//===- PDB.cpp ------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "PDB.h" #include "Chunks.h" #include "Config.h" #include "DebugTypes.h" #include "Driver.h" #include "SymbolTable.h" #include "Symbols.h" #include "TypeMerger.h" #include "Writer.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Timer.h" #include "lld/Common/Threads.h" #include "llvm/DebugInfo/CodeView/DebugFrameDataSubsection.h" #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h" #include "llvm/DebugInfo/CodeView/GlobalTypeTableBuilder.h" #include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h" #include "llvm/DebugInfo/CodeView/MergingTypeTableBuilder.h" #include "llvm/DebugInfo/CodeView/RecordName.h" #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h" #include "llvm/DebugInfo/CodeView/SymbolRecordHelpers.h" #include "llvm/DebugInfo/CodeView/SymbolSerializer.h" #include "llvm/DebugInfo/CodeView/TypeDeserializer.h" #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" #include "llvm/DebugInfo/CodeView/TypeIndexDiscovery.h" #include "llvm/DebugInfo/CodeView/TypeStreamMerger.h" #include "llvm/DebugInfo/MSF/MSFBuilder.h" #include "llvm/DebugInfo/MSF/MSFCommon.h" #include "llvm/DebugInfo/PDB/GenericError.h" #include "llvm/DebugInfo/PDB/Native/DbiModuleDescriptorBuilder.h" #include "llvm/DebugInfo/PDB/Native/DbiStream.h" #include "llvm/DebugInfo/PDB/Native/DbiStreamBuilder.h" #include "llvm/DebugInfo/PDB/Native/GSIStreamBuilder.h" #include "llvm/DebugInfo/PDB/Native/InfoStream.h" #include "llvm/DebugInfo/PDB/Native/InfoStreamBuilder.h" #include "llvm/DebugInfo/PDB/Native/NativeSession.h" #include "llvm/DebugInfo/PDB/Native/PDBFile.h" #include "llvm/DebugInfo/PDB/Native/PDBFileBuilder.h" #include "llvm/DebugInfo/PDB/Native/PDBStringTableBuilder.h" #include "llvm/DebugInfo/PDB/Native/TpiHashing.h" #include "llvm/DebugInfo/PDB/Native/TpiStream.h" #include "llvm/DebugInfo/PDB/Native/TpiStreamBuilder.h" #include "llvm/DebugInfo/PDB/PDB.h" #include "llvm/Object/COFF.h" #include "llvm/Object/CVDebugRecord.h" #include "llvm/Support/BinaryByteStream.h" #include "llvm/Support/CRC.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Errc.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/Path.h" #include "llvm/Support/ScopedPrinter.h" #include using namespace llvm; using namespace llvm::codeview; using llvm::object::coff_section; namespace lld { namespace coff { static ExitOnError exitOnErr; static Timer totalPdbLinkTimer("PDB Emission (Cumulative)", Timer::root()); static Timer addObjectsTimer("Add Objects", totalPdbLinkTimer); static Timer typeMergingTimer("Type Merging", addObjectsTimer); static Timer symbolMergingTimer("Symbol Merging", addObjectsTimer); static Timer globalsLayoutTimer("Globals Stream Layout", totalPdbLinkTimer); static Timer tpiStreamLayoutTimer("TPI Stream Layout", totalPdbLinkTimer); static Timer diskCommitTimer("Commit to Disk", totalPdbLinkTimer); namespace { class DebugSHandler; class PDBLinker { friend DebugSHandler; public: PDBLinker(SymbolTable *symtab) : alloc(), symtab(symtab), builder(alloc), tMerger(alloc) { // This isn't strictly necessary, but link.exe usually puts an empty string // as the first "valid" string in the string table, so we do the same in // order to maintain as much byte-for-byte compatibility as possible. pdbStrTab.insert(""); } /// Emit the basic PDB structure: initial streams, headers, etc. void initialize(llvm::codeview::DebugInfo *buildId); /// Add natvis files specified on the command line. void addNatvisFiles(); /// Link CodeView from each object file in the symbol table into the PDB. void addObjectsToPDB(); /// Link info for each import file in the symbol table into the PDB. void addImportFilesToPDB(ArrayRef outputSections); /// Link CodeView from a single object file into the target (output) PDB. /// When a precompiled headers object is linked, its TPI map might be provided /// externally. void addObjFile(ObjFile *file, CVIndexMap *externIndexMap = nullptr); /// Produce a mapping from the type and item indices used in the object /// file to those in the destination PDB. /// /// If the object file uses a type server PDB (compiled with /Zi), merge TPI /// and IPI from the type server PDB and return a map for it. Each unique type /// server PDB is merged at most once, so this may return an existing index /// mapping. /// /// If the object does not use a type server PDB (compiled with /Z7), we merge /// all the type and item records from the .debug$S stream and fill in the /// caller-provided objectIndexMap. Expected mergeDebugT(ObjFile *file, CVIndexMap *objectIndexMap); /// Reads and makes available a PDB. Expected maybeMergeTypeServerPDB(ObjFile *file); /// Merges a precompiled headers TPI map into the current TPI map. The /// precompiled headers object will also be loaded and remapped in the /// process. Error mergeInPrecompHeaderObj(ObjFile *file, CVIndexMap *objectIndexMap); /// Reads and makes available a precompiled headers object. /// /// This is a requirement for objects compiled with cl.exe /Yu. In that /// case, the referenced object (which was compiled with /Yc) has to be loaded /// first. This is mainly because the current object's TPI stream has external /// references to the precompiled headers object. /// /// If the precompiled headers object was already loaded, this function will /// simply return its (remapped) TPI map. Expected aquirePrecompObj(ObjFile *file); /// Adds a precompiled headers object signature -> TPI mapping. std::pair registerPrecompiledHeaders(uint32_t signature); void mergeSymbolRecords(ObjFile *file, const CVIndexMap &indexMap, std::vector &stringTableRefs, BinaryStreamRef symData); /// Add the section map and section contributions to the PDB. void addSections(ArrayRef outputSections, ArrayRef sectionTable); /// Write the PDB to disk and store the Guid generated for it in *Guid. void commit(codeview::GUID *guid); // Print statistics regarding the final PDB void printStats(); private: BumpPtrAllocator alloc; SymbolTable *symtab; pdb::PDBFileBuilder builder; TypeMerger tMerger; /// PDBs use a single global string table for filenames in the file checksum /// table. DebugStringTableSubsection pdbStrTab; llvm::SmallString<128> nativePath; std::vector sectionMap; /// Type index mappings of type server PDBs that we've loaded so far. std::map typeServerIndexMappings; /// Type index mappings of precompiled objects type map that we've loaded so /// far. std::map precompTypeIndexMappings; // For statistics uint64_t globalSymbols = 0; uint64_t moduleSymbols = 0; uint64_t publicSymbols = 0; }; class DebugSHandler { PDBLinker &linker; /// The object file whose .debug$S sections we're processing. ObjFile &file; /// The result of merging type indices. const CVIndexMap &indexMap; /// The DEBUG_S_STRINGTABLE subsection. These strings are referred to by /// index from other records in the .debug$S section. All of these strings /// need to be added to the global PDB string table, and all references to /// these strings need to have their indices re-written to refer to the /// global PDB string table. DebugStringTableSubsectionRef cVStrTab; /// The DEBUG_S_FILECHKSMS subsection. As above, these are referred to /// by other records in the .debug$S section and need to be merged into the /// PDB. DebugChecksumsSubsectionRef checksums; /// The DEBUG_S_INLINEELINES subsection. There can be only one of these per /// object file. DebugInlineeLinesSubsectionRef inlineeLines; /// The DEBUG_S_FRAMEDATA subsection(s). There can be more than one of /// these and