aboutsummaryrefslogtreecommitdiff
path: root/ELF/Writer.cpp
blob: 322e9d11aae0f781223721f4ea4a2bcde241b0c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
//===- Writer.cpp ---------------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Writer.h"
#include "Config.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "Target.h"

#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;

using namespace lld;
using namespace lld::elf;

namespace {
// The writer writes a SymbolTable result to a file.
template <class ELFT> class Writer {
public:
  typedef typename ELFT::uint uintX_t;
  typedef typename ELFT::Shdr Elf_Shdr;
  typedef typename ELFT::Ehdr Elf_Ehdr;
  typedef typename ELFT::Phdr Elf_Phdr;
  typedef typename ELFT::Sym Elf_Sym;
  typedef typename ELFT::SymRange Elf_Sym_Range;
  typedef typename ELFT::Rela Elf_Rela;
  Writer(SymbolTable<ELFT> &S) : Symtab(S) {}
  void run();

private:
  // This describes a program header entry.
  // Each contains type, access flags and range of output sections that will be
  // placed in it.
  struct Phdr {
    Phdr(unsigned Type, unsigned Flags) {
      H.p_type = Type;
      H.p_flags = Flags;
    }
    Elf_Phdr H = {};
    OutputSectionBase<ELFT> *First = nullptr;
    OutputSectionBase<ELFT> *Last = nullptr;
  };

  void copyLocalSymbols();
  void addReservedSymbols();
  void createSections();
  void addPredefinedSections();
  bool needsGot();

  void createPhdrs();
  void assignAddresses();
  void assignFileOffsets();
  void setPhdrs();
  void fixHeaders();
  void fixSectionAlignments();
  void fixAbsoluteSymbols();
  void openFile();
  void writeHeader();
  void writeSections();
  void writeBuildId();
  bool needsInterpSection() const {
    return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty();
  }
  bool isOutputDynamic() const {
    return !Symtab.getSharedFiles().empty() || Config->Pic;
  }

  void addCommonSymbols(std::vector<DefinedCommon *> &Syms);

  std::unique_ptr<llvm::FileOutputBuffer> Buffer;

  BumpPtrAllocator Alloc;
  std::vector<OutputSectionBase<ELFT> *> OutputSections;
  std::vector<std::unique_ptr<OutputSectionBase<ELFT>>> OwningSections;

  void addRelIpltSymbols();
  void addStartEndSymbols();
  void addStartStopSymbols(OutputSectionBase<ELFT> *Sec);

  SymbolTable<ELFT> &Symtab;
  std::vector<Phdr> Phdrs;

  uintX_t FileSize;
  uintX_t SectionHeaderOff;
};
} // anonymous namespace

template <class ELFT>
StringRef elf::getOutputSectionName(InputSectionBase<ELFT> *S) {
  StringRef Dest = Script<ELFT>::X->getOutputSection(S);
  if (!Dest.empty())
    return Dest;

  StringRef Name = S->getSectionName();
  for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.",
                      ".init_array.", ".fini_array.", ".ctors.", ".dtors.",
                      ".tbss.", ".gcc_except_table.", ".tdata."})
    if (Name.startswith(V))
      return V.drop_back();
  return Name;
}

template <class ELFT>
void elf::reportDiscarded(InputSectionBase<ELFT> *IS,
                          const std::unique_ptr<elf::ObjectFile<ELFT>> &File) {
  if (!Config->PrintGcSections || !IS || IS->Live)
    return;
  errs() << "removing unused section from '" << IS->getSectionName()
         << "' in file '" << File->getName() << "'\n";
}

template <class ELFT> void elf::writeResult(SymbolTable<ELFT> *Symtab) {
  typedef typename ELFT::uint uintX_t;
  typedef typename ELFT::Ehdr Elf_Ehdr;

  // Create singleton output sections.
  OutputSection<ELFT> Bss(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE);
  DynamicSection<ELFT> Dynamic;
  EhOutputSection<ELFT> EhFrame;
  GotSection<ELFT> Got;
  InterpSection<ELFT> Interp;
  PltSection<ELFT> Plt;
  RelocationSection<ELFT> RelaDyn(Config->Rela ? ".rela.dyn" : ".rel.dyn",
                                  Config->ZCombreloc);
  StringTableSection<ELFT> DynStrTab(".dynstr", true);
  StringTableSection<ELFT> ShStrTab(".shstrtab", false);
  SymbolTableSection<ELFT> DynSymTab(DynStrTab);
  VersionTableSection<ELFT> VerSym;
  VersionNeedSection<ELFT> VerNeed;

  OutputSectionBase<ELFT> ElfHeader("", 0, SHF_ALLOC);
  ElfHeader.setSize(sizeof(Elf_Ehdr));
  OutputSectionBase<ELFT> ProgramHeaders("", 0, SHF_ALLOC);
  ProgramHeaders.updateAlignment(sizeof(uintX_t));

  // Instantiate optional output sections if they are needed.
  std::unique_ptr<BuildIdSection<ELFT>> BuildId;
  std::unique_ptr<EhFrameHeader<ELFT>> EhFrameHdr;
  std::unique_ptr<GnuHashTableSection<ELFT>> GnuHashTab;
  std::unique_ptr<GotPltSection<ELFT>> GotPlt;
  std::unique_ptr<HashTableSection<ELFT>> HashTab;
  std::unique_ptr<RelocationSection<ELFT>> RelaPlt;
  std::unique_ptr<StringTableSection<ELFT>> StrTab;
  std::unique_ptr<SymbolTableSection<ELFT>> SymTabSec;
  std::unique_ptr<OutputSection<ELFT>> MipsRldMap;
  std::unique_ptr<VersionDefinitionSection<ELFT>> VerDef;

  if (Config->BuildId == BuildIdKind::Fnv1)
    BuildId.reset(new BuildIdFnv1<ELFT>);
  else if (Config->BuildId == BuildIdKind::Md5)
    BuildId.reset(new BuildIdMd5<ELFT>);
  else if (Config->BuildId == BuildIdKind::Sha1)
    BuildId.reset(new BuildIdSha1<ELFT>);
  else if (Config->BuildId == BuildIdKind::Hexstring)
    BuildId.reset(new BuildIdHexstring<ELFT>);

