = map.getResult(perm(enc, d));
      if (a.getKind() != AffineExprKind::DimId)
        continue; // compound
      unsigned idx = a.cast<AffineDimExpr>().getPosition();
      // Handle sparse storage schemes.
      if (merger.isDim(tensor, idx, Dim::kSparse)) {
        auto dynShape = {ShapedType::kDynamicSize};
        auto ptrTp =
            MemRefType::get(dynShape, getPointerOverheadType(builder, enc));
        auto indTp =
            MemRefType::get(dynShape, getIndexOverheadType(builder, enc));
        Value dim = constantIndex(builder, loc, d);
        // Generate sparse primitives to obtains pointer and indices.
        codegen.pointers[tensor][idx] =
            builder.create<ToPointersOp>(loc, ptrTp, t->get(), dim);
        codegen.indices[tensor][idx] =
            builder.create<ToIndicesOp>(loc, indTp, t->get(), dim);
      }
      // Find upper bound in current dimension.
      unsigned p = perm(enc, d);
      Value up = linalg::createOrFoldDimOp(builder, loc, t->get(), p);
      if (ShapedType::isDynamic(shape[p]))
        args.push_back(up);
      assert(codegen.highs[tensor][idx] == nullptr);
      codegen.sizes[idx] = codegen.highs[tensor][idx] = up;
    }
    // Perform the required bufferization. Dense inputs materialize
    // from the input tensors. Dense outputs need special handling.
    // Sparse inputs use sparse primitives to obtain the values.
    // We also accept in-place all-dense annotated "sparse" outputs.
    Type elementType = getElementTypeOrSelf(t->get().getType());
    if (!enc) {
      // Non-annotated dense tensors.
      auto denseTp = MemRefType::get(shape, elementType);
      if (tensor < op.getNumInputs())
        codegen.buffers[tensor] =
            builder.create<bufferization::ToMemrefOp>(loc, denseTp, t->get());
      else
        codegen.buffers[tensor] =
            genOutputBuffer(codegen, builder, op, denseTp, args);
    } else if (t == codegen.sparseOut) {
      // True sparse output needs a lexIdx array.
      Value rank = constantIndex(builder, loc, op.getRank(t));
      auto dynShape = {ShapedType::kDynamicSize};
      auto memTp = MemRefType::get(dynShape, builder.getIndexType());
      codegen.lexIdx = builder.create<memref::AllocaOp>(loc, memTp, rank);
      codegen.lexVal = builder.create<memref::AllocaOp>(
          loc, MemRefType::get({}, elementType));
    } else {
      // Annotated sparse tensors.
      auto dynShape = {ShapedType::kDynamicSize};
      auto sparseTp = MemRefType::get(dynShape, elementType);
      codegen.buffers[tensor] =
          builder.create<ToValuesOp>(loc, sparseTp, t->get());
    }
  }
}

/// Constructs vector type.
static VectorType vectorType(CodeGen &codegen, Type etp) {
  unsigned numScalableDims = codegen.options.enableVLAVectorization;
  return VectorType::get(codegen.curVecLength, etp, numScalableDims);
}

/// Constructs vector type from pointer.
static VectorType vectorType(CodeGen &codegen, Value ptr) {
  return vectorType(codegen, ptr.getType().cast<MemRefType>().getElementType());
}

/// Constructs vector iteration mask.
static Value genVectorMask(CodeGen &codegen, OpBuilder &builder, Value iv,
                           Value lo, Value hi, Value step) {
  Location loc = iv.getLoc();
  VectorType mtp = vectorType(codegen, builder.getI1Type());
  // Special case if the vector length evenly divides the trip count (for
  // example, "for i = 0, 128, 16"). A constant all-true mask is generated
  // so that all subsequent masked memory operations are immediately folded
  // into unconditional memory operations.
  IntegerAttr loInt, hiInt, stepInt;
  if (matchPattern(lo, m_Constant(&loInt)) &&
      matchPattern(hi, m_Constant(&hiInt)) &&
      matchPattern(step, m_Constant(&stepInt))) {
    if (((hiInt.getInt() - loInt.getInt()) % stepInt.getInt()) == 0)
      return builder.create<vector::BroadcastOp>(
          loc, mtp, constantI1(builder, loc, true));
  }
  // Otherwise, generate a vector mask that avoids overrunning the upperbound
  // during vector execution. Here we rely on subsequent loop optimizations to
  // avoid executing the mask in all iterations, for example, by splitting the
  // loop into an unconditional vector loop and a scalar cleanup loop.
  auto minMap = AffineMap::get(
      /*dimCount=*/2, /*symbolCount=*/1,
      {builder.getAffineSymbolExpr(0),
       builder.getAffineDimExpr(0) - builder.getAffineDimExpr(1)},
      builder.getContext());
  Value end =
      builder.createOrFold<AffineMinOp>(loc, minMap, ValueRange{hi, iv, step});
  return builder.create<vector::CreateMaskOp>(loc, mtp, end);
}

/// Generates a vectorized load lhs = a[ind[lo:hi]] or lhs = a[lo:hi].
static Value genVectorLoad(CodeGen &codegen, OpBuilder &builder, Value ptr,
                           ArrayRef<Value> args) {
  Location loc = ptr.getLoc();
  VectorType vtp = vectorType(codegen, ptr);
  Value pass = constantZero(builder, loc, vtp);
  if (args.back().getType().isa<VectorType>()) {
    SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
    Value indexVec = args.back();
    scalarArgs.back() = constantIndex(builder, loc, 0);
    return builder.create<vector::GatherOp>(loc, vtp, ptr, scalarArgs, indexVec,
                                            codegen.curVecMask, pass);
  }
  return builder.create<vector::MaskedLoadOp>(loc, vtp, ptr, args,
                                              codegen.curVecMask, pass);
}

/// Generates a vectorized store a[ind[lo:hi]] = rhs or a[lo:hi] = rhs.
static void genVectorStore(CodeGen &codegen, OpBuilder &builder, Value rhs,
                           Value ptr, ArrayRef<Value> args) {
  Location loc = ptr.getLoc();
  if (args.back().getType().isa<VectorType>()) {
    SmallVector<Value, 4> scalarArgs(args.begin(), args.end());
    Value indexVec = args.back();
    scalarArgs.back() = constantIndex(builder, loc, 0);
    builder.create<vector::ScatterOp>(loc, ptr, scalarArgs, indexVec,
                                      codegen.curVecMask, rhs);
    return;
  }
  builder.create<vector::MaskedStoreOp>(loc, ptr, args, codegen.curVecMask,
                                        rhs);
}

/// Generates a vectorized invariant. Here we rely on subsequent loop
/// optimizations to hoist the invariant broadcast out of the vector loop.
static Value genVectorInvariantValue(CodeGen &codegen, OpBuilder &builder,
                                     Value val) {
  VectorType vtp = vectorType(codegen, val.getType());
  return builder.create<vector::BroadcastOp>(val.getLoc(), vtp, val);
}