they need not appear in any specific order. However, they /// contain string table references which need to be re-written, so we /// collect them all here and re-write them after all subsections have been /// discovered and processed. std::vector newFpoFrames; /// Pointers to raw memory that we determine have string table references /// that need to be re-written. We first process all .debug$S subsections /// to ensure that we can handle subsections written in any order, building /// up this list as we go. At the end, we use the string table (which must /// have been discovered by now else it is an error) to re-write these /// references. std::vector stringTableReferences; public: DebugSHandler(PDBLinker &linker, ObjFile &file, const CVIndexMap &indexMap) : linker(linker), file(file), indexMap(indexMap) {} void handleDebugS(lld::coff::SectionChunk &debugS); std::shared_ptr mergeInlineeLines(DebugChecksumsSubsection *newChecksums); void finish(); }; } // Visual Studio's debugger requires absolute paths in various places in the // PDB to work without additional configuration: // https://docs.microsoft.com/en-us/visualstudio/debugger/debug-source-files-common-properties-solution-property-pages-dialog-box static void pdbMakeAbsolute(SmallVectorImpl &fileName) { // The default behavior is to produce paths that are valid within the context // of the machine that you perform the link on. If the linker is running on // a POSIX system, we will output absolute POSIX paths. If the linker is // running on a Windows system, we will output absolute Windows paths. If the // user desires any other kind of behavior, they should explicitly pass // /pdbsourcepath, in which case we will treat the exact string the user // passed in as the gospel and not normalize, canonicalize it. if (sys::path::is_absolute(fileName, sys::path::Style::windows) || sys::path::is_absolute(fileName, sys::path::Style::posix)) return; // It's not absolute in any path syntax. Relative paths necessarily refer to // the local file system, so we can make it native without ending up with a // nonsensical path. if (config->pdbSourcePath.empty()) { sys::path::native(fileName); sys::fs::make_absolute(fileName); return; } // Try to guess whether /PDBSOURCEPATH is a unix path or a windows path. // Since PDB's are more of a Windows thing, we make this conservative and only // decide that it's a unix path if we're fairly certain. Specifically, if // it starts with a forward slash. SmallString<128> absoluteFileName = config->pdbSourcePath; sys::path::Style guessedStyle = absoluteFileName.startswith("/") ? sys::path::Style::posix : sys::path::Style::windows; sys::path::append(absoluteFileName, guessedStyle, fileName); sys::path::native(absoluteFileName, guessedStyle); sys::path::remove_dots(absoluteFileName, true, guessedStyle); fileName = std::move(absoluteFileName); } // A COFF .debug$H section is currently a clang extension. This function checks // if a .debug$H section is in a format that we expect / understand, so that we // can ignore any sections which are coincidentally also named .debug$H but do // not contain a format we recognize. static bool canUseDebugH(ArrayRef debugH) { if (debugH.size() < sizeof(object::debug_h_header)) return false; auto *header = reinterpret_cast(debugH.data()); debugH = debugH.drop_front(sizeof(object::debug_h_header)); return header->Magic == COFF::DEBUG_HASHES_SECTION_MAGIC && header->Version == 0 && header->HashAlgorithm == uint16_t(GlobalTypeHashAlg::SHA1_8) && (debugH.size() % 8 == 0); } static Optional> getDebugH(ObjFile *file) { SectionChunk *sec = SectionChunk::findByName(file->getDebugChunks(), ".debug$H"); if (!sec) return llvm::None; ArrayRef contents = sec->getContents(); if (!canUseDebugH(contents)) return None; return contents; } static ArrayRef getHashesFromDebugH(ArrayRef debugH) { assert(canUseDebugH(debugH)); debugH = debugH.drop_front(sizeof(object::debug_h_header)); uint32_t count = debugH.size() / sizeof(GloballyHashedType); return {reinterpret_cast(debugH.data()), count}; } static void addTypeInfo(pdb::TpiStreamBuilder &tpiBuilder, TypeCollection &typeTable) { // Start the TPI or IPI stream header. tpiBuilder.setVersionHeader(pdb::PdbTpiV80); // Flatten the in memory type table and hash each type. typeTable.ForEachRecord([&](TypeIndex ti, const CVType &type) { auto hash = pdb::hashTypeRecord(type); if (auto e = hash.takeError()) fatal("type hashing error"); tpiBuilder.addTypeRecord(type.RecordData, *hash); }); } Expected PDBLinker::mergeDebugT(ObjFile *file, CVIndexMap *objectIndexMap) { ScopedTimer t(typeMergingTimer); if (!file->debugTypesObj) return *objectIndexMap; // no Types stream // Precompiled headers objects need to save the index map for further // reference by other objects which use the precompiled headers. if (file->debugTypesObj->kind == TpiSource::PCH) { uint32_t pchSignature = file->pchSignature.getValueOr(0); if (pchSignature == 0) fatal("No signature found for the precompiled headers OBJ (" + file->getName() + ")"); // When a precompiled headers object comes first on the command-line, we // update the mapping here. Otherwise, if an object referencing the // precompiled headers object comes first, the mapping is created in // aquirePrecompObj(), thus we would skip this block. if (!objectIndexMap->isPrecompiledTypeMap) { auto r = registerPrecompiledHeaders(pchSignature); if (r.second) fatal( "A precompiled headers OBJ with the same signature was already " "provided! (" + file->getName() + ")"); objectIndexMap = &r.first; } } if (file->debugTypesObj->kind == TpiSource::UsingPDB) { // Look through type servers. If we've already seen this type server, // don't merge any type information. return maybeMergeTypeServerPDB(file); } CVTypeArray &types = *file->debugTypes; if (file->debugTypesObj->kind == TpiSource::UsingPCH) { // This object was compiled with /Yu, so process the corresponding // precompiled headers object (/Yc) first. Some type indices in the current // object are referencing data in the precompiled headers object, so we need // both to be loaded. Error e = mergeInPrecompHeaderObj(file, objectIndexMap); if (e) return std::move(e); // Drop LF_PRECOMP record from the input stream, as it has been replaced // with the precompiled headers Type stream in the mergeInPrecompHeaderObj() // call above. Note that we can't just call Types.drop_front(), as we // explicitly want to rebase the stream. CVTypeArray::Iterator firstType = types.begin(); types.setUnderlyingStream( types.getUnderlyingStream().drop_front(firstType->RecordData.size())); } // Fill in the temporary, caller-provided ObjectIndexMap. if (config->debugGHashes) { ArrayRef hashes; std::vector ownedHashes; if (Optional> debugH = getDebugH(file)) hashes = getHashesFromDebugH(*debugH); else { ownedHashes = GloballyHashedType::hashTypes(types); hashes = ownedHashes; } if (auto err = mergeTypeAndIdRecords( tMerger.globalIDTable, tMerger.globalTypeTable, objectIndexMap->tpiMap, types, hashes, file->pchSignature)) fatal("codeview::mergeTypeAndIdRecords failed: " + toString(std::move(err))); } else { if (auto err = mergeTypeAndIdRecords(tMerger.iDTable, tMerger.typeTable, objectIndexMap->tpiMap, types, file->pchSignature)) fatal("codeview::mergeTypeAndIdRecords failed: " + toString(std::move(err))); } return *objectIndexMap; } Expected PDBLinker::maybeMergeTypeServerPDB(ObjFile *file) { Expected pdbSession = findTypeServerSource(file); if (!pdbSession) return pdbSession.takeError(); pdb::PDBFile &pdbFile = pdbSession.get()->getPDBFile(); pdb::InfoStream &info = cantFail(pdbFile.getPDBInfoStream()); auto it = typeServerIndexMappings.emplace(info.getGuid(), CVIndexMap()); CVIndexMap &indexMap = it.first->second; if (!it.second) return indexMap; // already merged // Mark this map as a type server map. indexMap.isTypeServerMap = true; Expected expectedTpi = pdbFile.getPDBTpiStream(); if (auto e = expectedTpi.takeError()) fatal("Type server does not have TPI stream: " + toString(std::move(e))); pdb::TpiStream *maybeIpi = nullptr; if (pdbFile.hasPDBIpiStream()) { Expected expectedIpi = pdbFile.getPDBIpiStream(); if (auto e = expectedIpi.takeError()) fatal("Error getting type server IPI stream: " + toString(std::move(e))); maybeIpi = &*expectedIpi; } if (config->debugGHashes) { // PDBs do not actually store global hashes, so when merging a type server // PDB we have to synthesize global hashes. To do this, we first synthesize // global hashes for the TPI stream, since it is independent, then we // synthesize hashes for the IPI stream, using the hashes for the TPI stream // as inputs. auto tpiHashes = GloballyHashedType::hashTypes(expectedTpi->typeArray()); Optional endPrecomp; // Merge TPI first, because the IPI stream will reference type indices. if (auto err = mergeTypeRecords(tMerger.globalTypeTable, indexMap.tpiMap, expectedTpi->typeArray(), tpiHashes, endPrecomp)) fatal("codeview::mergeTypeRecords failed: " + toString(std::move(err))); // Merge IPI. if (maybeIpi) { auto ipiHashes = GloballyHashedType::hashIds(maybeIpi->typeArray(), tpiHashes); if (auto err = mergeIdRecords(tMerger.globalIDTable, indexMap.tpiMap, indexMap.ipiMap, maybeIpi->typeArray(), ipiHashes)) fatal("codeview::mergeIdRecords failed: " + toString(std::move(err))); } } else { // Merge TPI first, because the IPI stream will reference type indices. if (auto err = mergeTypeRecords(tMerger.typeTable, indexMap.tpiMap, expectedTpi->typeArray())) fatal("codeview::mergeTypeRecords failed: " + toString(std::move(err))); // Merge IPI. if (maybeIpi) { if (auto err = mergeIdRecords(tMerger.iDTable, indexMap.tpiMap, indexMap.ipiMap, maybeIpi->typeArray())) fatal("codeview::mergeIdRecords failed: " + toString(std::move(err))); } } return indexMap; } Error PDBLinker::mergeInPrecompHeaderObj(ObjFile *file, CVIndexMap *objectIndexMap) { const PrecompRecord &precomp = retrieveDependencyInfo(file->debugTypesObj); Expected e = aquirePrecompObj(file); if (!e) return e.takeError(); const CVIndexMap &precompIndexMap = *e; assert(precompIndexMap.isPrecompiledTypeMap); if (precompIndexMap.tpiMap.empty()) return Error::success(); assert(precomp.getStartTypeIndex() == TypeIndex::FirstNonSimpleIndex); assert(precomp.getTypesCount() <= precompIndexMap.tpiMap.size()); // Use the previously remapped index map from the precompiled headers. objectIndexMap->tpiMap.append(precompIndexMap.tpiMap.begin(), precompIndexMap.tpiMap.begin() + precomp.getTypesCount()); return Error::success(); } static bool equals_path(StringRef path1, StringRef path2) { #if defined(_WIN32) return path1.equals_lower(path2); #else return path1.equals(path2); #endif } // Find by name an OBJ provided on the command line static ObjFile *findObjByName(StringRef fileNameOnly) { SmallString<128> currentPath; for (ObjFile *f : ObjFile::instances) { StringRef currentFileName = sys::path::filename(f->getName()); // Compare based solely on the file name (link.exe behavior) if (equals_path(currentFileName, fileNameOnly)) return f; } return nullptr; } std::pair PDBLinker::registerPrecompiledHeaders(uint32_t signature) { auto insertion = precompTypeIndexMappings.insert({signature, CVIndexMap()}); CVIndexMap &indexMap = insertion.first->second; if (!insertion.second) return {indexMap, true}; // Mark this map as a precompiled types map. indexMap.isPrecompiledTypeMap = true; return {indexMap, false}; } Expected PDBLinker::aquirePrecompObj(ObjFile *file) { const PrecompRecord &precomp = retrieveDependencyInfo(file->debugTypesObj); // First, check if we already loaded the precompiled headers object with this // signature. Return the type index mapping if we've already seen it. auto r = registerPrecompiledHeaders(precomp.getSignature()); if (r.second) return r.first; CVIndexMap &indexMap = r.first; // Cross-compile warning: given that Clang doesn't generate LF_PRECOMP // records, we assume the OBJ comes from a Windows build of cl.exe. Thusly, // the paths embedded in the OBJs are in the Windows format. SmallString<128> precompFileName = sys::path::filename( precomp.getPrecompFilePath(), sys::path::Style::windows); // link.exe requires that a precompiled headers object must always be provided // on the command-line, even if that's not necessary. auto precompFile = findObjByName(precompFileName); if (!precompFile) return createFileError( precompFileName.str(), make_error(pdb::pdb_error_code::external_cmdline_ref)); addObjFile(precompFile, &indexMap); if (!precompFile->pchSignature) fatal(precompFile->getName() + " is not a precompiled headers object"); if (precomp.getSignature() != precompFile->pchSignature.getValueOr(0)) return createFileError( precomp.getPrecompFilePath().str(), make_error(pdb::pdb_error_code::signature_out_of_date)); return indexMap; } static bool remapTypeIndex(TypeIndex &ti, ArrayRef typeIndexMap) { if (ti.isSimple()) return true; if (ti.toArrayIndex() >= typeIndexMap.size()) return false; ti = typeIndexMap[ti.toArrayIndex()]; return true; } static void remapTypesInSymbolRecord(ObjFile *file, SymbolKind symKind, MutableArrayRef recordBytes, const CVIndexMap &indexMap, ArrayRef typeRefs) { MutableArrayRef contents = recordBytes.drop_front(sizeof(RecordPrefix)); for (const TiReference &ref : typeRefs) { unsigned byteSize = ref.Count * sizeof(TypeIndex); if (contents.size() < ref.Offset + byteSize) fatal("symbol record too short"); // This can be an item index or a type index. Choose the appropriate map. ArrayRef typeOrItemMap = indexMap.tpiMap; bool isItemIndex = ref.Kind == TiRefKind::IndexRef; if (isItemIndex && indexMap.isTypeServerMap) typeOrItemMap = indexMap.ipiMap; MutableArrayRef tIs( reinterpret_cast(contents.data() + ref.Offset), ref.Count); for (TypeIndex &ti : tIs) { if (!remapTypeIndex(ti, typeOrItemMap)) { log("ignoring symbol record of kind 0x" + utohexstr(symKind) + " in " + file->getName() + " with bad " + (isItemIndex ? "item" : "type") + " index 0x" + utohexstr(ti.getIndex())); ti = TypeIndex(SimpleTypeKind::NotTranslated); continue; } } } } static void recordStringTableReferenceAtOffset(MutableArrayRef contents, uint32_t offset, std::vector &strTableRefs) { contents = contents.drop_front(offset).take_front(sizeof(support::ulittle32_t)); ulittle32_t *index = reinterpret_cast(contents.data()); strTableRefs.push_back(index); } static void recordStringTableReferences(SymbolKind kind, MutableArrayRef contents, std::vector &strTableRefs) { // For now we only handle S_FILESTATIC, but we may need the same logic for // S_DEFRANGE and S_DEFRANGE_SUBFIELD. However, I cannot seem to generate any // PDBs that contain these types of records, so because of the uncertainty // they are omitted here until we can prove that it's necessary. switch (kind) { case SymbolKind::S_FILESTATIC: // FileStaticSym::ModFileOffset recordStringTableReferenceAtOffset(contents, 8, strTableRefs); break; case SymbolKind::S_DEFRANGE: case SymbolKind::S_DEFRANGE_SUBFIELD: log("Not fixing up string table reference in S_DEFRANGE / " "S_DEFRANGE_SUBFIELD record"); break; default: break; } } static SymbolKind symbolKind(ArrayRef recordData) { const