  if (Config->EhFrameHdr)
    EhFrameHdr.reset(new EhFrameHeader<ELFT>);

  if (Config->GnuHash)
    GnuHashTab.reset(new GnuHashTableSection<ELFT>);
  if (Config->SysvHash)
    HashTab.reset(new HashTableSection<ELFT>);
  StringRef S = Config->Rela ? ".rela.plt" : ".rel.plt";
  GotPlt.reset(new GotPltSection<ELFT>);
  RelaPlt.reset(new RelocationSection<ELFT>(S, false /*Sort*/));
  if (!Config->StripAll) {
    StrTab.reset(new StringTableSection<ELFT>(".strtab", false));
    SymTabSec.reset(new SymbolTableSection<ELFT>(*StrTab));
  }
  if (Config->EMachine == EM_MIPS && !Config->Shared) {
    // This is a MIPS specific section to hold a space within the data segment
    // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
    // See "Dynamic section" in Chapter 5 in the following document:
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
    MipsRldMap.reset(new OutputSection<ELFT>(".rld_map", SHT_PROGBITS,
                                             SHF_ALLOC | SHF_WRITE));
    MipsRldMap->setSize(sizeof(uintX_t));
    MipsRldMap->updateAlignment(sizeof(uintX_t));
  }
  if (!Config->VersionDefinitions.empty())
    VerDef.reset(new VersionDefinitionSection<ELFT>());

  Out<ELFT>::Bss = &Bss;
  Out<ELFT>::BuildId = BuildId.get();
  Out<ELFT>::DynStrTab = &DynStrTab;
  Out<ELFT>::DynSymTab = &DynSymTab;
  Out<ELFT>::Dynamic = &Dynamic;
  Out<ELFT>::EhFrame = &EhFrame;
  Out<ELFT>::EhFrameHdr = EhFrameHdr.get();
  Out<ELFT>::GnuHashTab = GnuHashTab.get();
  Out<ELFT>::Got = &Got;
  Out<ELFT>::GotPlt = GotPlt.get();
  Out<ELFT>::HashTab = HashTab.get();
  Out<ELFT>::Interp = &Interp;
  Out<ELFT>::Plt = &Plt;
  Out<ELFT>::RelaDyn = &RelaDyn;
  Out<ELFT>::RelaPlt = RelaPlt.get();
  Out<ELFT>::ShStrTab = &ShStrTab;
  Out<ELFT>::StrTab = StrTab.get();
  Out<ELFT>::SymTab = SymTabSec.get();
  Out<ELFT>::VerDef = VerDef.get();
  Out<ELFT>::VerSym = &VerSym;
  Out<ELFT>::VerNeed = &VerNeed;
  Out<ELFT>::MipsRldMap = MipsRldMap.get();
  Out<ELFT>::Opd = nullptr;
  Out<ELFT>::OpdBuf = nullptr;
  Out<ELFT>::TlsPhdr = nullptr;
  Out<ELFT>::ElfHeader = &ElfHeader;
  Out<ELFT>::ProgramHeaders = &ProgramHeaders;

  Writer<ELFT>(*Symtab).run();
}

// The main function of the writer.
template <class ELFT> void Writer<ELFT>::run() {
  if (!Config->DiscardAll)
    copyLocalSymbols();
  addReservedSymbols();
  createSections();
  if (HasError)
    return;

  if (Config->Relocatable) {
    assignFileOffsets();
  } else {
    createPhdrs();
    fixHeaders();
    if (ScriptConfig->DoLayout) {
      Script<ELFT>::X->assignAddresses(OutputSections);
    } else {
      fixSectionAlignments();
      assignAddresses();
    }
    assignFileOffsets();
    setPhdrs();
    fixAbsoluteSymbols();
  }

  openFile();
  if (HasError)
    return;
  writeHeader();
  writeSections();
  writeBuildId();
  if (HasError)
    return;
  if (auto EC = Buffer->commit())
    error(EC, "failed to write to the output file");
}

template <class ELFT>
static void reportUndefined(SymbolTable<ELFT> &Symtab, SymbolBody *Sym) {
  if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore)
    return;

  if (Config->Shared && Sym->symbol()->Visibility == STV_DEFAULT &&
      Config->UnresolvedSymbols != UnresolvedPolicy::NoUndef)
    return;

  std::string Msg = "undefined symbol: " + Sym->getName().str();
  if (InputFile *File = Sym->getSourceFile<ELFT>())
    Msg += " in " + getFilename(File);
  if (Config->UnresolvedSymbols == UnresolvedPolicy::Warn)
    warning(Msg);
  else
    error(Msg);
}

template <class ELFT>
static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName,
                               const SymbolBody &B) {
  if (B.isFile())
    return false;

  // We keep sections in symtab for relocatable output.
  if (B.isSection())
    return Config->Relocatable;

  // If sym references a section in a discarded group, don't keep it.
  if (Sec == &InputSection<ELFT>::Discarded)
    return false;

  if (Config->DiscardNone)
    return true;

  // In ELF assembly .L symbols are normally discarded by the assembler.
  // If the assembler fails to do so, the linker discards them if
  // * --discard-locals is used.
  // * The symbol is in a SHF_MERGE section, which is normally the reason for
  //   the assembler keeping the .L symbol.
  if (!SymName.startswith(".L") && !SymName.empty())
    return true;

  if (Config->DiscardLocals)
    return false;

  return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE);
}

template <class ELFT> static bool includeInSymtab(const SymbolBody &B) {
  if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj)
    return false;

  if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) {
    // Always include absolute symbols.
    if (!D->Section)
      return true;
    // Exclude symbols pointing to garbage-collected sections.
    if (!D->Section->Live)
      return false;
    if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section))
      if (!S->getSectionPiece(D->Value)->Live)
        return false;
  }
  return true;
}