/// Generates an affine expression.
//
// TODO: generalize for sparse tensor subscripts
//
static Value genAffine(CodeGen &codegen, OpBuilder &builder, AffineExpr a,
                       Location loc) {
  switch (a.getKind()) {
  case AffineExprKind::DimId: {
    unsigned idx = a.cast<AffineDimExpr>().getPosition();
    return codegen.loops[idx]; // universal dense index
  }
  case AffineExprKind::Add: {
    auto binOp = a.cast<AffineBinaryOpExpr>();
    return builder.create<arith::AddIOp>(
        loc, genAffine(codegen, builder, binOp.getLHS(), loc),
        genAffine(codegen, builder, binOp.getRHS(), loc));
  }
  case AffineExprKind::Mul: {
    auto binOp = a.cast<AffineBinaryOpExpr>();
    return builder.create<arith::MulIOp>(
        loc, genAffine(codegen, builder, binOp.getLHS(), loc),
        genAffine(codegen, builder, binOp.getRHS(), loc));
  }
  case AffineExprKind::Constant: {
    int64_t c = a.cast<AffineConstantExpr>().getValue();
    return constantIndex(builder, loc, c);
  }
  default:
    llvm_unreachable("unexpected affine subscript");
  }
}

/// Generates index for load/store on sparse tensor.
static Value genIndex(CodeGen &codegen, linalg::GenericOp op, OpOperand *t) {
  auto map = op.getTiedIndexingMap(t);
  auto enc = getSparseTensorEncoding(t->get().getType());
  AffineExpr a = map.getResult(perm(enc, map.getNumResults() - 1));
  assert(a.getKind() == AffineExprKind::DimId);
  unsigned idx = a.cast<AffineDimExpr>().getPosition();
  return codegen.loops[idx];
}

/// Generates subscript for load/store on a dense or sparse tensor.
static Value genSubscript(CodeGen &codegen, OpBuilder &builder,
                          linalg::GenericOp op, OpOperand *t,
                          SmallVector<Value, 4> &args) {
  unsigned tensor = t->getOperandNumber();
  auto map = op.getTiedIndexingMap(t);
  auto enc = getSparseTensorEncoding(t->get().getType());
  unsigned rank = map.getNumResults();
  if (enc) {
    // Note that currently, all sparse subscripts are simple.
    // TODO: accept affine too?
    AffineExpr a = map.getResult(perm(enc, rank - 1));
    assert(a.getKind() == AffineExprKind::DimId);
    unsigned idx = a.cast<AffineDimExpr>().getPosition();
    assert(codegen.pidxs[tensor][idx] != nullptr);
    args.push_back(codegen.pidxs[tensor][idx]); // position index
  } else {
    for (unsigned d = 0; d < rank; d++) {
      AffineExpr a = map.getResult(perm(enc, d));
      args.push_back(genAffine(codegen, builder, a, op.getLoc()));
    }
  }
  return codegen.buffers[tensor];
}

/// Generates insertion code to implement dynamic tensor load.
static Value genInsertionLoad(CodeGen &codegen, OpBuilder &builder,
                              linalg::GenericOp op, OpOperand *t) {
  Location loc = op.getLoc();
  // Direct lexicographic index order, tensor loads as zero.
  if (!codegen.expValues) {
    Type tp = getElementTypeOrSelf(t->get().getType());
    return constantZero(builder, loc, tp);
  }
  // Load from expanded access pattern.
  Value index = genIndex(codegen, op, t);
  return builder.create<memref::LoadOp>(loc, codegen.expValues, index);
}

/// Generates insertion code to implement dynamic tensor store.
static void genInsertionStore(CodeGen &codegen, OpBuilder &builder,
                              linalg::GenericOp op, OpOperand *t, Value rhs) {
  Location loc = op.getLoc();
  // Direct insertion in lexicographic index order.
  if (!codegen.expValues) {
    builder.create<memref::StoreOp>(loc, rhs, codegen.lexVal);
    builder.create<LexInsertOp>(loc, t->get(), codegen.lexIdx, codegen.lexVal);
    return;
  }
  // Generates insertion code along expanded access pattern.
  //   if (!expFilled[i]) then
  //     expFilled[i] = true
  //     expAdded[inserts++] = i
  //   endif
  //   values[i] = rhs
  Value index = genIndex(codegen, op, t);
  Value fval = constantI1(builder, loc, false);
  Value tval = constantI1(builder, loc, true);
  // If statement.
  Value filled = builder.create<memref::LoadOp>(loc, codegen.expFilled, index);
  Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
                                             filled, fval);
  scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
                                             /*else=*/true);
  // True branch.
  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
  builder.create<memref::StoreOp>(loc, tval, codegen.expFilled, index);
  builder.create<memref::StoreOp>(loc, index, codegen.expAdded,
                                  codegen.expCount);
  Value one = constantIndex(builder, loc, 1);
  Value add = builder.create<arith::AddIOp>(loc, codegen.expCount, one);
  builder.create<scf::YieldOp>(loc, add);
  // False branch.
  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
  builder.create<scf::YieldOp>(loc, codegen.expCount);
  builder.setInsertionPointAfter(ifOp);
  // Value assignment.
  codegen.expCount = ifOp.getResult(0);
  builder.create<memref::StoreOp>(loc, rhs, codegen.expValues, index);
}

/// Generates a load on a dense or sparse tensor.
static Value genTensorLoad(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                           linalg::GenericOp op, unsigned exp) {
  // Test if the load was hoisted to a higher loop nest.
  Value val = merger.exp(exp).val;
  if (val) {
    if (codegen.curVecLength > 1 && !val.getType().isa<VectorType>())
      return genVectorInvariantValue(codegen, builder, val);
    return val;
  }
  // Load during insertion.
  OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
  if (t == codegen.sparseOut)
    return genInsertionLoad(codegen, builder, op, t);
  // Actual load.
  SmallVector<Value, 4> args;
  Value ptr = genSubscript(codegen, builder, op, t, args);
  if (codegen.curVecLength > 1)
    return genVectorLoad(codegen, builder, ptr, args);
  return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
}

/// Generates a store on a dense or sparse tensor.
static void genTensorStore(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                           linalg::GenericOp op, unsigned exp, Value rhs) {
  Location loc = op.getLoc();
  // Test if this is a scalarized reduction.
  if (codegen.redVal) {
    if (codegen.curVecLength > 1)
      rhs = builder.create<arith::SelectOp>(loc, codegen.curVecMask, rhs,
                                            codegen.redVal);
    updateReduc(merger, codegen, rhs);
    return;
  }
  // Store during insertion.
  OpOperand *t = op.getOutputOperand(0);
  if (t == codegen.sparseOut) {
    if (!rhs) {
      // Only unary and binary are allowed to return uninitialized rhs
      // to indicate missing output.
      assert(merger.exp(exp).kind == kUnary || merger.exp(exp).kind == kBinary);
    } else {
      genInsertionStore(codegen, builder, op, t, rhs);
    }
    return;
  }
  // Actual store.
  SmallVector<Value, 4> args;
  Value ptr = genSubscript(codegen, builder, op, t, args);
  if (codegen.curVecLength > 1)
    genVectorStore(codegen, builder, rhs, ptr, args);
  else
    builder.create<memref::StoreOp>(loc, rhs, ptr, args);
}