RecordPrefix *prefix = reinterpret_cast(recordData.data()); return static_cast(uint16_t(prefix->RecordKind)); } /// MSVC translates S_PROC_ID_END to S_END, and S_[LG]PROC32_ID to S_[LG]PROC32 static void translateIdSymbols(MutableArrayRef &recordData, TypeCollection &iDTable) { RecordPrefix *prefix = reinterpret_cast(recordData.data()); SymbolKind kind = symbolKind(recordData); if (kind == SymbolKind::S_PROC_ID_END) { prefix->RecordKind = SymbolKind::S_END; return; } // In an object file, GPROC32_ID has an embedded reference which refers to the // single object file type index namespace. This has already been translated // to the PDB file's ID stream index space, but we need to convert this to a // symbol that refers to the type stream index space. So we remap again from // ID index space to type index space. if (kind == SymbolKind::S_GPROC32_ID || kind == SymbolKind::S_LPROC32_ID) { SmallVector refs; auto content = recordData.drop_front(sizeof(RecordPrefix)); CVSymbol sym(recordData); discoverTypeIndicesInSymbol(sym, refs); assert(refs.size() == 1); assert(refs.front().Count == 1); TypeIndex *ti = reinterpret_cast(content.data() + refs[0].Offset); // `ti` is the index of a FuncIdRecord or MemberFuncIdRecord which lives in // the IPI stream, whose `FunctionType` member refers to the TPI stream. // Note that LF_FUNC_ID and LF_MEMFUNC_ID have the same record layout, and // in both cases we just need the second type index. if (!ti->isSimple() && !ti->isNoneType()) { CVType funcIdData = iDTable.getType(*ti); SmallVector indices; discoverTypeIndices(funcIdData, indices); assert(indices.size() == 2); *ti = indices[1]; } kind = (kind == SymbolKind::S_GPROC32_ID) ? SymbolKind::S_GPROC32 : SymbolKind::S_LPROC32; prefix->RecordKind = uint16_t(kind); } } /// Copy the symbol record. In a PDB, symbol records must be 4 byte aligned. /// The object file may not be aligned. static MutableArrayRef copyAndAlignSymbol(const CVSymbol &sym, MutableArrayRef &alignedMem) { size_t size = alignTo(sym.length(), alignOf(CodeViewContainer::Pdb)); assert(size >= 4 && "record too short"); assert(size <= MaxRecordLength && "record too long"); assert(alignedMem.size() >= size && "didn't preallocate enough"); // Copy the symbol record and zero out any padding bytes. MutableArrayRef newData = alignedMem.take_front(size); alignedMem = alignedMem.drop_front(size); memcpy(newData.data(), sym.data().data(), sym.length()); memset(newData.data() + sym.length(), 0, size - sym.length()); // Update the record prefix length. It should point to the beginning of the // next record. auto *prefix = reinterpret_cast(newData.data()); prefix->RecordLen = size - 2; return newData; } struct ScopeRecord { ulittle32_t ptrParent; ulittle32_t ptrEnd; }; struct SymbolScope { ScopeRecord *openingRecord; uint32_t scopeOffset; }; static void scopeStackOpen(SmallVectorImpl &stack, uint32_t curOffset, CVSymbol &sym) { assert(symbolOpensScope(sym.kind())); SymbolScope s; s.scopeOffset = curOffset; s.openingRecord = const_cast( reinterpret_cast(sym.content().data())); s.openingRecord->ptrParent = stack.empty() ? 0 : stack.back().scopeOffset; stack.push_back(s); } static void scopeStackClose(SmallVectorImpl &stack, uint32_t curOffset, InputFile *file) { if (stack.empty()) { warn("symbol scopes are not balanced in " + file->getName()); return; } SymbolScope s = stack.pop_back_val(); s.openingRecord->ptrEnd = curOffset; } static bool symbolGoesInModuleStream(const CVSymbol &sym, bool isGlobalScope) { switch (sym.kind()) { case SymbolKind::S_GDATA32: case SymbolKind::S_CONSTANT: // We really should not be seeing S_PROCREF and S_LPROCREF in the first place // since they are synthesized by the linker in response to S_GPROC32 and // S_LPROC32, but if we do see them, don't put them in the module stream I // guess. case SymbolKind::S_PROCREF: case SymbolKind::S_LPROCREF: return false; // S_UDT records go in the module stream if it is not a global S_UDT. case SymbolKind::S_UDT: return !isGlobalScope; // S_GDATA32 does not go in the module stream, but S_LDATA32 does. case SymbolKind::S_LDATA32: default: return true; } } static bool symbolGoesInGlobalsStream(const CVSymbol &sym, bool isGlobalScope) { switch (sym.kind()) { case SymbolKind::S_CONSTANT: case SymbolKind::S_GDATA32: // S_LDATA32 goes in both the module stream and the globals stream. case SymbolKind::S_LDATA32: case SymbolKind::S_GPROC32: case SymbolKind::S_LPROC32: // We really should not be seeing S_PROCREF and S_LPROCREF in the first place // since they are synthesized by the linker in response to S_GPROC32 and // S_LPROC32, but if we do see them, copy them straight through. case SymbolKind::S_PROCREF: case SymbolKind::S_LPROCREF: return true; // S_UDT records go in the globals stream if it is a global S_UDT. case SymbolKind::S_UDT: return isGlobalScope; default: return false; } } static void addGlobalSymbol(pdb::GSIStreamBuilder &builder, uint16_t modIndex, unsigned symOffset, const CVSymbol &sym) { switch (sym.kind()) { case SymbolKind::S_CONSTANT: case SymbolKind::S_UDT: case SymbolKind::S_GDATA32: case SymbolKind::S_LDATA32: case SymbolKind::S_PROCREF: case SymbolKind::S_LPROCREF: builder.addGlobalSymbol(sym); break; case SymbolKind::S_GPROC32: case SymbolKind::S_LPROC32: { SymbolRecordKind k = SymbolRecordKind::ProcRefSym; if (sym.kind() == SymbolKind::S_LPROC32) k = SymbolRecordKind::LocalProcRef; ProcRefSym ps(k); ps.Module = modIndex; // For some reason, MSVC seems to add one to this value. ++ps.Module; ps.Name = getSymbolName(sym); ps.SumName = 0; ps.SymOffset = symOffset; builder.addGlobalSymbol(ps); break; } default: llvm_unreachable("Invalid symbol kind!"); } } void PDBLinker::mergeSymbolRecords(ObjFile *file, const CVIndexMap &indexMap, std::vector &stringTableRefs, BinaryStreamRef symData) { ArrayRef symsBuffer; cantFail(symData.readBytes(0, symData.getLength(), symsBuffer)); SmallVector scopes; // Iterate every symbol to check if any need to be realigned, and if so, how // much space we need to allocate for them. bool needsRealignment = false; unsigned totalRealignedSize = 0; auto ec = forEachCodeViewRecord( symsBuffer, [&](CVSymbol sym) -> llvm::Error { unsigned realignedSize = alignTo(sym.length(), alignOf(CodeViewContainer::Pdb)); needsRealignment |= realignedSize != sym.length(); totalRealignedSize += realignedSize; return Error::success(); }); // If any of the symbol record lengths was corrupt, ignore them all, warn // about it, and move on. if (ec) { warn("corrupt symbol records in " + file->getName()); consumeError(std::move(ec)); return; } // If any symbol needed realignment, allocate enough contiguous memory for // them all. Typically symbol subsections are small enough that this will not // cause fragmentation. MutableArrayRef alignedSymbolMem; if (needsRealignment) { void *alignedData = alloc.Allocate(totalRealignedSize, alignOf(CodeViewContainer::Pdb)); alignedSymbolMem = makeMutableArrayRef( reinterpret_cast(alignedData), totalRealignedSize); } // Iterate again, this time doing the real work. unsigned curSymOffset = file->moduleDBI->getNextSymbolOffset(); ArrayRef bulkSymbols; cantFail(forEachCodeViewRecord( symsBuffer, [&](CVSymbol sym) -> llvm::Error { // Align the record if required. MutableArrayRef recordBytes; if (needsRealignment) { recordBytes = copyAndAlignSymbol(sym, alignedSymbolMem); sym = CVSymbol(recordBytes); } else { // Otherwise, we can actually mutate the symbol directly, since we // copied it to apply relocations. recordBytes = makeMutableArrayRef( const_cast(sym.data().data()), sym.length()); } // Discover type index references in the record. Skip it if we don't // know where they are. SmallVector typeRefs; if (!discoverTypeIndicesInSymbol(sym, typeRefs)) { log("ignoring unknown symbol record with kind 0x" + utohexstr(sym.kind())); return Error::success(); } // Re-map all the type index references. remapTypesInSymbolRecord(file, sym.kind(), recordBytes, indexMap, typeRefs); // An object file may have S_xxx_ID symbols, but these get converted to // "real" symbols in a PDB. translateIdSymbols(recordBytes, tMerger.getIDTable()); sym = CVSymbol(recordBytes); // If this record refers to an offset in the object file's string table, // add that item to the global PDB string table and re-write the index. recordStringTableReferences(sym.kind(), recordBytes, stringTableRefs); // Fill in "Parent" and "End" fields by maintaining a stack of scopes. if (symbolOpensScope(sym.kind())) scopeStackOpen(scopes, curSymOffset, sym); else if (symbolEndsScope(sym.kind())) scopeStackClose(scopes, curSymOffset, file); // Add the symbol to the globals stream if necessary. Do this before // adding the symbol to the module since we may need to get the next // symbol offset, and writing to the module's symbol stream will update // that offset. if (symbolGoesInGlobalsStream(sym, scopes.empty())) { addGlobalSymbol(builder.getGsiBuilder(), file->moduleDBI->getModuleIndex(), curSymOffset, sym); ++globalSymbols; } if (symbolGoesInModuleStream(sym, scopes.empty())) { // Add symbols to the module in bulk. If this symbol is contiguous // with the previous run of symbols to add, combine the ranges. If // not, close the previous range of symbols and start a new one. if (sym.data().data() == bulkSymbols.end()) { bulkSymbols = makeArrayRef(bulkSymbols.data(), bulkSymbols.size() + sym.length()); } else { file->moduleDBI->addSymbolsInBulk(bulkSymbols); bulkSymbols = recordBytes; } curSymOffset += sym.length(); ++moduleSymbols; } return Error::success(); })); // Add any remaining symbols we've accumulated. file->moduleDBI->addSymbolsInBulk(bulkSymbols); } // Allocate memory for a .debug$S / .debug$F section and relocate it. static ArrayRef relocateDebugChunk(BumpPtrAllocator &alloc, SectionChunk &debugChunk) { uint8_t *buffer = alloc.Allocate(debugChunk.getSize()); assert(debugChunk.getOutputSectionIdx() == 0 && "debug sections should not be in output sections"); debugChunk.writeTo(buffer); return makeArrayRef(buffer, debugChunk.getSize()); } static pdb::SectionContrib createSectionContrib(const Chunk *c, uint32_t modi) { OutputSection *os = c ? c->getOutputSection() : nullptr; pdb::SectionContrib sc; memset(&sc, 0, sizeof(sc)); sc.ISect = os ? os->sectionIndex : llvm::pdb::kInvalidStreamIndex; sc.Off = c && os ? c->getRVA() - os->getRVA() : 0; sc.Size = c ? c->getSize() : -1; if (auto *secChunk = dyn_cast_or_null(c)) { sc.Characteristics = secChunk->header->Characteristics; sc.Imod = secChunk->file->moduleDBI->getModuleIndex(); ArrayRef contents = secChunk->getContents(); JamCRC crc(0); crc.update(contents); sc.DataCrc = crc.getCRC(); } else { sc.Characteristics = os ? os->header.Characteristics : 0; sc.Imod = modi; } sc.RelocCrc = 0; // FIXME return sc; } static uint32_t translateStringTableIndex(uint32_t objIndex, const DebugStringTableSubsectionRef &objStrTable, DebugStringTableSubsection &pdbStrTable) { auto expectedString = objStrTable.getString(objIndex); if (!expectedString) { warn("Invalid string table reference"); consumeError(expectedString.takeError()); return 0; } return pdbStrTable.insert(*expectedString); } void DebugSHandler::handleDebugS(lld::coff::SectionChunk &debugS) { DebugSubsectionArray subsections; ArrayRef relocatedDebugContents = SectionChunk::consumeDebugMagic( relocateDebugChunk(linker.alloc, debugS), debugS.getSectionName()); BinaryStreamReader reader(relocatedDebugContents, support::little); exitOnErr(reader.readArray(subsections, relocatedDebugContents.size())); for (const DebugSubsectionRecord &ss : subsections) { // Ignore subsections with the 'ignore' bit. Some versions of the Visual C++ // runtime have subsections with this bit set. if (uint32_t(ss.kind()) & codeview::SubsectionIgnoreFlag) continue; switch (ss.kind()) { case DebugSubsectionKind::StringTable: { assert(!cVStrTab.valid() && "Encountered multiple string table subsections!"); exitOnErr(cVStrTab.initialize(ss.getRecordData())); break; } case DebugSubsectionKind::FileChecksums: assert(!checksums.valid() && "Encountered multiple checksum subsections!"); exitOnErr(checksums.initialize(ss.getRecordData())); break; case DebugSubsectionKind::Lines: // We can add the relocated line table directly to the PDB without // modification because the file checksum offsets will stay the same. file.moduleDBI->addDebugSubsection(ss); break; case DebugSubsectionKind::InlineeLines: assert(!inlineeLines.valid() && "Encountered multiple inlinee lines subsections!"); exitOnErr(inlineeLines.initialize(ss.getRecordData())); break; case DebugSubsectionKind::FrameData: { // We need to re-write string table indices here, so save off all // frame data subsections until we've processed the entire list of // subsections so that we can be sure we have the string table. DebugFrameDataSubsectionRef fds; exitOnErr(fds.initialize(ss.getRecordData())); newFpoFrames.push_back(std::move(fds)); break; } case DebugSubsectionKind::Symbols: { linker.mergeSymbolRecords(&file, indexMap, stringTableReferences, ss.getRecordData()); break; } case DebugSubsectionKind::CrossScopeImports: case DebugSubsectionKind::CrossScopeExports: // These appear to relate to cross-module optimization, so we might use // these for ThinLTO. break; case DebugSubsectionKind::ILLines: case DebugSubsectionKind::FuncMDTokenMap: case DebugSubsectionKind::TypeMDTokenMap: case DebugSubsectionKind::MergedAssemblyInput: // These appear to relate to .Net assembly info. break; case DebugSubsectionKind::CoffSymbolRVA: // Unclear what this is for. break; default: warn("ignoring unknown debug$S subsection kind 0x" + utohexstr(uint32_t(ss.kind())) + " in file " + toString(&file)); break; } } } static Expected getFileName(const DebugStringTableSubsectionRef &strings, const DebugChecksumsSubsectionRef &checksums, uint32_t fileID) { auto iter = checksums.getArray().at(fileID); if (iter == checksums.getArray().end()) return make_error(cv_error_code::no_records); uint32_t offset = iter->FileNameOffset; return strings.getString(offset); } std::shared_ptr DebugSHandler::mergeInlineeLines(DebugChecksumsSubsection *newChecksums) { auto newInlineeLines = std::make_shared( *newChecksums, inlineeLines.hasExtraFiles()); for (const InlineeSourceLine &line : inlineeLines) { TypeIndex inlinee = line.Header->Inlinee; uint32_t fileID = line.Header->FileID; uint32_t sourceLine = line.Header->SourceLineNum; ArrayRef typeOrItemMap = indexMap.isTypeServerMap ? indexMap.ipiMap : indexMap.tpiMap; if (!remapTypeIndex(inlinee, typeOrItemMap)) { log("ignoring inlinee line record in " + file.getName() + " with bad inlinee index 0x" + utohexstr(inlinee.getIndex())); continue; } SmallString<128> filename = exitOnErr(getFileName(cVStrTab, checksums, fileID)); pdbMakeAbsolute(filename); newInlineeLines->addInlineSite(inlinee, filename, sourceLine); if (inlineeLines.hasExtraFiles()) { for (uint32_t extraFileId : line.ExtraFiles) { filename = exitOnErr(getFileName(cVStrTab, checksums, extraFileId)); pdbMakeAbsolute(filename); newInlineeLines->addExtraFile(filename); } } } return newInlineeLines; } void DebugSHandler::finish() { pdb::DbiStreamBuilder &dbiBuilder = linker.builder.getDbiBuilder(); // We should have seen all debug subsections across the entire object file now // which means that if a StringTable subsection and Checksums subsection were // present, now is the time to handle them. if (!cVStrTab.valid()) { if (checksums.valid()) fatal(".debug$S sections with a checksums subsection must also contain a " "string table subsection"); if (!stringTableReferences.empty()) warn("No StringTable subsection was encountered, but there are string " "table references"); return; } // Rewrite string table indices in the Fpo Data and symbol records to refer to // the global PDB string table instead of the object file string table. for (DebugFrameDataSubsectionRef &fds : newFpoFrames) { const ulittle32_t *reloc = fds.getRelocPtr(); for (codeview::FrameData fd : fds) { fd.RvaStart += *reloc; fd.FrameFunc = translateStringTableIndex(fd.FrameFunc, cVStrTab, linker.pdbStrTab); dbiBuilder.addNewFpoData(fd); } } for (ulittle32_t *ref : stringTableReferences) *ref = translateStringTableIndex(*ref, cVStrTab, linker.pdbStrTab); // Make a new file checksum table that refers to offsets in the PDB-wide // string table. Generally the string table subsection appears after the // checksum table, so we have to do this after looping over all the // subsections. auto newChecksums = std::make_unique(linker.pdbStrTab); for (FileChecksumEntry &fc : checksums) { SmallString<128> filename = exitOnErr(cVStrTab.getString(fc.FileNameOffset)); pdbMakeAbsolute(filename); exitOnErr(dbiBuilder.addModuleSourceFile(*file.moduleDBI, filename)); newChecksums->addChecksum(filename, fc.Kind, fc.Checksum); } // Rewrite inlinee item indices if present. if (inlineeLines.valid()) file.moduleDBI->addDebugSubsection(mergeInlineeLines(newChecksums.get())); file.moduleDBI->addDebugSubsection(std::move(newChecksums)); } void PDBLinker::addObjFile(ObjFile *file, CVIndexMap *externIndexMap) { if (file->mergedIntoPDB) return; file->mergedIntoPDB = true; // Before we can process symbol substreams from .debug$S, we need to process // type information, file checksums, and the string table. Add type info to // the PDB first, so that we can get the map from object file type and item // indices to PDB type and item indices. CVIndexMap objectIndexMap; auto indexMapResult = mergeDebugT(file, externIndexMap ? externIndexMap : &objectIndexMap); // If the .debug$T sections fail to merge, assume there is no debug info. if (!indexMapResult) { if (!config->warnDebugInfoUnusable) { consumeError(indexMapResult.takeError()); return; } warn("Cannot use debug info for '" + toString(file) + "' [LNK4099]\n" + ">>> failed to load reference " + StringRef(toString(indexMapResult.takeError()))); return; } ScopedTimer t(symbolMergingTimer); pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder(); DebugSHandler dsh(*this, *file, *indexMapResult); // Now do all live .debug$S and .debug$F sections. for (SectionChunk *debugChunk : file->getDebugChunks()) { if (!debugChunk->live || debugChunk->getSize() == 0) continue; if (debugChunk->getSectionName() == ".debug$S") { dsh.handleDebugS(*debugChunk); continue; } if (debugChunk->getSectionName() == ".debug$F") { ArrayRef relocatedDebugContents = relocateDebugChunk(alloc, *debugChunk); FixedStreamArray fpoRecords; BinaryStreamReader reader(relocatedDebugContents, support::little); uint32_t count = relocatedDebugContents.size() / sizeof(object::FpoData); exitOnErr(reader.readArray(fpoRecords, count)); // These are already relocated and don't refer to the string table, so we // can just copy it. for (const object::FpoData &fd : fpoRecords) dbiBuilder.addOldFpoData(fd); continue; } } // Do any post-processing now that all .debug$S sections have been processed. dsh.finish(); } // Add a module descriptor for every object file. We need to put an absolute // path to the object into the PDB. If this is a plain object, we make its // path absolute. If it's an object in an archive, we make the archive path // absolute. static void createModuleDBI(pdb::PDBFileBuilder &builder) { pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder(); SmallString<128> objName; for (ObjFile *file : ObjFile::instances) { bool inArchive = !file->parentName.empty(); objName = inArchive ? file->parentName : file->getName(); pdbMakeAbsolute(objName); StringRef modName = inArchive ? file->getName() : StringRef(objName); file->moduleDBI = &exitOnErr(dbiBuilder.addModuleInfo(modName)); file->moduleDBI->setObjFileName(objName); ArrayRef chunks = file->getChunks(); uint32_t modi = file->moduleDBI->getModuleIndex(); for (Chunk *c : chunks) { auto *secChunk = dyn_cast(c); if (!secChunk || !secChunk->live) continue; pdb::SectionContrib sc = createSectionContrib(secChunk, modi); file->moduleDBI->setFirstSectionContrib(sc); break; } } } static PublicSym32 createPublic(Defined *def) { PublicSym32 pub(SymbolKind::S_PUB32); pub.Name = def->getName(); if (auto *d = dyn_cast(def)) { if (d->getCOFFSymbol().isFunctionDefinition()) pub.Flags = PublicSymFlags::Function; } else if (isa(def)) { pub.Flags = PublicSymFlags::Function; } OutputSection *os = def->getChunk()->getOutputSection(); assert(os && "all publics should be in final image"); pub.Offset = def->getRVA() - os->getRVA(); pub.Segment = os->sectionIndex; return pub; } // Add all object files to the PDB. Merge .debug$T sections into IpiData and // TpiData. void PDBLinker::addObjectsToPDB() { ScopedTimer t1(addObjectsTimer); createModuleDBI(builder); for (ObjFile *file : ObjFile::instances) addObjFile(file); builder.getStringTableBuilder().setStrings(pdbStrTab); t1.stop(); // Construct TPI and IPI stream contents. ScopedTimer t2(tpiStreamLayoutTimer); addTypeInfo(builder.getTpiBuilder(), tMerger.getTypeTable()); addTypeInfo(builder.getIpiBuilder(), tMerger.getIDTable()); t2.stop(); ScopedTimer t3(globalsLayoutTimer); // Compute the public and global symbols. auto &gsiBuilder = builder.getGsiBuilder(); std::vector publics; symtab->forEachSymbol([&publics](Symbol *s) { // Only emit defined, live symbols that have a chunk. auto *def = dyn_cast(s); if (def && def->isLive() && def->getChunk()) publics.push_back(createPublic(def)); }); if (!publics.empty()) { publicSymbols = publics.size(); // Sort the public symbols and add them to the stream. parallelSort(publics, [](const PublicSym32 &l, const PublicSym32 &r) { return l.Name < r.Name; }); for (const PublicSym32 &pub : publics) gsiBuilder.addPublicSymbol(pub); } } void PDBLinker::printStats() { if (!config->showSummary) return; SmallString<256> buffer; raw_svector_ostream stream(buffer); stream << center_justify("Summary", 80) << '\n' << std::string(80, '-') << '\n'; auto print = [&](uint64_t v, StringRef s) { stream << format_decimal(v, 15) << " " << s << '\n'; }; print(ObjFile::instances.size(), "Input OBJ files (expanded from all cmd-line inputs)"); print(typeServerIndexMappings.size(), "PDB type server dependencies"); print(precompTypeIndexMappings.size(), "Precomp OBJ dependencies"); print(tMerger.getTypeTable().size() + tMerger.getIDTable().size(), "Merged TPI records"); print(pdbStrTab.size(), "Output PDB strings"); print(globalSymbols, "Global symbol records"); print(moduleSymbols, "Module symbol records"); print(publicSymbols, "Public symbol records"); message(buffer); } void PDBLinker::addNatvisFiles() { for (StringRef file : config->natvisFiles) { ErrorOr> dataOrErr = MemoryBuffer::getFile(file); if (!dataOrErr) { warn("Cannot open input file: " + file); continue; } builder.addInjectedSource(file, std::move(*dataOrErr)); } } static