/* Header file for range operator class. Copyright (C) 2017-2023 Free Software Foundation, Inc. Contributed by Andrew MacLeod and Aldy Hernandez . This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_RANGE_OP_H #define GCC_RANGE_OP_H // This class is implemented for each kind of operator supported by // the range generator. It serves various purposes. // // 1 - Generates range information for the specific operation between // two ranges. This provides the ability to fold ranges for an // expression. // // 2 - Performs range algebra on the expression such that a range can be // adjusted in terms of one of the operands: // // def = op1 + op2 // // Given a range for def, we can adjust the range so that it is in // terms of either operand. // // op1_range (def_range, op2) will adjust the range in place so it // is in terms of op1. Since op1 = def - op2, it will subtract // op2 from each element of the range. // // 3 - Creates a range for an operand based on whether the result is 0 or // non-zero. This is mostly for logical true false, but can serve other // purposes. // ie 0 = op1 - op2 implies op2 has the same range as op1. class range_operator { friend class range_op_table; public: range_operator () : m_code (ERROR_MARK) { } // Perform an operation between 2 ranges and return it. virtual bool fold_range (irange &r, tree type, const irange &lh, const irange &rh, relation_trio = TRIO_VARYING) const; // Return the range for op[12] in the general case. LHS is the range for // the LHS of the expression, OP[12]is the range for the other // // The operand and the result is returned in R. // // TYPE is the expected type of the range. // // Return TRUE if the operation is performed and a valid range is available. // // i.e. [LHS] = ??? + OP2 // is re-formed as R = [LHS] - OP2. virtual bool op1_range (irange &r, tree type, const irange &lhs, const irange &op2, relation_trio = TRIO_VARYING) const; virtual bool op2_range (irange &r, tree type, const irange &lhs, const irange &op1, relation_trio = TRIO_VARYING) const; // The following routines are used to represent relations between the // various operations. If the caller knows where the symbolics are, // it can query for relationships between them given known ranges. // the optional relation passed in is the relation between op1 and op2. virtual relation_kind lhs_op1_relation (const irange &lhs, const irange &op1, const irange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind lhs_op2_relation (const irange &lhs, const irange &op1, const irange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind op1_op2_relation (const irange &lhs) const; protected: // Perform an integral operation between 2 sub-ranges and return it. virtual void wi_fold (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const; // Effect of relation for generic fold_range clients. virtual bool op1_op2_relation_effect (irange &lhs_range, tree type, const irange &op1_range, const irange &op2_range, relation_kind rel) const; // Called by fold range to split small subranges into parts. void wi_fold_in_parts (irange &r, tree type, const wide_int &lh_lb, const wide_int &lh_ub, const wide_int &rh_lb, const wide_int &rh_ub) const; // Called by fold range to split small subranges into parts when op1 == op2 void wi_fold_in_parts_equiv (irange &r, tree type, const wide_int &lb, const wide_int &ub, unsigned limit) const; // Tree code of the range operator or ERROR_MARK if unknown. tree_code m_code; }; // Like range_operator above, but for floating point operators. class range_operator_float { public: virtual bool fold_range (frange &r, tree type, const frange &lh, const frange &rh, relation_trio = TRIO_VARYING) const; virtual void rv_fold (REAL_VALUE_TYPE &lb, REAL_VALUE_TYPE &ub, bool &maybe_nan, tree type, const REAL_VALUE_TYPE &lh_lb, const REAL_VALUE_TYPE &lh_ub, const REAL_VALUE_TYPE &rh_lb, const REAL_VALUE_TYPE &rh_ub, relation_kind) const; // Unary operations have the range of the LHS as op2. virtual bool fold_range (irange &r, tree type, const frange &lh, const irange &rh, relation_trio = TRIO_VARYING) const; virtual bool fold_range (irange &r, tree type, const frange &lh, const frange &rh, relation_trio = TRIO_VARYING) const; virtual bool op1_range (frange &r, tree type, const frange &lhs, const frange &op2, relation_trio = TRIO_VARYING) const; virtual bool op1_range (frange &r, tree type, const irange &lhs, const frange &op2, relation_trio = TRIO_VARYING) const; virtual bool op2_range (frange &r, tree type, const frange &lhs, const frange &op1, relation_trio = TRIO_VARYING) const; virtual