// Local symbols are not in the linker's symbol table. This function scans
// each object file's symbol table to copy local symbols to the output.
template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
  if (!Out<ELFT>::SymTab)
    return;
  for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F :
       Symtab.getObjectFiles()) {
    const char *StrTab = F->getStringTable().data();
    for (SymbolBody *B : F->getLocalSymbols()) {
      auto *DR = dyn_cast<DefinedRegular<ELFT>>(B);
      // No reason to keep local undefined symbol in symtab.
      if (!DR)
        continue;
      if (!includeInSymtab<ELFT>(*B))
        continue;
      StringRef SymName(StrTab + B->getNameOffset());
      InputSectionBase<ELFT> *Sec = DR->Section;
      if (!shouldKeepInSymtab<ELFT>(Sec, SymName, *B))
        continue;
      ++Out<ELFT>::SymTab->NumLocals;
      if (Config->Relocatable)
        B->DynsymIndex = Out<ELFT>::SymTab->NumLocals;
      F->KeptLocalSyms.push_back(
          std::make_pair(DR, Out<ELFT>::SymTab->StrTabSec.addString(SymName)));
    }
  }
}

// PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that
// we would like to make sure appear is a specific order to maximize their
// coverage by a single signed 16-bit offset from the TOC base pointer.
// Conversely, the special .tocbss section should be first among all SHT_NOBITS
// sections. This will put it next to the loaded special PPC64 sections (and,
// thus, within reach of the TOC base pointer).
static int getPPC64SectionRank(StringRef SectionName) {
  return StringSwitch<int>(SectionName)
      .Case(".tocbss", 0)
      .Case(".branch_lt", 2)
      .Case(".toc", 3)
      .Case(".toc1", 4)
      .Case(".opd", 5)
      .Default(1);
}

template <class ELFT> static bool isRelroSection(OutputSectionBase<ELFT> *Sec) {
  if (!Config->ZRelro)
    return false;
  typename ELFT::uint Flags = Sec->getFlags();
  if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
    return false;
  if (Flags & SHF_TLS)
    return true;
  uint32_t Type = Sec->getType();
  if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
      Type == SHT_PREINIT_ARRAY)
    return true;
  if (Sec == Out<ELFT>::GotPlt)
    return Config->ZNow;
  if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got)
    return true;
  StringRef S = Sec->getName();
  return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" ||
         S == ".eh_frame";
}

// Output section ordering is determined by this function.
template <class ELFT>
static bool compareSections(OutputSectionBase<ELFT> *A,
                            OutputSectionBase<ELFT> *B) {
  typedef typename ELFT::uint uintX_t;

  int Comp = Script<ELFT>::X->compareSections(A->getName(), B->getName());
  if (Comp != 0)
    return Comp < 0;

  uintX_t AFlags = A->getFlags();
  uintX_t BFlags = B->getFlags();

  // Allocatable sections go first to reduce the total PT_LOAD size and
  // so debug info doesn't change addresses in actual code.
  bool AIsAlloc = AFlags & SHF_ALLOC;
  bool BIsAlloc = BFlags & SHF_ALLOC;
  if (AIsAlloc != BIsAlloc)
    return AIsAlloc;

  // We don't have any special requirements for the relative order of
  // two non allocatable sections.
  if (!AIsAlloc)
    return false;

  // We want the read only sections first so that they go in the PT_LOAD
  // covering the program headers at the start of the file.
  bool AIsWritable = AFlags & SHF_WRITE;
  bool BIsWritable = BFlags & SHF_WRITE;
  if (AIsWritable != BIsWritable)
    return BIsWritable;

  // For a corresponding reason, put non exec sections first (the program
  // header PT_LOAD is not executable).
  bool AIsExec = AFlags & SHF_EXECINSTR;
  bool BIsExec = BFlags & SHF_EXECINSTR;
  if (AIsExec != BIsExec)
    return BIsExec;

  // If we got here we know that both A and B are in the same PT_LOAD.

  // The TLS initialization block needs to be a single contiguous block in a R/W
  // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS
  // sections are placed here as they don't take up virtual address space in the
  // PT_LOAD.
  bool AIsTls = AFlags & SHF_TLS;
  bool BIsTls = BFlags & SHF_TLS;
  if (AIsTls != BIsTls)
    return AIsTls;

  // The next requirement we have is to put nobits sections last. The
  // reason is that the only thing the dynamic linker will see about
  // them is a p_memsz that is larger than p_filesz. Seeing that it
  // zeros the end of the PT_LOAD, so that has to correspond to the
  // nobits sections.
  bool AIsNoBits = A->getType() == SHT_NOBITS;
  bool BIsNoBits = B->getType() == SHT_NOBITS;
  if (AIsNoBits != BIsNoBits)
    return BIsNoBits;

  // We place RelRo section before plain r/w ones.
  bool AIsRelRo = isRelroSection(A);
  bool BIsRelRo = isRelroSection(B);
  if (AIsRelRo != BIsRelRo)
    return AIsRelRo;

  // Some architectures have additional ordering restrictions for sections
  // within the same PT_LOAD.
  if (Config->EMachine == EM_PPC64)
    return getPPC64SectionRank(A->getName()) <
           getPPC64SectionRank(B->getName());

  return false;
}

// Until this function is called, common symbols do not belong to any section.
// This function adds them to end of BSS section.
template <class ELFT>
void Writer<ELFT>::addCommonSymbols(std::vector<DefinedCommon *> &Syms) {
  if (Syms.empty())
    return;

  // Sort the common symbols by alignment as an heuristic to pack them better.
  std::stable_sort(Syms.begin(), Syms.end(),
                   [](const DefinedCommon *A, const DefinedCommon *B) {
                     return A->Alignment > B->Alignment;
                   });

  uintX_t Off = Out<ELFT>::Bss->getSize();
  for (DefinedCommon *C : Syms) {
    Off = alignTo(Off, C->Alignment);
    Out<ELFT>::Bss->updateAlignment(C->Alignment);
    C->OffsetInBss = Off;
    Off += C->Size;
  }