codeview::CPUType toCodeViewMachine(COFF::MachineTypes machine) { switch (machine) { case COFF::IMAGE_FILE_MACHINE_AMD64: return codeview::CPUType::X64; case COFF::IMAGE_FILE_MACHINE_ARM: return codeview::CPUType::ARM7; case COFF::IMAGE_FILE_MACHINE_ARM64: return codeview::CPUType::ARM64; case COFF::IMAGE_FILE_MACHINE_ARMNT: return codeview::CPUType::ARMNT; case COFF::IMAGE_FILE_MACHINE_I386: return codeview::CPUType::Intel80386; default: llvm_unreachable("Unsupported CPU Type"); } } // Mimic MSVC which surrounds arguments containing whitespace with quotes. // Double double-quotes are handled, so that the resulting string can be // executed again on the cmd-line. static std::string quote(ArrayRef args) { std::string r; r.reserve(256); for (StringRef a : args) { if (!r.empty()) r.push_back(' '); bool hasWS = a.find(' ') != StringRef::npos; bool hasQ = a.find('"') != StringRef::npos; if (hasWS || hasQ) r.push_back('"'); if (hasQ) { SmallVector s; a.split(s, '"'); r.append(join(s, "\"\"")); } else { r.append(a); } if (hasWS || hasQ) r.push_back('"'); } return r; } static void fillLinkerVerRecord(Compile3Sym &cs) { cs.Machine = toCodeViewMachine(config->machine); // Interestingly, if we set the string to 0.0.0.0, then when trying to view // local variables WinDbg emits an error that private symbols are not present. // By setting this to a valid MSVC linker version string, local variables are // displayed properly. As such, even though it is not representative of // LLVM's version information, we need this for compatibility. cs.Flags = CompileSym3Flags::None; cs.VersionBackendBuild = 25019; cs.VersionBackendMajor = 14; cs.VersionBackendMinor = 10; cs.VersionBackendQFE = 0; // MSVC also sets the frontend to 0.0.0.0 since this is specifically for the // linker module (which is by definition a backend), so we don't need to do // anything here. Also, it seems we can use "LLVM Linker" for the linker name // without any problems. Only the backend version has to be hardcoded to a // magic number. cs.VersionFrontendBuild = 0; cs.VersionFrontendMajor = 0; cs.VersionFrontendMinor = 0; cs.VersionFrontendQFE = 0; cs.Version = "LLVM Linker"; cs.setLanguage(SourceLanguage::Link); } static void addCommonLinkerModuleSymbols(StringRef path, pdb::DbiModuleDescriptorBuilder &mod, BumpPtrAllocator &allocator) { ObjNameSym ons(SymbolRecordKind::ObjNameSym); EnvBlockSym ebs(SymbolRecordKind::EnvBlockSym); Compile3Sym cs(SymbolRecordKind::Compile3Sym); fillLinkerVerRecord(cs); ons.Name = "* Linker *"; ons.Signature = 0; ArrayRef args = makeArrayRef(config->argv).drop_front(); std::string argStr = quote(args); ebs.Fields.push_back("cwd"); SmallString<64> cwd; if (config->pdbSourcePath.empty()) sys::fs::current_path(cwd); else cwd = config->pdbSourcePath; ebs.Fields.push_back(cwd); ebs.Fields.push_back("exe"); SmallString<64> exe = config->argv[0]; pdbMakeAbsolute(exe); ebs.Fields.push_back(exe); ebs.Fields.push_back("pdb"); ebs.Fields.push_back(path); ebs.Fields.push_back("cmd"); ebs.Fields.push_back(argStr); mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol( ons, allocator, CodeViewContainer::Pdb)); mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol( cs, allocator, CodeViewContainer::Pdb)); mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol( ebs, allocator, CodeViewContainer::Pdb)); } static void addLinkerModuleCoffGroup(PartialSection *sec, pdb::DbiModuleDescriptorBuilder &mod, OutputSection &os, BumpPtrAllocator &allocator) { // If there's a section, there's at least one chunk assert(!sec->chunks.empty()); const Chunk *firstChunk = *sec->chunks.begin(); const Chunk *lastChunk = *sec->chunks.rbegin(); // Emit COFF group CoffGroupSym cgs(SymbolRecordKind::CoffGroupSym); cgs.Name = sec->name; cgs.Segment = os.sectionIndex; cgs.Offset = firstChunk->getRVA() - os.getRVA(); cgs.Size = lastChunk->getRVA() + lastChunk->getSize() - firstChunk->getRVA(); cgs.Characteristics = sec->characteristics; // Somehow .idata sections & sections groups in the debug symbol stream have // the "write" flag set. However the section header for the corresponding // .idata section doesn't have it. if (cgs.Name.startswith(".idata")) cgs.Characteristics |= llvm::COFF::IMAGE_SCN_MEM_WRITE; mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol( cgs, allocator, CodeViewContainer::Pdb)); } static void addLinkerModuleSectionSymbol(pdb::DbiModuleDescriptorBuilder &mod, OutputSection &os, BumpPtrAllocator &allocator) { SectionSym sym(SymbolRecordKind::SectionSym); sym.Alignment = 12; // 2^12 = 4KB sym.Characteristics = os.header.Characteristics; sym.Length = os.getVirtualSize(); sym.Name = os.name; sym.Rva = os.getRVA(); sym.SectionNumber = os.sectionIndex; mod.addSymbol(codeview::SymbolSerializer::writeOneSymbol( sym, allocator, CodeViewContainer::Pdb)); // Skip COFF groups in MinGW because it adds a significant footprint to the // PDB, due to each function being in its own section if (config->mingw) return; // Output COFF groups for individual chunks of this section. for (PartialSection *sec : os.contribSections) { addLinkerModuleCoffGroup(sec, mod, os, allocator); } } // Add all import files as modules to the PDB. void PDBLinker::addImportFilesToPDB(ArrayRef outputSections) { if (ImportFile::instances.empty()) return; std::map dllToModuleDbi; for (ImportFile *file : ImportFile::instances) { if (!file->live) continue; if (!file->thunkSym) continue; if (!file->thunkLive) continue; std::string dll = StringRef(file->dllName).lower(); llvm::pdb::DbiModuleDescriptorBuilder *&mod = dllToModuleDbi[dll]; if (!mod) { pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder(); SmallString<128> libPath = file->parentName; pdbMakeAbsolute(libPath); sys::path::native(libPath); // Name modules similar to MSVC's link.exe. // The first module is the simple dll filename llvm::pdb::DbiModuleDescriptorBuilder &firstMod = exitOnErr(dbiBuilder.addModuleInfo(file->dllName)); firstMod.setObjFileName(libPath); pdb::SectionContrib sc = createSectionContrib(nullptr, llvm::pdb::kInvalidStreamIndex); firstMod.setFirstSectionContrib(sc); // The second module is where the import stream goes. mod = &exitOnErr(dbiBuilder.addModuleInfo("Import:" + file->dllName)); mod->setObjFileName(libPath); } DefinedImportThunk *thunk = cast(file->thunkSym); Chunk *thunkChunk = thunk->getChunk(); OutputSection *thunkOS = thunkChunk->getOutputSection(); ObjNameSym ons(SymbolRecordKind::ObjNameSym); Compile3Sym cs(SymbolRecordKind::Compile3Sym); Thunk32Sym ts(SymbolRecordKind::Thunk32Sym); ScopeEndSym es(SymbolRecordKind::ScopeEndSym); ons.Name = file->dllName; ons.Signature = 0; fillLinkerVerRecord(cs); ts.Name = thunk->getName(); ts.Parent = 0; ts.End = 0; ts.Next = 0; ts.Thunk = ThunkOrdinal::Standard; ts.Length = thunkChunk->getSize(); ts.Segment = thunkOS->sectionIndex; ts.Offset = thunkChunk->getRVA() - thunkOS->getRVA(); mod->addSymbol(codeview::SymbolSerializer::writeOneSymbol( ons, alloc, CodeViewContainer::Pdb)); mod->addSymbol(codeview::SymbolSerializer::writeOneSymbol( cs, alloc, CodeViewContainer::Pdb)); SmallVector scopes; CVSymbol newSym = codeview::SymbolSerializer::writeOneSymbol( ts, alloc, CodeViewContainer::Pdb); scopeStackOpen(scopes, mod->getNextSymbolOffset(), newSym); mod->addSymbol(newSym); newSym = codeview::SymbolSerializer::writeOneSymbol(es, alloc, CodeViewContainer::Pdb); scopeStackClose(scopes, mod->getNextSymbolOffset(), file); mod->addSymbol(newSym); pdb::SectionContrib sc = createSectionContrib(thunk->getChunk(), mod->getModuleIndex()); mod->setFirstSectionContrib(sc); } } // Creates a PDB file. void createPDB(SymbolTable *symtab, ArrayRef outputSections, ArrayRef sectionTable, llvm::codeview::DebugInfo *buildId) { ScopedTimer t1(totalPdbLinkTimer); PDBLinker pdb(symtab); pdb.initialize(buildId); pdb.addObjectsToPDB(); pdb.addImportFilesToPDB(outputSections); pdb.addSections(outputSections, sectionTable); pdb.addNatvisFiles(); ScopedTimer t2(diskCommitTimer); codeview::GUID guid; pdb.commit(&guid); memcpy(&buildId->PDB70.Signature, &guid, 16); t2.stop(); t1.stop(); pdb.printStats(); } void PDBLinker::initialize(llvm::codeview::DebugInfo *buildId) { exitOnErr(builder.initialize(4096)); // 4096 is blocksize buildId->Signature.CVSignature = OMF::Signature::PDB70; // Signature is set to a hash of the PDB contents when the PDB is done. memset(buildId->PDB70.Signature, 0, 16); buildId->PDB70.Age = 1; // Create streams in MSF for predefined streams, namely // PDB, TPI, DBI and IPI. for (int i = 0; i < (int)pdb::kSpecialStreamCount; ++i) exitOnErr(builder.getMsfBuilder().addStream(0)); // Add an Info stream. auto &infoBuilder = builder.getInfoBuilder(); infoBuilder.setVersion(pdb::PdbRaw_ImplVer::PdbImplVC70); infoBuilder.setHashPDBContentsToGUID(true); // Add an empty DBI stream. pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder(); dbiBuilder.setAge(buildId->PDB70.Age); dbiBuilder.setVersionHeader(pdb::PdbDbiV70); dbiBuilder.setMachineType(config->machine); // Technically we are not link.exe 14.11, but there are known cases where // debugging tools on Windows expect Microsoft-specific version numbers or // they fail to work at all. Since we know we produce PDBs that are // compatible with LINK 14.11, we set that version number here. dbiBuilder.setBuildNumber(14, 11); } void PDBLinker::addSections(ArrayRef outputSections, ArrayRef sectionTable) { // It's not entirely clear what this is, but the * Linker * module uses it. pdb::DbiStreamBuilder &dbiBuilder = builder.getDbiBuilder(); nativePath = config->pdbPath; pdbMakeAbsolute(nativePath); uint32_t pdbFilePathNI = dbiBuilder.addECName(nativePath); auto &linkerModule = exitOnErr(dbiBuilder.addModuleInfo("* Linker *")); linkerModule.setPdbFilePathNI(pdbFilePathNI); addCommonLinkerModuleSymbols(nativePath, linkerModule, alloc); // Add section contributions. They must be ordered by ascending RVA. for (OutputSection *os : outputSections) { addLinkerModuleSectionSymbol(linkerModule, *os, alloc); for (Chunk *c : os->chunks) { pdb::SectionContrib sc = createSectionContrib(c, linkerModule.getModuleIndex()); builder.getDbiBuilder().addSectionContrib(sc); } } // The * Linker * first section contrib is only used along with /INCREMENTAL, // to provide trampolines thunks for incremental function patching. Set this // as "unused" because LLD doesn't support /INCREMENTAL link. pdb::SectionContrib sc = createSectionContrib(nullptr, llvm::pdb::kInvalidStreamIndex); linkerModule.setFirstSectionContrib(sc); // Add Section Map stream. ArrayRef sections = { (const object::coff_section *)sectionTable.data(), sectionTable.size() / sizeof(object::coff_section)}; sectionMap = pdb::DbiStreamBuilder::createSectionMap(sections); dbiBuilder.setSectionMap(sectionMap); // Add COFF section header stream. exitOnErr( dbiBuilder.addDbgStream(pdb::DbgHeaderType::SectionHdr, sectionTable)); } void PDBLinker::commit(codeview::GUID *guid) { ExitOnError exitOnErr((config->pdbPath + ": ").str()); // Write to a file. exitOnErr(builder.commit(config->pdbPath, guid)); } static uint32_t getSecrelReloc() { switch (config->machine) { case AMD64: return COFF::IMAGE_REL_AMD64_SECREL; case I386: return COFF::IMAGE_REL_I386_SECREL; case ARMNT: return COFF::IMAGE_REL_ARM_SECREL; case ARM64: return COFF::IMAGE_REL_ARM64_SECREL; default: llvm_unreachable("unknown machine type"); } } // Try to find a line table for the given offset Addr into the given chunk C. // If a line table was found, the line table, the string and checksum tables // that are used to interpret the line table, and the offset of Addr in the line // table are stored in the output arguments. Returns whether a line table was // found. static bool findLineTable(const SectionChunk *c, uint32_t addr, DebugStringTableSubsectionRef &cVStrTab, DebugChecksumsSubsectionRef &checksums, DebugLinesSubsectionRef &lines, uint32_t &offsetInLinetable) { ExitOnError exitOnErr; uint32_t secrelReloc = getSecrelReloc(); for (SectionChunk *dbgC : c->file->getDebugChunks()) { if (dbgC->getSectionName() != ".debug$S") continue; // Build a mapping of SECREL relocations in dbgC that refer to `c`. DenseMap secrels; for (const coff_relocation &r : dbgC->getRelocs()) { if (r.Type != secrelReloc) continue; if (auto *s = dyn_cast_or_null( c->file->getSymbols()[r.SymbolTableIndex])) if (s->getChunk() == c) secrels[r.VirtualAddress] = s->getValue(); } ArrayRef contents = SectionChunk::consumeDebugMagic(dbgC->getContents(), ".debug$S"); DebugSubsectionArray subsections; BinaryStreamReader reader(contents, support::little); exitOnErr(reader.readArray(subsections, contents.size())); for (const DebugSubsectionRecord &ss : subsections) { switch (ss.kind()) { case DebugSubsectionKind::StringTable: { assert(!cVStrTab.valid() && "Encountered multiple string table subsections!"); exitOnErr(cVStrTab.initialize(ss.getRecordData())); break; } case DebugSubsectionKind::FileChecksums: assert(!checksums.valid() && "Encountered multiple checksum subsections!"); exitOnErr(checksums.initialize(ss.getRecordData())); break; case DebugSubsectionKind::Lines: { ArrayRef bytes; auto ref = ss.getRecordData(); exitOnErr(ref.readLongestContiguousChunk(0, bytes)); size_t offsetInDbgC = bytes.data() - dbgC->getContents().data(); // Check whether this line table refers to C. auto i = secrels.find(offsetInDbgC); if (i == secrels.end()) break; // Check whether this line table covers Addr in C. DebugLinesSubsectionRef linesTmp; exitOnErr(linesTmp.initialize(BinaryStreamReader(ref))); uint32_t offsetInC = i->second + linesTmp.header()->RelocOffset; if (addr < offsetInC || addr >= offsetInC + linesTmp.header()->CodeSize) break; assert(!lines.header() && "Encountered multiple line tables for function!"); exitOnErr(lines.initialize(BinaryStreamReader(ref))); offsetInLinetable = addr - offsetInC; break; } default: break; } if (cVStrTab.valid() && checksums.valid() && lines.header()) return true; } } return false; } // Use CodeView line tables to resolve a file and line number for the given // offset into the given chunk and return them, or {"", 0} if a line table was // not found. std::pair getFileLineCodeView(const SectionChunk *c, uint32_t addr) { ExitOnError exitOnErr; DebugStringTableSubsectionRef cVStrTab; DebugChecksumsSubsectionRef checksums; DebugLinesSubsectionRef lines; uint32_t offsetInLinetable; if (!findLineTable(c, addr, cVStrTab, checksums, lines, offsetInLinetable)) return {"", 0}; Optional nameIndex; Optional lineNumber; for (LineColumnEntry &entry : lines) { for (const LineNumberEntry &ln : entry.LineNumbers) { LineInfo li(ln.Flags); if (ln.Offset > offsetInLinetable) { if (!nameIndex) { nameIndex = entry.NameIndex; lineNumber = li.getStartLine(); } StringRef filename = exitOnErr(getFileName(cVStrTab, checksums, *nameIndex)); return {filename, *lineNumber}; } nameIndex = entry.NameIndex; lineNumber = li.getStartLine(); } } if (!nameIndex) return {"", 0}; StringRef filename = exitOnErr(getFileName(cVStrTab, checksums, *nameIndex)); return {filename, *lineNumber}; } } // namespace coff } // namespace lld