/// Generates a pointer/index load from the sparse storage scheme. Narrower
/// data types need to be zero extended before casting the value into the
/// index type used for looping and indexing.
static Value genLoad(CodeGen &codegen, OpBuilder &builder, Location loc,
                     Value ptr, Value s) {
  // See https://llvm.org/docs/GetElementPtr.html for some background on
  // the complications described below.
  if (codegen.curVecLength > 1) {
    // Since the index vector is used in a subsequent gather/scatter operations,
    // which effectively defines an unsigned pointer + signed index, we must
    // zero extend the vector to an index width. For 8-bit and 16-bit values,
    // an 32-bit index width suffices. For 32-bit values, zero extending the
    // elements into 64-bit loses some performance since the 32-bit indexed
    // gather/scatter is more efficient than the 64-bit index variant (if the
    // negative 32-bit index space is unused, the enableSIMDIndex32 flag can
    // preserve this performance). For 64-bit values, there is no good way
    // to state that the indices are unsigned, with creates the potential of
    // incorrect address calculations in the unlikely case we need such
    // extremely large offsets.
    Type etp = ptr.getType().cast<MemRefType>().getElementType();
    Value vload = genVectorLoad(codegen, builder, ptr, {s});
    if (!etp.isa<IndexType>()) {
      if (etp.getIntOrFloatBitWidth() < 32)
        vload = builder.create<arith::ExtUIOp>(
            loc, vectorType(codegen, builder.getI32Type()), vload);
      else if (etp.getIntOrFloatBitWidth() < 64 &&
               !codegen.options.enableSIMDIndex32)
        vload = builder.create<arith::ExtUIOp>(
            loc, vectorType(codegen, builder.getI64Type()), vload);
    }
    return vload;
  }
  // For the scalar case, we simply zero extend narrower indices into 64-bit
  // values before casting to index without a performance penalty. Here too,
  // however, indices that already are 64-bit, in theory, cannot express the
  // full range as explained above.
  Value load = builder.create<memref::LoadOp>(loc, ptr, s);
  if (!load.getType().isa<IndexType>()) {
    if (load.getType().getIntOrFloatBitWidth() < 64)
      load = builder.create<arith::ExtUIOp>(loc, builder.getI64Type(), load);
    load =
        builder.create<arith::IndexCastOp>(loc, builder.getIndexType(), load);
  }
  return load;
}

/// Generates an invariant value.
static Value genInvariantValue(Merger &merger, CodeGen &codegen,
                               OpBuilder &builder, unsigned exp) {
  Value val = merger.exp(exp).val;
  if (codegen.curVecLength > 1)
    return genVectorInvariantValue(codegen, builder, val);
  return val;
}

/// Generates an address computation "sz * p + i".
static Value genAddress(CodeGen &codegen, OpBuilder &builder, Location loc,
                        Value size, Value p, Value i) {
  Value mul = builder.create<arith::MulIOp>(loc, size, p);
  if (auto vtp = i.getType().dyn_cast<VectorType>()) {
    Value inv =
        builder.create<arith::IndexCastOp>(loc, vtp.getElementType(), mul);
    mul = genVectorInvariantValue(codegen, builder, inv);
  }
  return builder.create<arith::AddIOp>(loc, mul, i);
}

/// Generates an index value.
static Value genIndexValue(CodeGen &codegen, OpBuilder &builder, unsigned idx,
                           unsigned ldx) {
  Value ival = codegen.loops[idx];
  Type itype = ival.getType();
  // During vectorization, we either encounter:
  // (1) indices already in vector form, as in ... = ind[lo:hi], good to go, or
  // (2) single index, as in ... = i, must convert to [i, i+1, ...] for inner i.
  unsigned vl = codegen.curVecLength;
  if (vl > 1 && !itype.isa<VectorType>()) {
    Location loc = ival.getLoc();
    VectorType vtp = vectorType(codegen, itype);
    ival = builder.create<vector::BroadcastOp>(loc, vtp, ival);
    if (idx == ldx) {
      Value incr;
      if (vtp.isScalable()) {
        Type stepvty = vectorType(codegen, builder.getI64Type());
        Value stepv = builder.create<LLVM::StepVectorOp>(loc, stepvty);
        incr = builder.create<arith::IndexCastOp>(loc, vtp, stepv);
      } else {
        SmallVector<APInt, 4> integers;
        for (unsigned i = 0; i < vl; i++)
          integers.push_back(APInt(/*width=*/64, i));
        auto values = DenseElementsAttr::get(vtp, integers);
        incr = builder.create<arith::ConstantOp>(loc, vtp, values);
      }
      ival = builder.create<arith::AddIOp>(loc, ival, incr);
    }
  }
  return ival;
}

/// Semi-ring branches are simply inlined by the sparse compiler. Prior
/// analysis has verified that all computations are "local" to the inlined
/// branch or otherwise invariantly defined outside the loop nest, with the
/// exception of index computations, which need to be relinked to actual
/// inlined cloned code.
static Value relinkBranch(CodeGen &codegen, RewriterBase &rewriter,
                          Block *block, Value e, unsigned ldx) {
  if (Operation *def = e.getDefiningOp()) {
    if (auto indexOp = dyn_cast<linalg::IndexOp>(def))
      return genIndexValue(codegen, rewriter, indexOp.getDim(), ldx);
    if (def->getBlock() == block) {
      for (unsigned i = 0, n = def->getNumOperands(); i < n; i++)
        def->setOperand(
            i, relinkBranch(codegen, rewriter, block, def->getOperand(i), ldx));
    }
  }
  return e;
}

/// Recursively generates tensor expression.
static Value genExp(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
                    linalg::GenericOp op, unsigned exp, unsigned ldx) {
  Location loc = op.getLoc();
  if (exp == -1u)
    return Value();
  if (merger.exp(exp).kind == Kind::kTensor)
    return genTensorLoad(merger, codegen, rewriter, op, exp);
  if (merger.exp(exp).kind == Kind::kInvariant)
    return genInvariantValue(merger, codegen, rewriter, exp);
  if (merger.exp(exp).kind == Kind::kIndex)
    return genIndexValue(codegen, rewriter, merger.exp(exp).index, ldx);
  Value v0 =
      genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e0, ldx);
  Value v1 =
      genExp(merger, codegen, rewriter, op, merger.exp(exp).children.e1, ldx);
  Value ee = merger.buildExp(rewriter, loc, exp, v0, v1);
  if (ee && (merger.exp(exp).kind == Kind::kUnary ||
             merger.exp(exp).kind == Kind::kBinary ||
             merger.exp(exp).kind == Kind::kBinaryBranch))
    ee = relinkBranch(codegen, rewriter, ee.getParentBlock(), ee, ldx);
  return ee;
}