  Out<ELFT>::Bss->setSize(Off);
}

template <class ELFT>
static Symbol *addOptionalSynthetic(SymbolTable<ELFT> &Table, StringRef Name,
                                    OutputSectionBase<ELFT> *Sec,
                                    typename ELFT::uint Val) {
  SymbolBody *S = Table.find(Name);
  if (!S)
    return nullptr;
  if (!S->isUndefined() && !S->isShared())
    return S->symbol();
  return Table.addSynthetic(Name, Sec, Val);
}

// The beginning and the ending of .rel[a].plt section are marked
// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
// executable. The runtime needs these symbols in order to resolve
// all IRELATIVE relocs on startup. For dynamic executables, we don't
// need these symbols, since IRELATIVE relocs are resolved through GOT
// and PLT. For details, see http://www.airs.com/blog/archives/403.
template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
  if (isOutputDynamic() || !Out<ELFT>::RelaPlt)
    return;
  StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start";
  addOptionalSynthetic(Symtab, S, Out<ELFT>::RelaPlt, 0);

  S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end";
  addOptionalSynthetic(Symtab, S, Out<ELFT>::RelaPlt,
                       DefinedSynthetic<ELFT>::SectionEnd);
}

// The linker is expected to define some symbols depending on
// the linking result. This function defines such symbols.
template <class ELFT> void Writer<ELFT>::addReservedSymbols() {
  if (Config->EMachine == EM_MIPS) {
    // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
    // so that it points to an absolute address which is relative to GOT.
    // See "Global Data Symbols" in Chapter 6 in the following document:
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
    Symtab.addSynthetic("_gp", Out<ELFT>::Got, MipsGPOffset);

    // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
    // start of function and 'gp' pointer into GOT.
    Symbol *Sym =
        addOptionalSynthetic(Symtab, "_gp_disp", Out<ELFT>::Got, MipsGPOffset);
    if (Sym)
      ElfSym<ELFT>::MipsGpDisp = Sym->body();

    // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
    // pointer. This symbol is used in the code generated by .cpload pseudo-op
    // in case of using -mno-shared option.
    // https://sourceware.org/ml/binutils/2004-12/msg00094.html
    addOptionalSynthetic(Symtab, "__gnu_local_gp", Out<ELFT>::Got,
                         MipsGPOffset);
  }

  // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol
  // is magical and is used to produce a R_386_GOTPC relocation.
  // The R_386_GOTPC relocation value doesn't actually depend on the
  // symbol value, so it could use an index of STN_UNDEF which, according
  // to the spec, means the symbol value is 0.
  // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in
  // the object file.
  // The situation is even stranger on x86_64 where the assembly doesn't
  // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as
  // an undefined symbol in the .o files.
  // Given that the symbol is effectively unused, we just create a dummy
  // hidden one to avoid the undefined symbol error.
  if (!Config->Relocatable)
    Symtab.addIgnored("_GLOBAL_OFFSET_TABLE_");

  // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For
  // static linking the linker is required to optimize away any references to
  // __tls_get_addr, so it's not defined anywhere. Create a hidden definition
  // to avoid the undefined symbol error.
  if (!isOutputDynamic())
    Symtab.addIgnored("__tls_get_addr");

  auto Define = [this](StringRef S, DefinedRegular<ELFT> *&Sym1,
                       DefinedRegular<ELFT> *&Sym2) {
    Sym1 = Symtab.addIgnored(S, STV_DEFAULT);

    // The name without the underscore is not a reserved name,
    // so it is defined only when there is a reference against it.
    assert(S.startswith("_"));
    S = S.substr(1);
    if (SymbolBody *B = Symtab.find(S))
      if (B->isUndefined())
        Sym2 = Symtab.addAbsolute(S, STV_DEFAULT);
  };

  Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2);
  Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2);
  Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2);
}

// Sort input sections by section name suffixes for
// __attribute__((init_priority(N))).
template <class ELFT> static void sortInitFini(OutputSectionBase<ELFT> *S) {
  if (S)
    reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini();
}

// Sort input sections by the special rule for .ctors and .dtors.
template <class ELFT> static void sortCtorsDtors(OutputSectionBase<ELFT> *S) {
  if (S)
    reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors();
}

// Create output section objects and add them to OutputSections.
template <class ELFT> void Writer<ELFT>::createSections() {
  // Create output sections for input object file sections.
  std::vector<OutputSectionBase<ELFT> *> RegularSections;
  OutputSectionFactory<ELFT> Factory;
  for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F :
       Symtab.getObjectFiles()) {
    for (InputSectionBase<ELFT> *C : F->getSections()) {
      if (isDiscarded(C)) {
        reportDiscarded(C, F);
        continue;
      }
      OutputSectionBase<ELFT> *Sec;
      bool IsNew;
      std::tie(Sec, IsNew) = Factory.create(C, getOutputSectionName(C));
      if (IsNew) {
        OwningSections.emplace_back(Sec);
        OutputSections.push_back(Sec);
        RegularSections.push_back(Sec);
      }
      Sec->addSection(C);
    }
  }

  // If we have a .opd section (used under PPC64 for function descriptors),
  // store a pointer to it here so that we can use it later when processing
  // relocations.
  Out<ELFT>::Opd = Factory.lookup(".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC);

  Out<ELFT>::Dynamic->PreInitArraySec = Factory.lookup(
      ".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC);
  Out<ELFT>::Dynamic->InitArraySec =
      Factory.lookup(".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC);
  Out<ELFT>::Dynamic->FiniArraySec =
      Factory.lookup(".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC);

  // Sort section contents for __attribute__((init_priority(N)).
  sortInitFini(Out<ELFT>::Dynamic->InitArraySec);
  sortInitFini(Out<ELFT>::Dynamic->FiniArraySec);
  sortCtorsDtors(Factory.lookup(".ctors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC));
  sortCtorsDtors(Factory.lookup(".dtors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC));

  // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
  // symbols for sections, so that the runtime can get the start and end
  // addresses of each section by section name. Add such symbols.
  if (!Config->Relocatable) {
    addStartEndSymbols();
    for (OutputSectionBase<ELFT> *Sec : RegularSections)
      addStartStopSymbols(Sec);
  }

  // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
  // It should be okay as no one seems to care about the type.
  // Even the author of gold doesn't remember why gold behaves that way.
  // https://sourceware.org/ml/binutils/2002-03/msg00360.html
  if (isOutputDynamic())
    Symtab.addSynthetic("_DYNAMIC", Out<ELFT>::Dynamic, 0);

  // Define __rel[a]_iplt_{start,end} symbols if needed.
  addRelIpltSymbols();

  // Add scripted symbols with zero values now.
  // Real values will be assigned later
  Script<ELFT>::X->addScriptedSymbols();

  if (!Out<ELFT>::EhFrame->empty()) {
    OutputSections.push_back(Out<ELFT>::EhFrame);
    Out<ELFT>::EhFrame->finalize();
  }

  // Scan relocations. This must be done after every symbol is declared so that
  // we can correctly decide if a dynamic relocation is needed.
  for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F :
       Symtab.getObjectFiles()) {
    for (InputSectionBase<ELFT> *C : F->getSections()) {
      if (isDiscarded(C))
        continue;
      if (auto *S = dyn_cast<InputSection<ELFT>>(C)) {
        scanRelocations(*S);
        continue;
      }
      if (auto *S = dyn_cast<EhInputSection<ELFT>>(C))
        if (S->RelocSection)
          scanRelocations(*S, *S->RelocSection);
    }
  }

  for (OutputSectionBase<ELFT> *Sec : OutputSections)
    Sec->assignOffsets();

  // Now that we have defined all possible symbols including linker-
  // synthesized ones. Visit all symbols to give the finishing touches.
  std::vector<DefinedCommon *> CommonSymbols;
  for (Symbol *S : Symtab.getSymbols()) {
    SymbolBody *Body = S->body();

    // We only report undefined symbols in regular objects. This means that we
    // will accept an undefined reference in bitcode if it can be optimized out.
    if (S->IsUsedInRegularObj && Body->isUndefined() && !S->isWeak())
      reportUndefined<ELFT>(Symtab, Body);

    if (auto *C = dyn_cast<DefinedCommon>(Body))
      CommonSymbols.push_back(C);

    if (!includeInSymtab<ELFT>(*Body))
      continue;
    if (Out<ELFT>::SymTab)
      Out<ELFT>::SymTab->addSymbol(Body);

    if (isOutputDynamic() && S->includeInDynsym()) {
      Out<ELFT>::DynSymTab->addSymbol(Body);
      if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body))
        if (SS->File->isNeeded())
          Out<ELFT>::VerNeed->addSymbol(SS);
    }
  }

  // Do not proceed if there was an undefined symbol.
  if (HasError)
    return;

  addCommonSymbols(CommonSymbols);

  // So far we have added sections from input object files.
  // This function adds linker-created Out<ELFT>::* sections.
  addPredefinedSections();

  std::stable_sort(OutputSections.begin(), OutputSections.end(),
                   compareSections<ELFT>);

  unsigned I = 1;
  for (OutputSectionBase<ELFT> *Sec : OutputSections) {
    Sec->SectionIndex = I++;
    Sec->setSHName(Out<ELFT>::ShStrTab->addString(Sec->getName()));
  }

  // Finalizers fix each section's size.
  // .dynsym is finalized early since that may fill up .gnu.hash.
  if (isOutputDynamic())
    Out<ELFT>::DynSymTab->finalize();

  // Fill other section headers. The dynamic table is finalized
  // at the end because some tags like RELSZ depend on result
  // of finalizing other sections. The dynamic string table is
  // finalized once the .dynamic finalizer has added a few last
  // strings. See DynamicSection::finalize()
  for (OutputSectionBase<ELFT> *Sec : OutputSections)
    if (Sec != Out<ELFT>::DynStrTab && Sec != Out<ELFT>::Dynamic)
      Sec->finalize();

  if (isOutputDynamic())
    Out<ELFT>::Dynamic->finalize();

  // Now that all output offsets are fixed. Finalize mergeable sections
  // to fix their maps from input offsets to output offsets.
  for (OutputSectionBase<ELFT> *Sec : OutputSections)
    Sec->finalizePieces();
}

template <class ELFT> bool Writer<ELFT>::needsGot() {
  if (!Out<ELFT>::Got->empty())
    return true;

  // We add the .got section to the result for dynamic MIPS target because
  // its address and properties are mentioned in the .dynamic section.
  if (Config->EMachine == EM_MIPS)
    return true;

  // If we have a relocation that is relative to GOT (such as GOTOFFREL),
  // we need to emit a GOT even if it's empty.
  return Out<ELFT>::Got->HasGotOffRel;
}

// This function add Out<ELFT>::* sections to OutputSections.
template <class ELFT> void Writer<ELFT>::addPredefinedSections() {
  auto Add = [&](OutputSectionBase<ELFT> *C) {
    if (C)
      OutputSections.push_back(C);
  };

  // A core file does not usually contain unmodified segments except
  // the first page of the executable. Add the build ID section to beginning of
  // the file so that the section is included in the first page.
  if (Out<ELFT>::BuildId)
    OutputSections.insert(OutputSections.begin(), Out<ELFT>::BuildId);

  // Add .interp at first because some loaders want to see that section
  // on the first page of the executable file when loaded into memory.
  if (needsInterpSection())
    OutputSections.insert(OutputSections.begin(), Out<ELFT>::Interp);

  // This order is not the same as the final output order
  // because we sort the sections using their attributes below.
  Add(Out<ELFT>::SymTab);
  Add(Out<ELFT>::ShStrTab);
  Add(Out<ELFT>::StrTab);
  if (isOutputDynamic()) {
    Add(Out<ELFT>::DynSymTab);

    bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0;
    if (Out<ELFT>::VerDef || HasVerNeed)
      Add(Out<ELFT>::VerSym);
    Add(Out<ELFT>::VerDef);
    if (HasVerNeed)
      Add(Out<ELFT>::VerNeed);