bool op2_range (frange &r, tree type, const irange &lhs, const frange &op1, relation_trio = TRIO_VARYING) const; virtual relation_kind lhs_op1_relation (const frange &lhs, const frange &op1, const frange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind lhs_op1_relation (const irange &lhs, const frange &op1, const frange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind lhs_op2_relation (const frange &lhs, const frange &op1, const frange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind lhs_op2_relation (const irange &lhs, const frange &op1, const frange &op2, relation_kind = VREL_VARYING) const; virtual relation_kind op1_op2_relation (const irange &lhs) const; virtual relation_kind op1_op2_relation (const frange &lhs) const; }; class range_op_handler { public: range_op_handler (); range_op_handler (enum tree_code code, tree type); inline operator bool () const { return m_valid; } bool fold_range (vrange &r, tree type, const vrange &lh, const vrange &rh, relation_trio = TRIO_VARYING) const; bool op1_range (vrange &r, tree type, const vrange &lhs, const vrange &op2, relation_trio = TRIO_VARYING) const; bool op2_range (vrange &r, tree type, const vrange &lhs, const vrange &op1, relation_trio = TRIO_VARYING) const; relation_kind lhs_op1_relation (const vrange &lhs, const vrange &op1, const vrange &op2, relation_kind = VREL_VARYING) const; relation_kind lhs_op2_relation (const vrange &lhs, const vrange &op1, const vrange &op2, relation_kind = VREL_VARYING) const; relation_kind op1_op2_relation (const vrange &lhs) const; protected: void set_op_handler (enum tree_code code, tree type); bool m_valid; range_operator *m_int; range_operator_float *m_float; }; extern bool range_cast (vrange &, tree type); extern void wi_set_zero_nonzero_bits (tree type, const wide_int &, const wide_int &, wide_int &maybe_nonzero, wide_int &mustbe_nonzero); // op1_op2_relation methods that are the same across irange and frange. relation_kind equal_op1_op2_relation (const irange &lhs); relation_kind not_equal_op1_op2_relation (const irange &lhs); relation_kind lt_op1_op2_relation (const irange &lhs); relation_kind le_op1_op2_relation (const irange &lhs); relation_kind gt_op1_op2_relation (const irange &lhs); relation_kind ge_op1_op2_relation (const irange &lhs); enum bool_range_state { BRS_FALSE, BRS_TRUE, BRS_EMPTY, BRS_FULL }; bool_range_state get_bool_state (vrange &r, const vrange &lhs, tree val_type); // If the range of either op1 or op2 is undefined, set the result to // varying and return TRUE. If the caller truly cares about a result, // they should pass in a varying if it has an undefined that it wants // treated as a varying. inline bool empty_range_varying (vrange &r, tree type, const vrange &op1, const vrange & op2) { if (op1.undefined_p () || op2.undefined_p ()) { r.set_varying (type); return true; } else return false; } // For relation opcodes, first try to see if the supplied relation // forces a true or false result, and return that. // Then check for undefined operands. If none of this applies, // return false. inline bool relop_early_resolve (irange &r, tree type, const vrange &op1, const vrange &op2, relation_trio trio, relation_kind my_rel) { relation_kind rel = trio.op1_op2 (); // If known relation is a complete subset of this relation, always true. if (relation_union (rel, my_rel) == my_rel) { r = range_true (type); return true; } // If known relation has no subset of this relation, always false. if (relation_intersect (rel, my_rel) == VREL_UNDEFINED) { r = range_false (type); return true; } // If either operand is undefined, return VARYING. if (empty_range_varying (r, type, op1, op2)) return true; return false; } // This implements the range operator tables as local objects. class range_op_table { public: range_operator *operator[] (enum tree_code code); protected: void set (enum tree_code code, range_operator &op); private: range_operator *m_range_tree[MAX_TREE_CODES]; }; // Like above, but for floating point operators. class floating_op_table { public: floating_op_table (); range_operator_float *operator[] (enum tree_code code); private: void set (enum tree_code code, range_operator_float &op); range_operator_float *m_range_tree[MAX_TREE_CODES]; }; // This holds the range op table for floating point operations. extern floating_op_table *floating_tree_table; extern range_operator *ptr_op_widen_mult_signed; extern range_operator *ptr_op_widen_mult_unsigned; extern range_operator *ptr_op_widen_plus_signed; extern range_operator *ptr_op_widen_plus_unsigned; #endif // GCC_RANGE_OP_H