/// Determines if affine expression is invariant.
static bool isInvariantAffine(const CodeGen &codegen, AffineExpr a,
                              unsigned ldx, bool &atLevel) {
  switch (a.getKind()) {
  case AffineExprKind::DimId: {
    unsigned idx = a.cast<AffineDimExpr>().getPosition();
    if (idx == ldx)
      atLevel = true;
    return codegen.loops[idx] != nullptr; // no longer in play?
  }
  case AffineExprKind::Add:
  case AffineExprKind::Mul: {
    auto binOp = a.cast<AffineBinaryOpExpr>();
    return isInvariantAffine(codegen, binOp.getLHS(), ldx, atLevel) &&
           isInvariantAffine(codegen, binOp.getRHS(), ldx, atLevel);
  }
  default:
    return true;
  }
}

/// Hoists loop invariant tensor loads for which indices have been exhausted.
static void genInvariants(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                          linalg::GenericOp op, unsigned exp, unsigned ldx,
                          bool atStart, Kind last = Kind::kTensor) {
  if (exp == -1u)
    return;
  if (merger.exp(exp).kind == Kind::kTensor) {
    // Inspect tensor indices.
    bool atLevel = ldx == -1u;
    OpOperand *t = op.getInputAndOutputOperands()[merger.exp(exp).tensor];
    auto map = op.getTiedIndexingMap(t);
    auto enc = getSparseTensorEncoding(t->get().getType());
    for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
      AffineExpr a = map.getResult(perm(enc, d));
      if (!isInvariantAffine(codegen, a, ldx, atLevel))
        return; // still in play
    }
    // All exhausted at this level (atLevel denotes exactly at this level).
    if (!atLevel)
      return;
    OpOperand *lhs = op.getOutputOperand(0);
    if (lhs == t) {
      // Start or end a scalarized reduction
      if (atStart) {
        Value load = genTensorLoad(merger, codegen, builder, op, exp);
        codegen.redKind = getReduction(last);
        codegen.redExp = exp;
        updateReduc(merger, codegen, load);
      } else {
        Value redVal = codegen.redVal;
        updateReduc(merger, codegen, Value());
        codegen.redExp = -1u;
        codegen.redKind = kNoReduc;
        genTensorStore(merger, codegen, builder, op, exp, redVal);
      }
    } else {
      // Start or end loop invariant hoisting of a tensor load.
      merger.exp(exp).val =
          atStart ? genTensorLoad(merger, codegen, builder, op, exp) : Value();
    }
  } else if (merger.exp(exp).kind != Kind::kInvariant &&
             merger.exp(exp).kind != Kind::kIndex) {
    // Traverse into the binary operations. Note that we only hoist
    // tensor loads, since subsequent MLIR/LLVM passes know how to
    // deal with all other kinds of derived loop invariants.
    Kind last = merger.exp(exp).kind;
    unsigned e0 = merger.exp(exp).children.e0;
    unsigned e1 = merger.exp(exp).children.e1;
    genInvariants(merger, codegen, builder, op, e0, ldx, atStart, last);
    genInvariants(merger, codegen, builder, op, e1, ldx, atStart, last);
  }
}

/// Generates an expanded access pattern in innermost dimension.
static void genExpansion(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                         linalg::GenericOp op, unsigned at, bool atStart) {
  OpOperand *lhs = codegen.sparseOut;
  if (!lhs || codegen.outerParNest != op.getRank(lhs) - 1 ||
      at != codegen.outerParNest)
    return; // not needed at this level
  // Generate start or end of an expanded access pattern.
  Value tensor = lhs->get();
  Location loc = op.getLoc();
  if (atStart) {
    auto dynShape = {ShapedType::kDynamicSize};
    Type etp = tensor.getType().cast<ShapedType>().getElementType();
    Type t1 = MemRefType::get(dynShape, etp);
    Type t2 = MemRefType::get(dynShape, builder.getI1Type());
    Type t3 = MemRefType::get(dynShape, builder.getIndexType());
    Type t4 = builder.getIndexType();
    auto res =
        builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
    assert(res.getNumResults() == 4);
    assert(!codegen.expValues);
    codegen.expValues = res.getResult(0);
    codegen.expFilled = res.getResult(1);
    codegen.expAdded = res.getResult(2);
    codegen.expCount = res.getResult(3);
  } else {
    assert(codegen.expValues);
    builder.create<CompressOp>(loc, tensor, codegen.lexIdx, codegen.expValues,
                               codegen.expFilled, codegen.expAdded,
                               codegen.expCount);
    codegen.expValues = codegen.expFilled = codegen.expAdded =
        codegen.expCount = Value();
  }
}

/// Generates initialization code for the subsequent loop sequence at
/// current index level. Returns true if the loop sequence needs to
/// maintain the universal index.
static bool genInit(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                    linalg::GenericOp op, std::vector<unsigned> &topSort,
                    unsigned at, BitVector &inits) {
  bool needsUniv = false;
  Location loc = op.getLoc();
  unsigned idx = topSort[at];

  // Initialize sparse positions.
  for (unsigned b = 0, be = inits.size(); b < be; b++) {
    if (inits[b]) {
      unsigned tensor = merger.tensor(b);
      assert(idx == merger.index(b));
      if (merger.isDim(b, Dim::kSparse)) {
        // Initialize sparse index.
        unsigned pat = at;
        for (; pat != 0; pat--) {
          if (codegen.pidxs[tensor][topSort[pat - 1]])
            break;
        }
        Value ptr = codegen.pointers[tensor][idx];
        Value one = constantIndex(builder, loc, 1);
        Value p0 = (pat == 0) ? constantIndex(builder, loc, 0)
                              : codegen.pidxs[tensor][topSort[pat - 1]];
        codegen.pidxs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p0);
        Value p1 = builder.create<arith::AddIOp>(loc, p0, one);
        codegen.highs[tensor][idx] = genLoad(codegen, builder, loc, ptr, p1);
      } else {
        // Dense index still in play.
        needsUniv = true;
      }
    }
  }

  // Initialize the universal dense index.
  codegen.loops[idx] = constantIndex(builder, loc, 0);
  return needsUniv;
}

/// Returns vectorization strategy. Any implicit inner loop in the Linalg
/// operation is a candidate. Whether it is actually converted to SIMD code
/// depends on the requested strategy.
static bool isVectorFor(CodeGen &codegen, bool isInner, bool isReduction,
                        bool isSparse) {
  // Reject vectorization of sparse output, unless innermost is reduction.
  if (codegen.sparseOut && !isReduction)
    return false;
  // Inspect strategy.
  switch (codegen.options.vectorizationStrategy) {
  case SparseVectorizationStrategy::kNone:
    return false;
  case SparseVectorizationStrategy::kDenseInnerLoop:
    return isInner && !isSparse;
  case SparseVectorizationStrategy::kAnyStorageInnerLoop:
    return isInner;
  }
  llvm_unreachable("unexpected vectorization strategy");
}

/// Returns parallelization strategy. Any implicit loop in the Linalg operation
/// that is marked "parallel" is a candidate. Whether it is actually converted
/// to a parallel operation depends on the requested strategy.
static bool isParallelFor(CodeGen &codegen, bool isOuter, bool isReduction,
                          bool isSparse, bool isVector) {
  // Reject parallelization of sparse output.
  if (codegen.sparseOut)
    return false;
  // Inspect strategy.
  switch (codegen.options.parallelizationStrategy) {
  case SparseParallelizationStrategy::kNone:
    return false;
  case SparseParallelizationStrategy::kDenseOuterLoop:
    return isOuter && !isSparse && !isReduction && !isVector;
  case SparseParallelizationStrategy::kAnyStorageOuterLoop:
    return isOuter && !isReduction && !isVector;
  case SparseParallelizationStrategy::kDenseAnyLoop:
    return !isSparse && !isReduction && !isVector;
  case SparseParallelizationStrategy::kAnyStorageAnyLoop:
    return !isReduction && !isVector;
  }
  llvm_unreachable("unexpected parallelization strategy");
}

/// Checks unit stride for dense tensors. The iteration graph may have ignored
/// dense access patterns in order to avoid cycles (sparse access patterns are
/// always placed innermost), but that means dense access has become strided.
/// This prevents effective vectorization.
static bool denseUnitStrides(Merger &merger, linalg::GenericOp op,
                             unsigned idx) {
  for (OpOperand *t : op.getInputAndOutputOperands()) {
    if (!getSparseTensorEncoding(t->get().getType())) {
      auto map = op.getTiedIndexingMap(t);
      for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
        AffineExpr a = map.getResult(d);
        // Report non-unit stride if innermost index appears at an outer
        // dimension (true non-unit stride) or if the innermost index appears
        // in a compound subscript in the innermost dimension. Even if the
        // latter is unit stride, it does not play well with scatter/gather.
        // TODO: accept unit stride affine innermost like a[i,j+k+1]?
        if (a.isFunctionOfDim(idx) &&
            ((d != rank - 1) || (a.getKind() != AffineExprKind::DimId)))
          return false;
      }
    }
  }
  return true;
}

/// Generates a for-loop on a single index.
static Operation *genFor(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                         linalg::GenericOp op, bool isOuter, bool isInner,
                         unsigned idx, BitVector &indices) {
  unsigned fb = indices.find_first();
  unsigned tensor = merger.tensor(fb);
  assert(idx == merger.index(fb));
  auto iteratorTypes = op.iterator_types().getValue();
  bool isReduction = isReductionIterator(iteratorTypes[idx]);
  bool isSparse = merger.isDim(fb, Dim::kSparse);
  bool isVector = isVectorFor(codegen, isInner, isReduction, isSparse) &&
                  denseUnitStrides(merger, op, idx);
  bool isParallel =
      isParallelFor(codegen, isOuter, isReduction, isSparse, isVector);

  // Prepare vector length.
  if (isVector)
    codegen.curVecLength = codegen.options.vectorLength;

  // Loop bounds and increment.
  Location loc = op.getLoc();
  Value lo = isSparse ? codegen.pidxs[tensor][idx] : codegen.loops[idx];
  Value hi = isSparse ? codegen.highs[tensor][idx] : codegen.sizes[idx];
  Value step = constantIndex(builder, loc, codegen.curVecLength);
  if (isVector && codegen.options.enableVLAVectorization) {
    Value vscale = builder.create<vector::VectorScaleOp>(
        loc, IndexType::get(builder.getContext()));
    step = builder.create<arith::MulIOp>(loc, vscale, step);
  }

  // Emit a parallel loop.
  if (isParallel) {
    assert(!isVector);
    scf::ParallelOp parOp = builder.create<scf::ParallelOp>(loc, lo, hi, step);
    if (isSparse)
      codegen.pidxs[tensor][idx] = parOp.getInductionVars()[0];
    else
      codegen.loops[idx] = parOp.getInductionVars()[0];
    builder.setInsertionPointToStart(parOp.getBody());
    return parOp;
  }

  // Emit a sequential or vector loop.
  SmallVector<Value, 4> operands;
  if (codegen.redVal) {
    // In a vector loop, bring reduction into SIMD form, if not already.
    if (isVector && !codegen.redVal.getType().isa<VectorType>()) {
      VectorType vtp = vectorType(codegen, codegen.redVal.getType());
      Value vred = genVectorReducInit(codegen, builder, loc, vtp);
      updateReduc(merger, codegen, vred);
    }
    operands.push_back(codegen.redVal);
  }
  if (codegen.expValues)
    operands.push_back(codegen.expCount);
  scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, operands);
  if (codegen.redVal)
    updateReduc(merger, codegen, forOp.getRegionIterArgs().front());
  if (codegen.expValues)
    codegen.expCount = forOp.getRegionIterArgs().back();
  // Assign induction variable to sparse or dense index.
  Value iv = forOp.getInductionVar();
  if (isSparse)
    codegen.pidxs[tensor][idx] = iv;
  else
    codegen.loops[idx] = iv;
  builder.setInsertionPointToStart(forOp.getBody());
  // Share vector iteration mask between all subsequent loads/stores.
  if (isVector)
    codegen.curVecMask = genVectorMask(codegen, builder, iv, lo, hi, step);
  return forOp;
}

/// Emit a while-loop for co-iteration over multiple indices.
static Operation *genWhile(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                           linalg::GenericOp op, unsigned idx, bool needsUniv,
                           BitVector &indices) {
  SmallVector<Type, 4> types;
  SmallVector<Value, 4> operands;
  // Construct the while-loop with a parameter for each index.
  Type indexType = builder.getIndexType();
  for (unsigned b = 0, be = indices.size(); b < be; b++) {
    if (indices[b] && merger.isDim(b, Dim::kSparse)) {
      unsigned tensor = merger.tensor(b);
      assert(idx == merger.index(b));
      types.push_back(indexType);
      operands.push_back(codegen.pidxs[tensor][idx]);
    }
  }
  if (codegen.redVal) {
    types.push_back(codegen.redVal.getType());
    operands.push_back(codegen.redVal);
  }
  if (codegen.expValues) {
    types.push_back(indexType);
    operands.push_back(codegen.expCount);
  }
  if (needsUniv) {
    types.push_back(indexType);
    operands.push_back(codegen.loops[idx]);
  }
  assert(types.size() == operands.size());
  Location loc = op.getLoc();
  scf::WhileOp whileOp = builder.create<scf::WhileOp>(loc, types, operands);

  SmallVector<Location> locs(types.size(), loc);
  Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
  Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);

  // Build the "before" region, which effectively consists
  // of a conjunction of "i < upper" tests on all induction.
  builder.setInsertionPointToStart(&whileOp.getBefore().front());
  Value cond;
  unsigned o = 0;
  for (unsigned b = 0, be = indices.size(); b < be; b++) {
    if (indices[b] && merger.isDim(b, Dim::kSparse)) {
      unsigned tensor = merger.tensor(b);
      assert(idx == merger.index(b));
      Value op1 = before->getArgument(o);
      Value op2 = codegen.highs[tensor][idx];
      Value opc = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ult,
                                                op1, op2);
      cond = cond ? builder.create<arith::AndIOp>(loc, cond, opc) : opc;
      codegen.pidxs[tensor][idx] = after->getArgument(o++);
    }
  }
  if (codegen.redVal)
    updateReduc(merger, codegen, after->getArgument(o++));
  if (codegen.expValues)
    codegen.expCount = after->getArgument(o++);
  if (needsUniv)
    codegen.loops[idx] = after->getArgument(o++);
  assert(o == operands.size());
  builder.create<scf::ConditionOp>(loc, cond, before->getArguments());
  builder.setInsertionPointToStart(&whileOp.getAfter().front());
  return whileOp;
}

/// Generates a for-loop or a while-loop, depending on whether it implements
/// singleton iteration or co-iteration over the given conjunction.
static Operation *genLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                          linalg::GenericOp op, std::vector<unsigned> &topSort,
                          unsigned at, bool needsUniv, BitVector &indices) {
  unsigned idx = topSort[at];
  if (indices.count() == 1) {
    bool isOuter = at == 0;
    bool isInner = at == topSort.size() - 1;
    return genFor(merger, codegen, builder, op, isOuter, isInner, idx, indices);
  }
  return genWhile(merger, codegen, builder, op, idx, needsUniv, indices);
}

/// Generates the local variables for this loop, consisting of the sparse
/// indices, restored universal dense index, and dense positions.
static void genLocals(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                      linalg::GenericOp op, std::vector<unsigned> &topSort,
                      unsigned at, bool needsUniv, BitVector &locals) {
  Location loc = op.getLoc();
  unsigned idx = topSort[at];

  // Initialize sparse indices.
  Value min;
  for (unsigned b = 0, be = locals.size(); b < be; b++) {
    if (locals[b] && merger.isDim(b, Dim::kSparse)) {
      unsigned tensor = merger.tensor(b);
      assert(idx == merger.index(b));
      Value ptr = codegen.indices[tensor][idx];
      Value s = codegen.pidxs[tensor][idx];
      Value load = genLoad(codegen, builder, loc, ptr, s);
      codegen.idxs[tensor][idx] = load;
      if (!needsUniv) {
        if (min) {
          Value cmp = builder.create<arith::CmpIOp>(
              loc, arith::CmpIPredicate::ult, load, min);
          min = builder.create<arith::SelectOp>(loc, cmp, load, min);
        } else {
          min = load;
        }
      }
    }
  }

  // Merge dense universal index over minimum.
  if (min) {
    assert(!needsUniv);
    codegen.loops[idx] = min;
  }

  // Initialize dense positions. Note that we generate dense indices of the
  // output tensor unconditionally, since they may not appear in the lattice,
  // but may be needed for linearized codegen.
  for (unsigned b = 0, be = locals.size(); b < be; b++) {
    if ((locals[b] || merger.isOutTensor(b, idx)) &&
        merger.isDim(b, Dim::kDense)) {
      unsigned tensor = merger.tensor(b);
      assert(idx == merger.index(b));
      unsigned pat = at;
      for (; pat != 0; pat--)
        if (codegen.pidxs[tensor][topSort[pat - 1]])
          break;
      Value p = (pat == 0) ? constantIndex(builder, loc, 0)
                           : codegen.pidxs[tensor][topSort[pat - 1]];
      codegen.pidxs[tensor][idx] = genAddress(
          codegen, builder, loc, codegen.sizes[idx], p, codegen.loops[idx]);
    }
  }

  // Move the insertion indices in lexicographic index order. During access
  // pattern expansion, we can skip setting the innermost dimension.
  if (codegen.sparseOut && !codegen.expValues) {
    Value pos = constantIndex(builder, loc, at);
    builder.create<memref::StoreOp>(loc, codegen.loops[idx], codegen.lexIdx,
                                    pos);
  }
}

/// Generates the induction structure for a while-loop.
static void genWhileInduction(Merger &merger, CodeGen &codegen,
                              OpBuilder &builder, linalg::GenericOp op,
                              unsigned idx, bool needsUniv,
                              BitVector &induction, scf::WhileOp whileOp) {
  Location loc = op.getLoc();
  // Finalize each else branch of all if statements.
  if (codegen.redVal || codegen.expValues) {
    while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
               builder.getInsertionBlock()->getParentOp())) {
      unsigned y = 0;
      SmallVector<Value, 4> yields;
      if (codegen.redVal) {
        yields.push_back(codegen.redVal);
        updateReduc(merger, codegen, ifOp.getResult(y++));
      }
      if (codegen.expValues) {
        yields.push_back(codegen.expCount);
        codegen.expCount = ifOp->getResult(y++);
      }
      assert(y == yields.size());
      builder.create<scf::YieldOp>(loc, yields);
      builder.setInsertionPointAfter(ifOp);
    }
  }
  builder.setInsertionPointToEnd(&whileOp.getAfter().front());
  // Finalize the induction. Note that the induction could be performed
  // in the individual if-branches to avoid re-evaluating the conditions.
  // However, that would result in a rather elaborate forest of yield
  // instructions during code generation. Moreover, performing the induction
  // after the if-statements more closely resembles code generated by TACO.
  unsigned o = 0;
  SmallVector<Value, 4> operands;
  Value one = constantIndex(builder, loc, 1);
  for (unsigned b = 0, be = induction.size(); b < be; b++) {
    if (induction[b] && merger.isDim(b, Dim::kSparse)) {
      unsigned tensor = merger.tensor(b);
      assert(idx == merger.index(b));
      Value op1 = codegen.idxs[tensor][idx];
      Value op2 = codegen.loops[idx];
      Value op3 = codegen.pidxs[tensor][idx];
      Value cmp = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
                                                op1, op2);
      Value add = builder.create<arith::AddIOp>(loc, op3, one);
      operands.push_back(builder.create<arith::SelectOp>(loc, cmp, add, op3));
      codegen.pidxs[tensor][idx] = whileOp->getResult(o++);
    }
  }
  if (codegen.redVal) {
    operands.push_back(codegen.redVal);
    updateReduc(merger, codegen, whileOp->getResult(o++));
  }
  if (codegen.expValues) {
    operands.push_back(codegen.expCount);
    codegen.expCount = whileOp->getResult(o++);
  }
  if (needsUniv) {
    operands.push_back(
        builder.create<arith::AddIOp>(loc, codegen.loops[idx], one));
    codegen.loops[idx] = whileOp->getResult(o++);
  }
  assert(o == operands.size());
  builder.create<scf::YieldOp>(loc, operands);
  builder.setInsertionPointAfter(whileOp);
}

/// Generates the induction structure for a for-loop.
static void genForInduction(Merger &merger, CodeGen &codegen,
                            OpBuilder &builder, linalg::GenericOp op,
                            Operation *loop) {
  Location loc = op.getLoc();
  unsigned o = 0;
  SmallVector<Value, 4> operands;
  if (codegen.redVal) {
    operands.push_back(codegen.redVal);
    updateReduc(merger, codegen, loop->getResult(o++));
  }
  if (codegen.expValues) {
    operands.push_back(codegen.expCount);
    codegen.expCount = loop->getResult(o++);
  }
  assert(o == operands.size());
  if (o > 0)
    builder.create<scf::YieldOp>(loc, operands);
  builder.setInsertionPointAfter(loop);
}

/// Generates a single if-statement within a while-loop.
static scf::IfOp genIf(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                       linalg::GenericOp op, unsigned idx,
                       BitVector &conditions) {
  Location loc = op.getLoc();
  SmallVector<Type, 4> types;
  Value cond;
  for (unsigned b = 0, be = conditions.size(); b < be; b++) {
    if (conditions[b]) {
      unsigned tensor = merger.tensor(b);
      assert(idx == merger.index(b));
      Value clause;
      if (merger.isDim(b, Dim::kSparse)) {
        Value op1 = codegen.idxs[tensor][idx];
        Value op2 = codegen.loops[idx];
        clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
                                               op1, op2);
      } else {
        clause = constantI1(builder, loc, true);
      }
      cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
    }
  }
  if (codegen.redVal)
    types.push_back(codegen.redVal.getType());
  if (codegen.expValues)
    types.push_back(builder.getIndexType());
  scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
  builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
  return ifOp;
}

/// Generates end of true branch of if-statement within a while-loop.
static void endIf(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                  linalg::GenericOp op, scf::IfOp ifOp, Operation *loop,
                  Value redInput, Value cntInput) {
  SmallVector<Value, 4> operands;
  if (codegen.redVal) {
    operands.push_back(codegen.redVal);
    updateReduc(merger, codegen, redInput);
  }
  if (codegen.expValues) {
    operands.push_back(codegen.expCount);
    codegen.expCount = cntInput;
  }
  if (!operands.empty())
    builder.create<scf::YieldOp>(op.getLoc(), operands);
  builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
}

//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (loop sequence).
//===----------------------------------------------------------------------===//

/// Starts a loop sequence at given level. Returns true if
/// the universal loop index must be maintained at this level.
static bool startLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                         linalg::GenericOp op, std::vector<unsigned> &topSort,
                         unsigned exp, unsigned at, unsigned idx, unsigned ldx,
                         unsigned lts) {
  assert(codegen.curVecLength == 1);
  assert(!codegen.loops[idx]);
  // Emit invariants at this loop sequence level.
  genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/true);
  // Emit access pattern expansion for sparse tensor output.
  genExpansion(merger, codegen, builder, op, at, /*atStart=*/true);
  // Emit further intitialization at this loop sequence level.
  unsigned l0 = merger.set(lts)[0];
  bool needsUniv =
      genInit(merger, codegen, builder, op, topSort, at, merger.lat(l0).bits);
  // Maintain the universal index only if it is actually
  // consumed by a subsequent lattice point.
  if (needsUniv) {
    unsigned lsize = merger.set(lts).size();
    for (unsigned i = 1; i < lsize; i++) {
      unsigned li = merger.set(lts)[i];
      if (!merger.hasAnyDimOf(merger.lat(li).simple, Dim::kSparse))
        return true;
    }
  }
  return false;
}

/// Starts a single loop in current sequence.
static Operation *startLoop(Merger &merger, CodeGen &codegen,
                            OpBuilder &builder, linalg::GenericOp op,
                            std::vector<unsigned> &topSort, unsigned at,
                            unsigned li, bool needsUniv) {
  assert(codegen.curVecLength == 1);
  // Emit the for/while-loop control.
  Operation *loop = genLoop(merger, codegen, builder, op, topSort, at,
                            needsUniv, merger.lat(li).simple);
  // Emit the locals for this loop.
  genLocals(merger, codegen, builder, op, topSort, at, needsUniv,
            merger.lat(li).bits);
  return loop;
}

/// Ends a single loop in current sequence. Returns new values for needsUniv.
static bool endLoop(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                    linalg::GenericOp op, Operation *loop, unsigned idx,
                    unsigned li, bool needsUniv) {
  codegen.curVecLength = 1;
  // End a while-loop.
  if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
    genWhileInduction(merger, codegen, builder, op, idx, needsUniv,
                      merger.lat(li).bits, whileOp);
    return needsUniv;
  }
  // End a for-loop.
  genForInduction(merger, codegen, builder, op, loop);
  return false;
}

/// Ends a loop sequence at given level.
static void endLoopSeq(Merger &merger, CodeGen &codegen, OpBuilder &builder,
                       linalg::GenericOp op, unsigned exp, unsigned at,
                       unsigned idx, unsigned ldx) {
  assert(codegen.curVecLength == 1);
  codegen.loops[idx] = Value();
  // Bring a pending reduction back from SIMD form when sequence ends.
  if (codegen.redVal)
    if (auto vtp = codegen.redVal.getType().dyn_cast<VectorType>())
      updateReduc(merger, codegen,
                  genVectorReducEnd(codegen, builder, op.getLoc(), vtp));
  // Unmark bookkeeping of invariants and loop index.
  genInvariants(merger, codegen, builder, op, exp, ldx, /*atStart=*/false);
  // Finalize access pattern expansion for sparse tensor output.
  genExpansion(merger, codegen, builder, op, at, /*atStart=*/false);
}

/// Recursively generates code while computing iteration lattices in order
/// to manage the complexity of implementing co-iteration over unions
/// and intersections of sparse iterations spaces.
static void genStmt(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
                    linalg::GenericOp op, std::vector<unsigned> &topSort,
                    unsigned exp, unsigned at) {
  // At each leaf, assign remaining tensor (sub)expression to output tensor.
  if (at == topSort.size()) {
    unsigned ldx = topSort[at - 1];
    Value rhs = genExp(merger, codegen, rewriter, op, exp, ldx);
    genTensorStore(merger, codegen, rewriter, op, exp, rhs);
    return;
  }

  // Construct iteration lattices for current loop index, with L0 at top.
  unsigned idx = topSort[at];
  unsigned ldx = at == 0 ? -1u : topSort[at - 1];
  unsigned lts = merger.optimizeSet(merger.buildLattices(exp, idx));

  // Start a loop sequence.
  bool needsUniv = startLoopSeq(merger, codegen, rewriter, op, topSort, exp, at,
                                idx, ldx, lts);

  // Emit a loop for every lattice point L0 >= Li in this loop sequence.
  unsigned lsize = merger.set(lts).size();
  for (unsigned i = 0; i < lsize; i++) {
    // Start a loop.
    unsigned li = merger.set(lts)[i];
    Operation *loop =
        startLoop(merger, codegen, rewriter, op, topSort, at, li, needsUniv);

    // Visit all lattices points with Li >= Lj to generate the
    // loop-body, possibly with if statements for coiteration.
    Value redInput = codegen.redVal;
    Value cntInput = codegen.expCount;
    bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
    for (unsigned j = 0; j < lsize; j++) {
      unsigned lj = merger.set(lts)[j];
      unsigned ej = merger.lat(lj).exp;
      if (li == lj || merger.latGT(li, lj)) {
        // Recurse into body of each branch.
        if (isWhile) {
          scf::IfOp ifOp =
              genIf(merger, codegen, rewriter, op, idx, merger.lat(lj).simple);
          genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
          endIf(merger, codegen, rewriter, op, ifOp, loop, redInput, cntInput);
        } else {
          genStmt(merger, codegen, rewriter, op, topSort, ej, at + 1);
        }
      }
    }

    // End a loop.
    needsUniv =
        endLoop(merger, codegen, rewriter, op, loop, idx, li, needsUniv);
  }

  // End a loop sequence.
  endLoopSeq(merger, codegen, rewriter, op, exp, at, idx, ldx);
}

/// Converts the result computed by the sparse kernel into the required form.
static void genResult(Merger &merger, CodeGen &codegen, RewriterBase &rewriter,
                      linalg::GenericOp op) {
  OpOperand *lhs = op.getOutputOperand(0);
  Type resType = lhs->get().getType();
  if (getSparseTensorEncoding(resType)) {
    // The sparse tensor rematerializes from the original sparse tensor's
    // underlying sparse storage format.
    rewriter.replaceOpWithNewOp<LoadOp>(op, resType, lhs->get(),
                                        codegen.sparseOut == lhs);
  } else {
    // To rematerialize an non-annotated tensor, simply load it
    // from the bufferized value.
    Value val = codegen.buffers.back(); // value array
    rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
  }
}

//===----------------------------------------------------------------------===//
// Sparse compiler rewriting methods.
//===----------------------------------------------------------------------===//

namespace {

/// Sparse rewriting rule for generic Lingalg operation.
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
public:
  GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
      : OpRewritePattern<linalg::GenericOp>(context), options(o) {}

  LogicalResult matchAndRewrite(linalg::GenericOp op,
                                PatternRewriter &rewriter) const override {
    // Detects sparse annotations and translate the per-dimension sparsity
    // information for all tensors to loop indices in the kernel.
    assert(op.getNumOutputs() == 1);
    unsigned numTensors = op.getNumInputsAndOutputs();
    unsigned numLoops = op.iterator_types().getValue().size();
    Merger merger(numTensors, numLoops);
    if (!findSparseAnnotations(merger, op))
      return failure();

    // Computes a topologically sorted iteration graph to ensure tensors
    // are visited in natural index order. Gradually relaxes the considered
    // constraints until an acyclic iteration graph results, such that sparse
    // code generation can proceed. As a last resort, an attempt is made
    // to resolve cycles by inserting a conversion.
    std::vector<unsigned> topSort;
    if (!computeIterationGraph(merger, op, topSort, SortMask::kIncludeAll) &&
        !computeIterationGraph(merger, op, topSort, SortMask::kIncludeUndef) &&
        !computeIterationGraph(merger, op, topSort, SortMask::kIncludeDense) &&
        !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly)) {
      return resolveCycle(merger, rewriter, op);
    }

    // Builds the tensor expression for the Linalg operation in SSA form.
    Optional<unsigned> optExp = merger.buildTensorExpFromLinalg(op);
    if (!optExp.has_value())
      return failure();
    unsigned exp = optExp.value();

    // Rejects an inadmissable tensor expression.
    OpOperand *sparseOut = nullptr;
    unsigned outerParNest = 0;
    if (!isAdmissableTensorExp(merger, op, topSort, exp, &sparseOut,
                               outerParNest))
      return failure();

    // Recursively generates code.
    merger.setHasSparseOut(sparseOut != nullptr);
    CodeGen codegen(options, numTensors, numLoops, sparseOut, outerParNest);
    genBuffers(merger, codegen, rewriter, op);
    genStmt(merger, codegen, rewriter, op, topSort, exp, 0);
    genResult(merger, codegen, rewriter, op);
    return success();
  }

private:
  // Last resort cycle resolution.
  LogicalResult resolveCycle(Merger &merger, PatternRewriter &rewriter,
                             linalg::GenericOp op) const {
    // Compute topological sort while leaving out every
    // sparse input tensor in succession until an acylic
    // iteration graph results.
    std::vector<unsigned> topSort;
    for (OpOperand *t : op.getInputOperands()) {
      unsigned tensor = t->getOperandNumber();
      Value tval = t->get();
      auto srcEnc = getSparseTensorEncoding(tval.getType());
      if (!srcEnc ||
          !computeIterationGraph(merger, op, topSort, SortMask::kSparseOnly, t))
        continue;
      // Found an input tensor that resolves the cycle by inserting a
      // conversion into a sparse tensor that adheres to the iteration
      // graph order. Also releases the temporary sparse tensor.
      //
      // TODO: investigate fusing the conversion with computation,
      //       especially if it is a direct yield!
      //
      auto srcTp = tval.getType().cast<RankedTensorType>();
      auto dstEnc = SparseTensorEncodingAttr::get(
          op->getContext(), srcEnc.getDimLevelType(),
          permute(getContext(), op.getTiedIndexingMap(t), topSort), // new order
          srcEnc.getPointerBitWidth(), srcEnc.getIndexBitWidth());
      auto dstTp = RankedTensorType::get(srcTp.getShape(),
                                         srcTp.getElementType(), dstEnc);
      auto convert = rewriter.create<ConvertOp>(tval.getLoc(), dstTp, tval);
      op->setOperand(tensor, convert);
      rewriter.setInsertionPointAfter(op);
      rewriter.create<bufferization::DeallocTensorOp>(tval.getLoc(), convert);
      return success();
    }
    // Cannot be resolved with a single conversion.
    // TODO: convert more than one?
    return failure();
  }

  /// Options to control sparse code generation.
  SparsificationOptions options;
};

} // namespace

/// Populates the given patterns list with rewriting rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparsificationPatterns(
    RewritePatternSet &patterns, const SparsificationOptions &options) {
  patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
}