    Add(Out<ELFT>::GnuHashTab);
    Add(Out<ELFT>::HashTab);
    Add(Out<ELFT>::Dynamic);
    Add(Out<ELFT>::DynStrTab);
    if (Out<ELFT>::RelaDyn->hasRelocs())
      Add(Out<ELFT>::RelaDyn);
    Add(Out<ELFT>::MipsRldMap);
  }

  // We always need to add rel[a].plt to output if it has entries.
  // Even during static linking it can contain R_[*]_IRELATIVE relocations.
  if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) {
    Add(Out<ELFT>::RelaPlt);
    Out<ELFT>::RelaPlt->Static = !isOutputDynamic();
  }

  if (needsGot())
    Add(Out<ELFT>::Got);
  if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty())
    Add(Out<ELFT>::GotPlt);
  if (!Out<ELFT>::Plt->empty())
    Add(Out<ELFT>::Plt);
  if (!Out<ELFT>::EhFrame->empty())
    Add(Out<ELFT>::EhFrameHdr);
  if (Out<ELFT>::Bss->getSize() > 0)
    Add(Out<ELFT>::Bss);
}

// The linker is expected to define SECNAME_start and SECNAME_end
// symbols for a few sections. This function defines them.
template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
  auto Define = [&](StringRef Start, StringRef End,
                    OutputSectionBase<ELFT> *OS) {
    if (OS) {
      this->Symtab.addSynthetic(Start, OS, 0);
      this->Symtab.addSynthetic(End, OS, DefinedSynthetic<ELFT>::SectionEnd);
    } else {
      addOptionalSynthetic(this->Symtab, Start,
                           (OutputSectionBase<ELFT> *)nullptr, 0);
      addOptionalSynthetic(this->Symtab, End,
                           (OutputSectionBase<ELFT> *)nullptr, 0);
    }
  };

  Define("__preinit_array_start", "__preinit_array_end",
         Out<ELFT>::Dynamic->PreInitArraySec);
  Define("__init_array_start", "__init_array_end",
         Out<ELFT>::Dynamic->InitArraySec);
  Define("__fini_array_start", "__fini_array_end",
         Out<ELFT>::Dynamic->FiniArraySec);
}

// If a section name is valid as a C identifier (which is rare because of
// the leading '.'), linkers are expected to define __start_<secname> and
// __stop_<secname> symbols. They are at beginning and end of the section,
// respectively. This is not requested by the ELF standard, but GNU ld and
// gold provide the feature, and used by many programs.
template <class ELFT>
void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) {
  StringRef S = Sec->getName();
  if (!isValidCIdentifier(S))
    return;
  StringSaver Saver(Alloc);
  StringRef Start = Saver.save("__start_" + S);
  StringRef Stop = Saver.save("__stop_" + S);
  if (SymbolBody *B = Symtab.find(Start))
    if (B->isUndefined())
      Symtab.addSynthetic(Start, Sec, 0);
  if (SymbolBody *B = Symtab.find(Stop))
    if (B->isUndefined())
      Symtab.addSynthetic(Stop, Sec, DefinedSynthetic<ELFT>::SectionEnd);
}

template <class ELFT> static bool needsPtLoad(OutputSectionBase<ELFT> *Sec) {
  if (!(Sec->getFlags() & SHF_ALLOC))
    return false;

  // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
  // responsible for allocating space for them, not the PT_LOAD that
  // contains the TLS initialization image.
  if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS)
    return false;
  return true;
}

static uint32_t toPhdrFlags(uint64_t Flags) {
  uint32_t Ret = PF_R;
  if (Flags & SHF_WRITE)
    Ret |= PF_W;
  if (Flags & SHF_EXECINSTR)
    Ret |= PF_X;
  return Ret;
}

// Decide which program headers to create and which sections to include in each
// one.
template <class ELFT> void Writer<ELFT>::createPhdrs() {
  auto AddHdr = [this](unsigned Type, unsigned Flags) {
    return &*Phdrs.emplace(Phdrs.end(), Type, Flags);
  };

  auto AddSec = [](Phdr &Hdr, OutputSectionBase<ELFT> *Sec) {
    Hdr.Last = Sec;
    if (!Hdr.First)
      Hdr.First = Sec;
    Hdr.H.p_align = std::max<uintX_t>(Hdr.H.p_align, Sec->getAlignment());
  };

  // The first phdr entry is PT_PHDR which describes the program header itself.
  Phdr &Hdr = *AddHdr(PT_PHDR, PF_R);
  AddSec(Hdr, Out<ELFT>::ProgramHeaders);

  // PT_INTERP must be the second entry if exists.
  if (needsInterpSection()) {
    Phdr &Hdr = *AddHdr(PT_INTERP, toPhdrFlags(Out<ELFT>::Interp->getFlags()));
    AddSec(Hdr, Out<ELFT>::Interp);
  }

  // Add the first PT_LOAD segment for regular output sections.
  uintX_t Flags = PF_R;
  Phdr *Load = AddHdr(PT_LOAD, Flags);
  AddSec(*Load, Out<ELFT>::ElfHeader);
  AddSec(*Load, Out<ELFT>::ProgramHeaders);

  Phdr TlsHdr(PT_TLS, PF_R);
  Phdr RelRo(PT_GNU_RELRO, PF_R);
  Phdr Note(PT_NOTE, PF_R);
  for (OutputSectionBase<ELFT> *Sec : OutputSections) {
    if (!(Sec->getFlags() & SHF_ALLOC))
      break;

    // If we meet TLS section then we create TLS header
    // and put all TLS sections inside for futher use when
    // assign addresses.
    if (Sec->getFlags() & SHF_TLS)
      AddSec(TlsHdr, Sec);

    if (!needsPtLoad<ELFT>(Sec))
      continue;

    // If flags changed then we want new load segment.
    uintX_t NewFlags = toPhdrFlags(Sec->getFlags());
    if (Flags != NewFlags) {
      Load = AddHdr(PT_LOAD, NewFlags);
      Flags = NewFlags;
    }

    AddSec(*Load, Sec);

    if (isRelroSection(Sec))
      AddSec(RelRo, Sec);
    if (Sec->getType() == SHT_NOTE)
      AddSec(Note, Sec);
  }

  // Add the TLS segment unless it's empty.
  if (TlsHdr.First)
    Phdrs.push_back(std::move(TlsHdr));

  // Add an entry for .dynamic.
  if (isOutputDynamic()) {
    Phdr &H = *AddHdr(PT_DYNAMIC, toPhdrFlags(Out<ELFT>::Dynamic->getFlags()));
    AddSec(H, Out<ELFT>::Dynamic);
  }

  // PT_GNU_RELRO includes all sections that should be marked as
  // read-only by dynamic linker after proccessing relocations.
  if (RelRo.First)
    Phdrs.push_back(std::move(RelRo));

  // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
  if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) {
    Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME,
                        toPhdrFlags(Out<ELFT>::EhFrameHdr->getFlags()));
    AddSec(Hdr, Out<ELFT>::EhFrameHdr);
  }

  // PT_GNU_STACK is a special section to tell the loader to make the
  // pages for the stack non-executable.
  if (!Config->ZExecStack)
    AddHdr(PT_GNU_STACK, PF_R | PF_W);

  if (Note.First)
    Phdrs.push_back(std::move(Note));

  Out<ELFT>::ProgramHeaders->setSize(sizeof(Elf_Phdr) * Phdrs.size());
}

// The first section of each PT_LOAD and the first section after PT_GNU_RELRO
// have to be page aligned so that the dynamic linker can set the permissions.
template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
  for (const Phdr &P : Phdrs)
    if (P.H.p_type == PT_LOAD)
      P.First->PageAlign = true;

  for (const Phdr &P : Phdrs) {
    if (P.H.p_type != PT_GNU_RELRO)
      continue;
    // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
    // have to align it to a page.
    auto End = OutputSections.end();
    auto I = std::find(OutputSections.begin(), End, P.Last);
    if (I == End || (I + 1) == End)
      continue;
    OutputSectionBase<ELFT> *Sec = *(I + 1);
    if (needsPtLoad(Sec))
      Sec->PageAlign = true;
  }
}

// We should set file offsets and VAs for elf header and program headers
// sections. These are special, we do not include them into output sections
// list, but have them to simplify the code.
template <class ELFT> void Writer<ELFT>::fixHeaders() {
  uintX_t BaseVA = ScriptConfig->DoLayout ? 0 : Config->ImageBase;
  Out<ELFT>::ElfHeader->setVA(BaseVA);
  uintX_t Off = Out<ELFT>::ElfHeader->getSize();
  Out<ELFT>::ProgramHeaders->setVA(Off + BaseVA);
}

// Assign VAs (addresses at run-time) to output sections.
template <class ELFT> void Writer<ELFT>::assignAddresses() {
  uintX_t VA = Config->ImageBase + Out<ELFT>::ElfHeader->getSize() +
               Out<ELFT>::ProgramHeaders->getSize();

  uintX_t ThreadBssOffset = 0;
  for (OutputSectionBase<ELFT> *Sec : OutputSections) {
    uintX_t Alignment = Sec->getAlignment();
    if (Sec->PageAlign)
      Alignment = std::max<uintX_t>(Alignment, Target->PageSize);

    // We only assign VAs to allocated sections.
    if (needsPtLoad<ELFT>(Sec)) {
      VA = alignTo(VA, Alignment);
      Sec->setVA(VA);
      VA += Sec->getSize();
    } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) {
      uintX_t TVA = VA + ThreadBssOffset;
      TVA = alignTo(TVA, Alignment);
      Sec->setVA(TVA);
      ThreadBssOffset = TVA - VA + Sec->getSize();
    }
  }
}

// Adjusts the file alignment for a given output section and returns
// its new file offset. The file offset must be the same with its
// virtual address (modulo the page size) so that the loader can load
// executables without any address adjustment.
template <class ELFT, class uintX_t>
static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase<ELFT> *Sec) {
  uintX_t Alignment = Sec->getAlignment();
  if (Sec->PageAlign)
    Alignment = std::max<uintX_t>(Alignment, Target->PageSize);
  Off = alignTo(Off, Alignment);

  // Relocatable output does not have program headers
  // and does not need any other offset adjusting.
  if (Config->Relocatable || !(Sec->getFlags() & SHF_ALLOC))
    return Off;
  return alignTo(Off, Target->PageSize, Sec->getVA());
}

// Assign file offsets to output sections.
template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
  uintX_t Off = 0;

  auto Set = [&](OutputSectionBase<ELFT> *Sec) {
    if (Sec->getType() == SHT_NOBITS) {
      Sec->setFileOffset(Off);
      return;
    }

    Off = getFileAlignment<ELFT>(Off, Sec);
    Sec->setFileOffset(Off);
    Off += Sec->getSize();
  };

  Set(Out<ELFT>::ElfHeader);
  Set(Out<ELFT>::ProgramHeaders);
  for (OutputSectionBase<ELFT> *Sec : OutputSections)
    Set(Sec);

  SectionHeaderOff = alignTo(Off, sizeof(uintX_t));
  FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);
}

// Finalize the program headers. We call this function after we assign
// file offsets and VAs to all sections.
template <class ELFT> void Writer<ELFT>::setPhdrs() {
  for (Phdr &P : Phdrs) {
    Elf_Phdr &H = P.H;
    OutputSectionBase<ELFT> *First = P.First;
    OutputSectionBase<ELFT> *Last = P.Last;
    if (First) {
      H.p_filesz = Last->getFileOff() - First->getFileOff();
      if (Last->getType() != SHT_NOBITS)
        H.p_filesz += Last->getSize();
      H.p_memsz = Last->getVA() + Last->getSize() - First->getVA();
      H.p_offset = First->getFileOff();
      H.p_vaddr = First->getVA();
    }
    if (H.p_type == PT_LOAD)
      H.p_align = Target->PageSize;
    else if (H.p_type == PT_GNU_RELRO)
      H.p_align = 1;
    H.p_paddr = H.p_vaddr;

    // The TLS pointer goes after PT_TLS. At least glibc will align it,
    // so round up the size to make sure the offsets are correct.
    if (H.p_type == PT_TLS) {
      Out<ELFT>::TlsPhdr = &H;
      H.p_memsz = alignTo(H.p_memsz, H.p_align);
    }
  }
}

static uint32_t getMipsEFlags(bool Is64Bits) {
  // FIXME: In fact ELF flags depends on ELF flags of input object files
  // and selected emulation. For now just use hard coded values.
  if (Is64Bits)
    return EF_MIPS_CPIC | EF_MIPS_PIC | EF_MIPS_ARCH_64R2;

  uint32_t V = EF_MIPS_CPIC | EF_MIPS_ABI_O32 | EF_MIPS_ARCH_32R2;
  if (Config->Shared)
    V |= EF_MIPS_PIC;
  return V;
}

template <class ELFT> static typename ELFT::uint getEntryAddr() {
  if (Symbol *S = Config->EntrySym)
    return S->body()->getVA<ELFT>();
  if (Config->EntryAddr != uint64_t(-1))
    return Config->EntryAddr;
  return 0;
}

template <class ELFT> static uint8_t getELFEncoding() {
  if (ELFT::TargetEndianness == llvm::support::little)
    return ELFDATA2LSB;
  return ELFDATA2MSB;
}

static uint16_t getELFType() {
  if (Config->Pic)
    return ET_DYN;
  if (Config->Relocatable)
    return ET_REL;
  return ET_EXEC;
}

// This function is called after we have assigned address and size
// to each section. This function fixes some predefined absolute
// symbol values that depend on section address and size.
template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() {
  auto Set = [](DefinedRegular<ELFT> *S1, DefinedRegular<ELFT> *S2, uintX_t V) {
    if (S1)
      S1->Value = V;
    if (S2)
      S2->Value = V;
  };

  // _etext is the first location after the last read-only loadable segment.
  // _edata is the first location after the last read-write loadable segment.
  // _end is the first location after the uninitialized data region.
  for (Phdr &P : Phdrs) {
    Elf_Phdr &H = P.H;
    if (H.p_type != PT_LOAD)
      continue;
    Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, H.p_vaddr + H.p_memsz);

    uintX_t Val = H.p_vaddr + H.p_filesz;
    if (H.p_flags & PF_W)
      Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, Val);
    else
      Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, Val);
  }
}

template <class ELFT> void Writer<ELFT>::writeHeader() {
  uint8_t *Buf = Buffer->getBufferStart();
  memcpy(Buf, "\177ELF", 4);

  auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf);

  // Write the ELF header.
  auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
  EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
  EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>();
  EHdr->e_ident[EI_VERSION] = EV_CURRENT;
  EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI();
  EHdr->e_type = getELFType();
  EHdr->e_machine = FirstObj.EMachine;
  EHdr->e_version = EV_CURRENT;
  EHdr->e_entry = getEntryAddr<ELFT>();
  EHdr->e_shoff = SectionHeaderOff;
  EHdr->e_ehsize = sizeof(Elf_Ehdr);
  EHdr->e_phnum = Phdrs.size();
  EHdr->e_shentsize = sizeof(Elf_Shdr);
  EHdr->e_shnum = OutputSections.size() + 1;
  EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex;

  if (Config->EMachine == EM_MIPS)
    EHdr->e_flags = getMipsEFlags(ELFT::Is64Bits);

  if (!Config->Relocatable) {
    EHdr->e_phoff = sizeof(Elf_Ehdr);
    EHdr->e_phentsize = sizeof(Elf_Phdr);
  }

  // Write the program header table.
  auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
  for (Phdr &P : Phdrs)
    *HBuf++ = P.H;

  // Write the section header table. Note that the first table entry is null.
  auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
  for (OutputSectionBase<ELFT> *Sec : OutputSections)
    Sec->writeHeaderTo(++SHdrs);
}

template <class ELFT> void Writer<ELFT>::openFile() {
  ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
      FileOutputBuffer::create(Config->OutputFile, FileSize,
                               FileOutputBuffer::F_executable);
  if (auto EC = BufferOrErr.getError())
    error(EC, "failed to open " + Config->OutputFile);
  else
    Buffer = std::move(*BufferOrErr);
}

// Write section contents to a mmap'ed file.
template <class ELFT> void Writer<ELFT>::writeSections() {
  uint8_t *Buf = Buffer->getBufferStart();

  // PPC64 needs to process relocations in the .opd section before processing
  // relocations in code-containing sections.
  if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) {
    Out<ELFT>::OpdBuf = Buf + Sec->getFileOff();
    Sec->writeTo(Buf + Sec->getFileOff());
  }

  for (OutputSectionBase<ELFT> *Sec : OutputSections)
    if (Sec != Out<ELFT>::Opd)
      Sec->writeTo(Buf + Sec->getFileOff());
}

template <class ELFT> void Writer<ELFT>::writeBuildId() {
  BuildIdSection<ELFT> *S = Out<ELFT>::BuildId;
  if (!S)
    return;

  // Compute a hash of all sections except .debug_* sections.
  // We skip debug sections because they tend to be very large
  // and their contents are very likely to be the same as long as
  // other sections are the same.
  uint8_t *Start = Buffer->getBufferStart();
  uint8_t *Last = Start;
  std::vector<ArrayRef<uint8_t>> Regions;
  for (OutputSectionBase<ELFT> *Sec : OutputSections) {
    uint8_t *End = Start + Sec->getFileOff();
    if (!Sec->getName().startswith(".debug_"))
      Regions.push_back({Last, End});
    Last = End;
  }
  Regions.push_back({Last, Start + FileSize});
  S->writeBuildId(Regions);
}

template void elf::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab);
template void elf::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab);
template void elf::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab);
template void elf::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab);