aboutsummaryrefslogtreecommitdiff
path: root/ELF/Writer.cpp
blob: 5feff456ffa9669be58551c82f265fd351836325 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
//===- Writer.cpp ---------------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Writer.h"
#include "AArch64ErrataFix.h"
#include "Config.h"
#include "Filesystem.h"
#include "LinkerScript.h"
#include "MapFile.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "Strings.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Threads.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include <climits>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;

using namespace lld;
using namespace lld::elf;

namespace {
// The writer writes a SymbolTable result to a file.
template <class ELFT> class Writer {
public:
  Writer() : Buffer(errorHandler().OutputBuffer) {}
  typedef typename ELFT::Shdr Elf_Shdr;
  typedef typename ELFT::Ehdr Elf_Ehdr;
  typedef typename ELFT::Phdr Elf_Phdr;

  void run();

private:
  void copyLocalSymbols();
  void addSectionSymbols();
  void forEachRelSec(std::function<void(InputSectionBase &)> Fn);
  void sortSections();
  void resolveShfLinkOrder();
  void sortInputSections();
  void finalizeSections();
  void setReservedSymbolSections();

  std::vector<PhdrEntry *> createPhdrs();
  void removeEmptyPTLoad();
  void addPtArmExid(std::vector<PhdrEntry *> &Phdrs);
  void assignFileOffsets();
  void assignFileOffsetsBinary();
  void setPhdrs();
  void fixSectionAlignments();
  void openFile();
  void writeTrapInstr();
  void writeHeader();
  void writeSections();
  void writeSectionsBinary();
  void writeBuildId();

  std::unique_ptr<FileOutputBuffer> &Buffer;

  void addRelIpltSymbols();
  void addStartEndSymbols();
  void addStartStopSymbols(OutputSection *Sec);
  uint64_t getEntryAddr();

  std::vector<PhdrEntry *> Phdrs;

  uint64_t FileSize;
  uint64_t SectionHeaderOff;

  bool HasGotBaseSym = false;
};
} // anonymous namespace

StringRef elf::getOutputSectionName(InputSectionBase *S) {
  // ".zdebug_" is a prefix for ZLIB-compressed sections.
  // Because we decompressed input sections, we want to remove 'z'.
  if (S->Name.startswith(".zdebug_"))
    return Saver.save("." + S->Name.substr(2));

  if (Config->Relocatable)
    return S->Name;

  // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
  // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
  // technically required, but not doing it is odd). This code guarantees that.
  if ((S->Type == SHT_REL || S->Type == SHT_RELA) &&
      !isa<SyntheticSection>(S)) {
    OutputSection *Out =
        cast<InputSection>(S)->getRelocatedSection()->getOutputSection();
    if (S->Type == SHT_RELA)
      return Saver.save(".rela" + Out->Name);
    return Saver.save(".rel" + Out->Name);
  }

  for (StringRef V :
       {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
        ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
        ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."}) {
    StringRef Prefix = V.drop_back();
    if (S->Name.startswith(V) || S->Name == Prefix)
      return Prefix;
  }

  // CommonSection is identified as "COMMON" in linker scripts.
  // By default, it should go to .bss section.
  if (S->Name == "COMMON")
    return ".bss";

  return S->Name;
}

static bool needsInterpSection() {
  return !SharedFiles.empty() && !Config->DynamicLinker.empty() &&
         Script->needsInterpSection();
}

template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); }

template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() {
  llvm::erase_if(Phdrs, [&](const PhdrEntry *P) {
    if (P->p_type != PT_LOAD)
      return false;
    if (!P->FirstSec)
      return true;
    uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr;
    return Size == 0;
  });
}

template <class ELFT> static void combineEhFrameSections() {
  for (InputSectionBase *&S : InputSections) {
    EhInputSection *ES = dyn_cast<EhInputSection>(S);
    if (!ES || !ES->Live)
      continue;

    InX::EhFrame->addSection<ELFT>(ES);
    S = nullptr;
  }

  std::vector<InputSectionBase *> &V = InputSections;
  V.erase(std::remove(V.begin(), V.end(), nullptr), V.end());
}

static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec,
                                   uint64_t Val, uint8_t StOther = STV_HIDDEN,
                                   uint8_t Binding = STB_GLOBAL) {
  Symbol *S = Symtab->find(Name);
  if (!S || S->isDefined())
    return nullptr;
  Symbol *Sym = Symtab->addRegular(Name, StOther, STT_NOTYPE, Val,
                                   /*Size=*/0, Binding, Sec,
                                   /*File=*/nullptr);
  return cast<Defined>(Sym);
}

// The linker is expected to define some symbols depending on
// the linking result. This function defines such symbols.
void elf::addReservedSymbols() {
  if (Config->EMachine == EM_MIPS) {
    // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
    // so that it points to an absolute address which by default is relative
    // to GOT. Default offset is 0x7ff0.
    // See "Global Data Symbols" in Chapter 6 in the following document:
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
    ElfSym::MipsGp = Symtab->addAbsolute("_gp", STV_HIDDEN, STB_GLOBAL);

    // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
    // start of function and 'gp' pointer into GOT.
    if (Symtab->find("_gp_disp"))
      ElfSym::MipsGpDisp =
          Symtab->addAbsolute("_gp_disp", STV_HIDDEN, STB_GLOBAL);

    // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
    // pointer. This symbol is used in the code generated by .cpload pseudo-op
    // in case of using -mno-shared option.
    // https://sourceware.org/ml/binutils/2004-12/msg00094.html
    if (Symtab->find("__gnu_local_gp"))
      ElfSym::MipsLocalGp =
          Symtab->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_GLOBAL);
  }

  ElfSym::GlobalOffsetTable = addOptionalRegular(
      "_GLOBAL_OFFSET_TABLE_", Out::ElfHeader, Target->GotBaseSymOff);

  // __ehdr_start is the location of ELF file headers. Note that we define
  // this symbol unconditionally even when using a linker script, which
  // differs from the behavior implemented by GNU linker which only define
  // this symbol if ELF headers are in the memory mapped segment.
  // __executable_start is not documented, but the expectation of at
  // least the android libc is that it points to the elf header too.
  // __dso_handle symbol is passed to cxa_finalize as a marker to identify
  // each DSO. The address of the symbol doesn't matter as long as they are
  // different in different DSOs, so we chose the start address of the DSO.
  for (const char *Name :
       {"__ehdr_start", "__executable_start", "__dso_handle"})
    addOptionalRegular(Name, Out::ElfHeader, 0, STV_HIDDEN);

  // If linker script do layout we do not need to create any standart symbols.
  if (Script->HasSectionsCommand)
    return;

  auto Add = [](StringRef S, int64_t Pos) {
    return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT);
  };

  ElfSym::Bss = Add("__bss_start", 0);
  ElfSym::End1 = Add("end", -1);
  ElfSym::End2 = Add("_end", -1);
  ElfSym::Etext1 = Add("etext", -1);
  ElfSym::Etext2 = Add("_etext", -1);
  ElfSym::Edata1 = Add("edata", -1);
  ElfSym::Edata2 = Add("_edata", -1);
}

static OutputSection *findSection(StringRef Name) {
  for (BaseCommand *Base : Script->SectionCommands)
    if (auto *Sec = dyn_cast<OutputSection>(Base))
      if (Sec->Name == Name)
        return Sec;
  return nullptr;
}

// Initialize Out members.
template <class ELFT> static void createSyntheticSections() {
  // Initialize all pointers with NULL. This is needed because
  // you can call lld::elf::main more than once as a library.
  memset(&Out::First, 0, sizeof(Out));

  auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); };

  InX::DynStrTab = make<StringTableSection>(".dynstr", true);
  InX::Dynamic = make<DynamicSection<ELFT>>();
  if (Config->AndroidPackDynRelocs) {
    InX::RelaDyn = make<AndroidPackedRelocationSection<ELFT>>(
        Config->IsRela ? ".rela.dyn" : ".rel.dyn");
  } else {
    InX::RelaDyn = make<RelocationSection<ELFT>>(
        Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc);
  }
  InX::ShStrTab = make<StringTableSection>(".shstrtab", false);

  Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC);
  Out::ProgramHeaders->Alignment = Config->Wordsize;

  if (needsInterpSection()) {
    InX::Interp = createInterpSection();
    Add(InX::Interp);
  } else {
    InX::Interp = nullptr;
  }

  if (Config->Strip != StripPolicy::All) {
    InX::StrTab = make<StringTableSection>(".strtab", false);
    InX::SymTab = make<SymbolTableSection<ELFT>>(*InX::StrTab);
  }

  if (Config->BuildId != BuildIdKind::None) {
    InX::BuildId = make<BuildIdSection>();
    Add(InX::BuildId);
  }

  InX::Bss = make<BssSection>(".bss", 0, 1);
  Add(InX::Bss);

  // If there is a SECTIONS command and a .data.rel.ro section name use name
  // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
  // This makes sure our relro is contiguous.
  bool HasDataRelRo =
      Script->HasSectionsCommand && findSection(".data.rel.ro");
  InX::BssRelRo = make<BssSection>(
      HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
  Add(InX::BssRelRo);

  // Add MIPS-specific sections.
  if (Config->EMachine == EM_MIPS) {
    if (!Config->Shared && Config->HasDynSymTab) {
      InX::MipsRldMap = make<MipsRldMapSection>();
      Add(InX::MipsRldMap);
    }
    if (auto *Sec = MipsAbiFlagsSection<ELFT>::create())
      Add(Sec);
    if (auto *Sec = MipsOptionsSection<ELFT>::create())
      Add(Sec);
    if (auto *Sec = MipsReginfoSection<ELFT>::create())
      Add(Sec);
  }

  if (Config->HasDynSymTab) {
    InX::DynSymTab = make<SymbolTableSection<ELFT>>(*InX::DynStrTab);
    Add(InX::DynSymTab);

    In<ELFT>::VerSym = make<VersionTableSection<ELFT>>();
    Add(In<ELFT>::VerSym);

    if (!Config->VersionDefinitions.empty()) {
      In<ELFT>::VerDef = make<VersionDefinitionSection<ELFT>>();
      Add(In<ELFT>::VerDef);
    }

    In<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>();
    Add(In<ELFT>::VerNeed);

    if (Config->GnuHash) {
      InX::GnuHashTab = make<GnuHashTableSection>();
      Add(InX::GnuHashTab);
    }

    if (Config->SysvHash) {
      InX::HashTab = make<HashTableSection>();
      Add(InX::HashTab);
    }

    Add(InX::Dynamic);
    Add(InX::DynStrTab);
    Add(InX::RelaDyn);
  }

  // Add .got. MIPS' .got is so different from the other archs,
  // it has its own class.
  if (Config->EMachine == EM_MIPS) {
    InX::MipsGot = make<MipsGotSection>();
    Add(InX::MipsGot);
  } else {
    InX::Got = make<GotSection>();
    Add(InX::Got);
  }

  InX::GotPlt = make<GotPltSection>();
  Add(InX::GotPlt);
  InX::IgotPlt = make<IgotPltSection>();
  Add(InX::IgotPlt);

  if (Config->GdbIndex) {
    InX::GdbIndex = createGdbIndex<ELFT>();
    Add(InX::GdbIndex);
  }

  // We always need to add rel[a].plt to output if it has entries.
  // Even for static linking it can contain R_[*]_IRELATIVE relocations.
  InX::RelaPlt = make<RelocationSection<ELFT>>(
      Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/);
  Add(InX::RelaPlt);

  // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure
  // that the IRelative relocations are processed last by the dynamic loader.
  // We cannot place the iplt section in .rel.dyn when Android relocation
  // packing is enabled because that would cause a section type mismatch.
  // However, because the Android dynamic loader reads .rel.plt after .rel.dyn,
  // we can get the desired behaviour by placing the iplt section in .rel.plt.
  InX::RelaIplt = make<RelocationSection<ELFT>>(
      (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs)
          ? ".rel.dyn"
          : InX::RelaPlt->Name,
      false /*Sort*/);
  Add(InX::RelaIplt);

  InX::Plt = make<PltSection>(Target->PltHeaderSize);
  Add(InX::Plt);
  InX::Iplt = make<PltSection>(0);
  Add(InX::Iplt);

  if (!Config->Relocatable) {
    if (Config->EhFrameHdr) {
      InX::EhFrameHdr = make<EhFrameHeader>();
      Add(InX::EhFrameHdr);
    }
    InX::EhFrame = make<EhFrameSection>();
    Add(InX::EhFrame);
  }

  if (InX::SymTab)
    Add(InX::SymTab);
  Add(InX::ShStrTab);
  if (InX::StrTab)
    Add(InX::StrTab);

  if (Config->EMachine == EM_ARM && !Config->Relocatable)
    // Add a sentinel to terminate .ARM.exidx. It helps an unwinder
    // to find the exact address range of the last entry.
    Add(make<ARMExidxSentinelSection>());
}

// The main function of the writer.
template <class ELFT> void Writer<ELFT>::run() {
  // Create linker-synthesized sections such as .got or .plt.
  // Such sections are of type input section.
  createSyntheticSections<ELFT>();

  if (!Config->Relocatable)
    combineEhFrameSections<ELFT>();

  // We want to process linker script commands. When SECTIONS command
  // is given we let it create sections.
  Script->processSectionCommands();

  // Linker scripts controls how input sections are assigned to output sections.
  // Input sections that were not handled by scripts are called "orphans", and
  // they are assigned to output sections by the default rule. Process that.
  Script->addOrphanSections();

  if (Config->Discard != DiscardPolicy::All)
    copyLocalSymbols();

  if (Config->CopyRelocs)
    addSectionSymbols();

  // Now that we have a complete set of output sections. This function
  // completes section contents. For example, we need to add strings
  // to the string table, and add entries to .got and .plt.
  // finalizeSections does that.
  finalizeSections();
  if (errorCount())
    return;

  Script->assignAddresses();

  // If -compressed-debug-sections is specified, we need to compress
  // .debug_* sections. Do it right now because it changes the size of
  // output sections.
  for (OutputSection *Sec : OutputSections)
    Sec->maybeCompress<ELFT>();

  Script->allocateHeaders(Phdrs);

  // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
  // 0 sized region. This has to be done late since only after assignAddresses
  // we know the size of the sections.
  removeEmptyPTLoad();

  if (!Config->OFormatBinary)
    assignFileOffsets();
  else
    assignFileOffsetsBinary();

  setPhdrs();

  if (Config->Relocatable) {
    for (OutputSection *Sec : OutputSections)
      Sec->Addr = 0;
  }

  // It does not make sense try to open the file if we have error already.
  if (errorCount())
    return;
  // Write the result down to a file.
  openFile();
  if (errorCount())
    return;

  if (!Config->OFormatBinary) {
    writeTrapInstr();
    writeHeader();
    writeSections();
  } else {
    writeSectionsBinary();
  }

  // Backfill .note.gnu.build-id section content. This is done at last
  // because the content is usually a hash value of the entire output file.
  writeBuildId();
  if (errorCount())
    return;

  // Handle -Map option.
  writeMapFile();
  if (errorCount())
    return;

  if (auto E = Buffer->commit())
    error("failed to write to the output file: " + toString(std::move(E)));
}

static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName,
                               const Symbol &B) {
  if (B.isFile() || B.isSection())
    return false;

  // If sym references a section in a discarded group, don't keep it.
  if (Sec == &InputSection::Discarded)
    return false;

  if (Config->Discard == DiscardPolicy::None)
    return true;

  // In ELF assembly .L symbols are normally discarded by the assembler.
  // If the assembler fails to do so, the linker discards them if
  // * --discard-locals is used.
  // * The symbol is in a SHF_MERGE section, which is normally the reason for
  //   the assembler keeping the .L symbol.
  if (!SymName.startswith(".L") && !SymName.empty())
    return true;

  if (Config->Discard == DiscardPolicy::Locals)
    return false;

  return !Sec || !(Sec->Flags & SHF_MERGE);
}

static bool includeInSymtab(const Symbol &B) {
  if (!B.isLocal() && !B.IsUsedInRegularObj)
    return false;

  if (auto *D = dyn_cast<Defined>(&B)) {
    // Always include absolute symbols.
    SectionBase *Sec = D->Section;
    if (!Sec)
      return true;
    Sec = Sec->Repl;
    // Exclude symbols pointing to garbage-collected sections.
    if (isa<InputSectionBase>(Sec) && !Sec->Live)
      return false;
    if (auto *S = dyn_cast<MergeInputSection>(Sec))
      if (!S->getSectionPiece(D->Value)->Live)
        return false;
    return true;
  }
  return B.Used;
}

// Local symbols are not in the linker's symbol table. This function scans
// each object file's symbol table to copy local symbols to the output.
template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
  if (!InX::SymTab)
    return;
  for (InputFile *File : ObjectFiles) {
    ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File);
    for (Symbol *B : F->getLocalSymbols()) {
      if (!B->isLocal())
        fatal(toString(F) +
              ": broken object: getLocalSymbols returns a non-local symbol");
      auto *DR = dyn_cast<Defined>(B);

      // No reason to keep local undefined symbol in symtab.
      if (!DR)
        continue;
      if (!includeInSymtab(*B))
        continue;

      SectionBase *Sec = DR->Section;
      if (!shouldKeepInSymtab(Sec, B->getName(), *B))
        continue;
      InX::SymTab->addSymbol(B);
    }
  }
}

template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
  // Create a section symbol for each output section so that we can represent
  // relocations that point to the section. If we know that no relocation is
  // referring to a section (that happens if the section is a synthetic one), we
  // don't create a section symbol for that section.
  for (BaseCommand *Base : Script->SectionCommands) {
    auto *Sec = dyn_cast<OutputSection>(Base);
    if (!Sec)
      continue;
    auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) {
      if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
        return !ISD->Sections.empty();
      return false;
    });
    if (I == Sec->SectionCommands.end())
      continue;
    InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0];

    // Relocations are not using REL[A] section symbols.
    if (IS->Type == SHT_REL || IS->Type == SHT_RELA)
      continue;

    // Unlike other synthetic sections, mergeable output sections contain data
    // copied from input sections, and there may be a relocation pointing to its
    // contents if -r or -emit-reloc are given.
    if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE))
      continue;

    auto *Sym =
        make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION,
                      /*Value=*/0, /*Size=*/0, IS);
    InX::SymTab->addSymbol(Sym);
  }
}

// Today's loaders have a feature to make segments read-only after
// processing dynamic relocations to enhance security. PT_GNU_RELRO
// is defined for that.
//
// This function returns true if a section needs to be put into a
// PT_GNU_RELRO segment.
static bool isRelroSection(const OutputSection *Sec) {
  if (!Config->ZRelro)
    return false;

  uint64_t Flags = Sec->Flags;

  // Non-allocatable or non-writable sections don't need RELRO because
  // they are not writable or not even mapped to memory in the first place.
  // RELRO is for sections that are essentially read-only but need to
  // be writable only at process startup to allow dynamic linker to
  // apply relocations.
  if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
    return false;

  // Once initialized, TLS data segments are used as data templates
  // for a thread-local storage. For each new thread, runtime
  // allocates memory for a TLS and copy templates there. No thread
  // are supposed to use templates directly. Thus, it can be in RELRO.
  if (Flags & SHF_TLS)
    return true;

  // .init_array, .preinit_array and .fini_array contain pointers to
  // functions that are executed on process startup or exit. These
  // pointers are set by the static linker, and they are not expected
  // to change at runtime. But if you are an attacker, you could do
  // interesting things by manipulating pointers in .fini_array, for
  // example. So they are put into RELRO.
  uint32_t Type = Sec->Type;
  if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
      Type == SHT_PREINIT_ARRAY)
    return true;

  // .got contains pointers to external symbols. They are resolved by
  // the dynamic linker when a module is loaded into memory, and after
  // that they are not expected to change. So, it can be in RELRO.
  if (InX::Got && Sec == InX::Got->getParent())
    return true;

  // .got.plt contains pointers to external function symbols. They are
  // by default resolved lazily, so we usually cannot put it into RELRO.
  // However, if "-z now" is given, the lazy symbol resolution is
  // disabled, which enables us to put it into RELRO.
  if (Sec == InX::GotPlt->getParent())
    return Config->ZNow;

  // .dynamic section contains data for the dynamic linker, and
  // there's no need to write to it at runtime, so it's better to put
  // it into RELRO.
  if (Sec == InX::Dynamic->getParent())
    return true;

  // Sections with some special names are put into RELRO. This is a
  // bit unfortunate because section names shouldn't be significant in
  // ELF in spirit. But in reality many linker features depend on
  // magic section names.
  StringRef S = Sec->Name;
  return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" ||
         S == ".dtors" || S == ".jcr" || S == ".eh_frame" ||
         S == ".openbsd.randomdata";
}

// We compute a rank for each section. The rank indicates where the
// section should be placed in the file.  Instead of using simple
// numbers (0,1,2...), we use a series of flags. One for each decision
// point when placing the section.
// Using flags has two key properties:
// * It is easy to check if a give branch was taken.
// * It is easy two see how similar two ranks are (see getRankProximity).
enum RankFlags {
  RF_NOT_ADDR_SET = 1 << 16,
  RF_NOT_INTERP = 1 << 15,
  RF_NOT_ALLOC = 1 << 14,
  RF_WRITE = 1 << 13,
  RF_EXEC_WRITE = 1 << 12,
  RF_EXEC = 1 << 11,
  RF_NON_TLS_BSS = 1 << 10,
  RF_NON_TLS_BSS_RO = 1 << 9,
  RF_NOT_TLS = 1 << 8,
  RF_BSS = 1 << 7,
  RF_PPC_NOT_TOCBSS = 1 << 6,
  RF_PPC_OPD = 1 << 5,
  RF_PPC_TOCL = 1 << 4,
  RF_PPC_TOC = 1 << 3,
  RF_PPC_BRANCH_LT = 1 << 2,
  RF_MIPS_GPREL = 1 << 1,
  RF_MIPS_NOT_GOT = 1 << 0
};

static unsigned getSectionRank(const OutputSection *Sec) {
  unsigned Rank = 0;

  // We want to put section specified by -T option first, so we
  // can start assigning VA starting from them later.
  if (Config->SectionStartMap.count(Sec->Name))
    return Rank;
  Rank |= RF_NOT_ADDR_SET;

  // Put .interp first because some loaders want to see that section
  // on the first page of the executable file when loaded into memory.
  if (Sec->Name == ".interp")
    return Rank;
  Rank |= RF_NOT_INTERP;

  // Allocatable sections go first to reduce the total PT_LOAD size and
  // so debug info doesn't change addresses in actual code.
  if (!(Sec->Flags & SHF_ALLOC))
    return Rank | RF_NOT_ALLOC;

  // Sort sections based on their access permission in the following
  // order: R, RX, RWX, RW.  This order is based on the following
  // considerations:
  // * Read-only sections come first such that they go in the
  //   PT_LOAD covering the program headers at the start of the file.
  // * Read-only, executable sections come next, unless the
  //   -no-rosegment option is used.
  // * Writable, executable sections follow such that .plt on
  //   architectures where it needs to be writable will be placed
  //   between .text and .data.
  // * Writable sections come last, such that .bss lands at the very
  //   end of the last PT_LOAD.
  bool IsExec = Sec->Flags & SHF_EXECINSTR;
  bool IsWrite = Sec->Flags & SHF_WRITE;

  if (IsExec) {
    if (IsWrite)
      Rank |= RF_EXEC_WRITE;
    else if (!Config->SingleRoRx)
      Rank |= RF_EXEC;
  } else {
    if (IsWrite)
      Rank |= RF_WRITE;
  }

  // If we got here we know that both A and B are in the same PT_LOAD.

  bool IsTls = Sec->Flags & SHF_TLS;
  bool IsNoBits = Sec->Type == SHT_NOBITS;

  // The first requirement we have is to put (non-TLS) nobits sections last. The
  // reason is that the only thing the dynamic linker will see about them is a
  // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the
  // PT_LOAD, so that has to correspond to the nobits sections.
  bool IsNonTlsNoBits = IsNoBits && !IsTls;
  if (IsNonTlsNoBits)
    Rank |= RF_NON_TLS_BSS;

  // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo
  // sections after r/w ones, so that the RelRo sections are contiguous.
  bool IsRelRo = isRelroSection(Sec);
  if (IsNonTlsNoBits && !IsRelRo)
    Rank |= RF_NON_TLS_BSS_RO;
  if (!IsNonTlsNoBits && IsRelRo)
    Rank |= RF_NON_TLS_BSS_RO;

  // The TLS initialization block needs to be a single contiguous block in a R/W
  // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
  // sections. The TLS NOBITS sections are placed here as they don't take up
  // virtual address space in the PT_LOAD.
  if (!IsTls)
    Rank |= RF_NOT_TLS;

  // Within the TLS initialization block, the non-nobits sections need to appear
  // first.
  if (IsNoBits)
    Rank |= RF_BSS;

  // Some architectures have additional ordering restrictions for sections
  // within the same PT_LOAD.
  if (Config->EMachine == EM_PPC64) {
    // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
    // that we would like to make sure appear is a specific order to maximize
    // their coverage by a single signed 16-bit offset from the TOC base
    // pointer. Conversely, the special .tocbss section should be first among
    // all SHT_NOBITS sections. This will put it next to the loaded special
    // PPC64 sections (and, thus, within reach of the TOC base pointer).
    StringRef Name = Sec->Name;
    if (Name != ".tocbss")
      Rank |= RF_PPC_NOT_TOCBSS;

    if (Name == ".opd")
      Rank |= RF_PPC_OPD;

    if (Name == ".toc1")
      Rank |= RF_PPC_TOCL;

    if (Name == ".toc")
      Rank |= RF_PPC_TOC;

    if (Name == ".branch_lt")
      Rank |= RF_PPC_BRANCH_LT;
  }
  if (Config->EMachine == EM_MIPS) {
    // All sections with SHF_MIPS_GPREL flag should be grouped together
    // because data in these sections is addressable with a gp relative address.
    if (Sec->Flags & SHF_MIPS_GPREL)
      Rank |= RF_MIPS_GPREL;

    if (Sec->Name != ".got")
      Rank |= RF_MIPS_NOT_GOT;
  }

  return Rank;
}

static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) {
  const OutputSection *A = cast<OutputSection>(ACmd);
  const OutputSection *B = cast<OutputSection>(BCmd);
  if (A->SortRank != B->SortRank)
    return A->SortRank < B->SortRank;
  if (!(A->SortRank & RF_NOT_ADDR_SET))
    return Config->SectionStartMap.lookup(A->Name) <
           Config->SectionStartMap.lookup(B->Name);
  return false;
}

void PhdrEntry::add(OutputSection *Sec) {
  LastSec = Sec;
  if (!FirstSec)
    FirstSec = Sec;
  p_align = std::max(p_align, Sec->Alignment);
  if (p_type == PT_LOAD)
    Sec->PtLoad = this;
}

// The beginning and the ending of .rel[a].plt section are marked
// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
// executable. The runtime needs these symbols in order to resolve
// all IRELATIVE relocs on startup. For dynamic executables, we don't
// need these symbols, since IRELATIVE relocs are resolved through GOT
// and PLT. For details, see http://www.airs.com/blog/archives/403.
template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
  if (!Config->Static)
    return;
  StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start";
  addOptionalRegular(S, InX::RelaIplt, 0, STV_HIDDEN, STB_WEAK);

  S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end";
  addOptionalRegular(S, InX::RelaIplt, -1, STV_HIDDEN, STB_WEAK);
}

template <class ELFT>
void Writer<ELFT>::forEachRelSec(std::function<void(InputSectionBase &)> Fn) {
  // Scan all relocations. Each relocation goes through a series
  // of tests to determine if it needs special treatment, such as
  // creating GOT, PLT, copy relocations, etc.
  // Note that relocations for non-alloc sections are directly
  // processed by InputSection::relocateNonAlloc.
  for (InputSectionBase *IS : InputSections)
    if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC))
      Fn(*IS);
  for (EhInputSection *ES : InX::EhFrame->Sections)
    Fn(*ES);
}

// This function generates assignments for predefined symbols (e.g. _end or
// _etext) and inserts them into the commands sequence to be processed at the
// appropriate time. This ensures that the value is going to be correct by the
// time any references to these symbols are processed and is equivalent to
// defining these symbols explicitly in the linker script.
template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
  if (ElfSym::GlobalOffsetTable) {
    // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
    // be at some offset from the base of the .got section, usually 0 or the end
    // of the .got
    InputSection *GotSection = InX::MipsGot ? cast<InputSection>(InX::MipsGot)
                                            : cast<InputSection>(InX::Got);
    ElfSym::GlobalOffsetTable->Section = GotSection;
  }

  PhdrEntry *Last = nullptr;
  PhdrEntry *LastRO = nullptr;

  for (PhdrEntry *P : Phdrs) {
    if (P->p_type != PT_LOAD)
      continue;
    Last = P;
    if (!(P->p_flags & PF_W))
      LastRO = P;
  }

  if (LastRO) {
    // _etext is the first location after the last read-only loadable segment.
    if (ElfSym::Etext1)
      ElfSym::Etext1->Section = LastRO->LastSec;
    if (ElfSym::Etext2)
      ElfSym::Etext2->Section = LastRO->LastSec;
  }

  if (Last) {
    // _edata points to the end of the last mapped initialized section.
    OutputSection *Edata = nullptr;
    for (OutputSection *OS : OutputSections) {
      if (OS->Type != SHT_NOBITS)
        Edata = OS;
      if (OS == Last->LastSec)
        break;
    }

    if (ElfSym::Edata1)
      ElfSym::Edata1->Section = Edata;
    if (ElfSym::Edata2)
      ElfSym::Edata2->Section = Edata;

    // _end is the first location after the uninitialized data region.
    if (ElfSym::End1)
      ElfSym::End1->Section = Last->LastSec;
    if (ElfSym::End2)
      ElfSym::End2->Section = Last->LastSec;
  }

  if (ElfSym::Bss)
    ElfSym::Bss->Section = findSection(".bss");

  // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
  // be equal to the _gp symbol's value.
  if (ElfSym::MipsGp) {
    // Find GP-relative section with the lowest address
    // and use this address to calculate default _gp value.
    for (OutputSection *OS : OutputSections) {
      if (OS->Flags & SHF_MIPS_GPREL) {
        ElfSym::MipsGp->Section = OS;
        ElfSym::MipsGp->Value = 0x7ff0;
        break;
      }
    }
  }
}

// We want to find how similar two ranks are.
// The more branches in getSectionRank that match, the more similar they are.
// Since each branch corresponds to a bit flag, we can just use
// countLeadingZeros.
static int getRankProximityAux(OutputSection *A, OutputSection *B) {
  return countLeadingZeros(A->SortRank ^ B->SortRank);
}

static int getRankProximity(OutputSection *A, BaseCommand *B) {
  if (auto *Sec = dyn_cast<OutputSection>(B))
    if (Sec->Live)
      return getRankProximityAux(A, Sec);
  return -1;
}

// When placing orphan sections, we want to place them after symbol assignments
// so that an orphan after
//   begin_foo = .;
//   foo : { *(foo) }
//   end_foo = .;
// doesn't break the intended meaning of the begin/end symbols.
// We don't want to go over sections since findOrphanPos is the
// one in charge of deciding the order of the sections.
// We don't want to go over changes to '.', since doing so in
//  rx_sec : { *(rx_sec) }
//  . = ALIGN(0x1000);
//  /* The RW PT_LOAD starts here*/
//  rw_sec : { *(rw_sec) }
// would mean that the RW PT_LOAD would become unaligned.
static bool shouldSkip(BaseCommand *Cmd) {
  if (isa<OutputSection>(Cmd))
    return false;
  if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd))
    return Assign->Name != ".";
  return true;
}

// We want to place orphan sections so that they share as much
// characteristics with their neighbors as possible. For example, if
// both are rw, or both are tls.
template <typename ELFT>
static std::vector<BaseCommand *>::iterator
findOrphanPos(std::vector<BaseCommand *>::iterator B,
              std::vector<BaseCommand *>::iterator E) {
  OutputSection *Sec = cast<OutputSection>(*E);

  // Find the first element that has as close a rank as possible.
  auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) {
    return getRankProximity(Sec, A) < getRankProximity(Sec, B);
  });
  if (I == E)
    return E;

  // Consider all existing sections with the same proximity.
  int Proximity = getRankProximity(Sec, *I);
  for (; I != E; ++I) {
    auto *CurSec = dyn_cast<OutputSection>(*I);
    if (!CurSec || !CurSec->Live)
      continue;
    if (getRankProximity(Sec, CurSec) != Proximity ||
        Sec->SortRank < CurSec->SortRank)
      break;
  }

  auto IsLiveSection = [](BaseCommand *Cmd) {
    auto *OS = dyn_cast<OutputSection>(Cmd);
    return OS && OS->Live;
  };

  auto J = std::find_if(llvm::make_reverse_iterator(I),
                        llvm::make_reverse_iterator(B), IsLiveSection);
  I = J.base();

  // As a special case, if the orphan section is the last section, put
  // it at the very end, past any other commands.
  // This matches bfd's behavior and is convenient when the linker script fully
  // specifies the start of the file, but doesn't care about the end (the non
  // alloc sections for example).
  auto NextSec = std::find_if(I, E, IsLiveSection);
  if (NextSec == E)
    return E;

  while (I != E && shouldSkip(*I))
    ++I;
  return I;
}

// If no layout was provided by linker script, we want to apply default
// sorting for special input sections and handle --symbol-ordering-file.
template <class ELFT> void Writer<ELFT>::sortInputSections() {
  assert(!Script->HasSectionsCommand);

  // Sort input sections by priority using the list provided
  // by --symbol-ordering-file.
  DenseMap<SectionBase *, int> Order = buildSectionOrder();
  if (!Order.empty())
    for (BaseCommand *Base : Script->SectionCommands)
      if (auto *Sec = dyn_cast<OutputSection>(Base))
        if (Sec->Live)
          Sec->sort([&](InputSectionBase *S) { return Order.lookup(S); });

  // Sort input sections by section name suffixes for
  // __attribute__((init_priority(N))).
  if (OutputSection *Sec = findSection(".init_array"))
    Sec->sortInitFini();
  if (OutputSection *Sec = findSection(".fini_array"))
    Sec->sortInitFini();

  // Sort input sections by the special rule for .ctors and .dtors.
  if (OutputSection *Sec = findSection(".ctors"))
    Sec->sortCtorsDtors();
  if (OutputSection *Sec = findSection(".dtors"))
    Sec->sortCtorsDtors();
}

template <class ELFT> void Writer<ELFT>::sortSections() {
  Script->adjustSectionsBeforeSorting();

  // Don't sort if using -r. It is not necessary and we want to preserve the
  // relative order for SHF_LINK_ORDER sections.
  if (Config->Relocatable)
    return;

  for (BaseCommand *Base : Script->SectionCommands)
    if (auto *Sec = dyn_cast<OutputSection>(Base))
      Sec->SortRank = getSectionRank(Sec);

  if (!Script->HasSectionsCommand) {
    sortInputSections();

    // We know that all the OutputSections are contiguous in this case.
    auto E = Script->SectionCommands.end();
    auto I = Script->SectionCommands.begin();
    auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); };
    I = std::find_if(I, E, IsSection);
    E = std::find_if(llvm::make_reverse_iterator(E),
                     llvm::make_reverse_iterator(I), IsSection)
            .base();
    std::stable_sort(I, E, compareSections);
    return;
  }

  // Orphan sections are sections present in the input files which are
  // not explicitly placed into the output file by the linker script.
  //
  // The sections in the linker script are already in the correct
  // order. We have to figuere out where to insert the orphan
  // sections.
  //
  // The order of the sections in the script is arbitrary and may not agree with
  // compareSections. This means that we cannot easily define a strict weak
  // ordering. To see why, consider a comparison of a section in the script and
  // one not in the script. We have a two simple options:
  // * Make them equivalent (a is not less than b, and b is not less than a).
  //   The problem is then that equivalence has to be transitive and we can
  //   have sections a, b and c with only b in a script and a less than c
  //   which breaks this property.
  // * Use compareSectionsNonScript. Given that the script order doesn't have
  //   to match, we can end up with sections a, b, c, d where b and c are in the
  //   script and c is compareSectionsNonScript less than b. In which case d
  //   can be equivalent to c, a to b and d < a. As a concrete example:
  //   .a (rx) # not in script
  //   .b (rx) # in script
  //   .c (ro) # in script
  //   .d (ro) # not in script
  //
  // The way we define an order then is:
  // *  Sort only the orphan sections. They are in the end right now.
  // *  Move each orphan section to its preferred position. We try
  //    to put each section in the last position where it it can share
  //    a PT_LOAD.
  //
  // There is some ambiguity as to where exactly a new entry should be
  // inserted, because Commands contains not only output section
  // commands but also other types of commands such as symbol assignment
  // expressions. There's no correct answer here due to the lack of the
  // formal specification of the linker script. We use heuristics to
  // determine whether a new output command should be added before or
  // after another commands. For the details, look at shouldSkip
  // function.

  auto I = Script->SectionCommands.begin();
  auto E = Script->SectionCommands.end();
  auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) {
    if (auto *Sec = dyn_cast<OutputSection>(Base))
      return Sec->Live && Sec->SectionIndex == INT_MAX;
    return false;
  });

  // Sort the orphan sections.
  std::stable_sort(NonScriptI, E, compareSections);

  // As a horrible special case, skip the first . assignment if it is before any
  // section. We do this because it is common to set a load address by starting
  // the script with ". = 0xabcd" and the expectation is that every section is
  // after that.
  auto FirstSectionOrDotAssignment =
      std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); });
  if (FirstSectionOrDotAssignment != E &&
      isa<SymbolAssignment>(**FirstSectionOrDotAssignment))
    ++FirstSectionOrDotAssignment;
  I = FirstSectionOrDotAssignment;

  while (NonScriptI != E) {
    auto Pos = findOrphanPos<ELFT>(I, NonScriptI);
    OutputSection *Orphan = cast<OutputSection>(*NonScriptI);

    // As an optimization, find all sections with the same sort rank
    // and insert them with one rotate.
    unsigned Rank = Orphan->SortRank;
    auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) {
      return cast<OutputSection>(Cmd)->SortRank != Rank;
    });
    std::rotate(Pos, NonScriptI, End);
    NonScriptI = End;
  }

  Script->adjustSectionsAfterSorting();
}

static bool compareByFilePosition(InputSection *A, InputSection *B) {
  // Synthetic, i. e. a sentinel section, should go last.
  if (A->kind() == InputSectionBase::Synthetic ||
      B->kind() == InputSectionBase::Synthetic)
    return A->kind() != InputSectionBase::Synthetic;
  InputSection *LA = A->getLinkOrderDep();
  InputSection *LB = B->getLinkOrderDep();
  OutputSection *AOut = LA->getParent();
  OutputSection *BOut = LB->getParent();
  if (AOut != BOut)
    return AOut->SectionIndex < BOut->SectionIndex;
  return LA->OutSecOff < LB->OutSecOff;
}

// This function is used by the --merge-exidx-entries to detect duplicate
// .ARM.exidx sections. It is Arm only.
//
// The .ARM.exidx section is of the form:
// | PREL31 offset to function | Unwind instructions for function |
// where the unwind instructions are either a small number of unwind
// instructions inlined into the table entry, the special CANT_UNWIND value of
// 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind
// instructions.
//
// We return true if all the unwind instructions in the .ARM.exidx entries of
// Cur can be merged into the last entry of Prev.
static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) {

  // References to .ARM.Extab Sections have bit 31 clear and are not the
  // special EXIDX_CANTUNWIND bit-pattern.
  auto IsExtabRef = [](uint32_t Unwind) {
    return (Unwind & 0x80000000) == 0 && Unwind != 0x1;
  };

  struct ExidxEntry {
    ulittle32_t Fn;
    ulittle32_t Unwind;
  };

  // Get the last table Entry from the previous .ARM.exidx section.
  const ExidxEntry &PrevEntry = *reinterpret_cast<const ExidxEntry *>(
      Prev->Data.data() + Prev->getSize() - sizeof(ExidxEntry));
  if (IsExtabRef(PrevEntry.Unwind))
    return false;

  // We consider the unwind instructions of an .ARM.exidx table entry
  // a duplicate if the previous unwind instructions if:
  // - Both are the special EXIDX_CANTUNWIND.
  // - Both are the same inline unwind instructions.
  // We do not attempt to follow and check links into .ARM.extab tables as
  // consecutive identical entries are rare and the effort to check that they
  // are identical is high.

  if (isa<SyntheticSection>(Cur))
    // Exidx sentinel section has implicit EXIDX_CANTUNWIND;
    return PrevEntry.Unwind == 0x1;

  ArrayRef<const ExidxEntry> Entries(
      reinterpret_cast<const ExidxEntry *>(Cur->Data.data()),
      Cur->getSize() / sizeof(ExidxEntry));
  for (const ExidxEntry &Entry : Entries)
    if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind)
      return false;
  // All table entries in this .ARM.exidx Section can be merged into the
  // previous Section.
  return true;
}

template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
  for (OutputSection *Sec : OutputSections) {
    if (!(Sec->Flags & SHF_LINK_ORDER))
      continue;

    // Link order may be distributed across several InputSectionDescriptions
    // but sort must consider them all at once.
    std::vector<InputSection **> ScriptSections;
    std::vector<InputSection *> Sections;
    for (BaseCommand *Base : Sec->SectionCommands) {
      if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) {
        for (InputSection *&IS : ISD->Sections) {
          ScriptSections.push_back(&IS);
          Sections.push_back(IS);
        }
      }
    }
    std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition);

    if (!Config->Relocatable && Config->EMachine == EM_ARM &&
        Sec->Type == SHT_ARM_EXIDX) {

      if (!Sections.empty() && isa<ARMExidxSentinelSection>(Sections.back())) {
        assert(Sections.size() >= 2 &&
               "We should create a sentinel section only if there are "
               "alive regular exidx sections.");
        // The last executable section is required to fill the sentinel.
        // Remember it here so that we don't have to find it again.
        auto *Sentinel = cast<ARMExidxSentinelSection>(Sections.back());
        Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep();
      }

      if (Config->MergeArmExidx) {
        // The EHABI for the Arm Architecture permits consecutive identical
        // table entries to be merged. We use a simple implementation that
        // removes a .ARM.exidx Input Section if it can be merged into the
        // previous one. This does not require any rewriting of InputSection
        // contents but misses opportunities for fine grained deduplication
        // where only a subset of the InputSection contents can be merged.
        int Cur = 1;
        int Prev = 0;
        // The last one is a sentinel entry which should not be removed.
        int N = Sections.size() - 1;
        while (Cur < N) {
          if (isDuplicateArmExidxSec(Sections[Prev], Sections[Cur]))
            Sections[Cur] = nullptr;
          else
            Prev = Cur;
          ++Cur;
        }
      }
    }

    for (int I = 0, N = Sections.size(); I < N; ++I)
      *ScriptSections[I] = Sections[I];

    // Remove the Sections we marked as duplicate earlier.
    for (BaseCommand *Base : Sec->SectionCommands)
      if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
        ISD->Sections.erase(
            std::remove(ISD->Sections.begin(), ISD->Sections.end(), nullptr),
            ISD->Sections.end());
  }
}

static void applySynthetic(const std::vector<SyntheticSection *> &Sections,
                           std::function<void(SyntheticSection *)> Fn) {
  for (SyntheticSection *SS : Sections)
    if (SS && SS->getParent() && !SS->empty())
      Fn(SS);
}

// In order to allow users to manipulate linker-synthesized sections,
// we had to add synthetic sections to the input section list early,
// even before we make decisions whether they are needed. This allows
// users to write scripts like this: ".mygot : { .got }".
//
// Doing it has an unintended side effects. If it turns out that we
// don't need a .got (for example) at all because there's no
// relocation that needs a .got, we don't want to emit .got.
//
// To deal with the above problem, this function is called after
// scanRelocations is called to remove synthetic sections that turn
// out to be empty.
static void removeUnusedSyntheticSections() {
  // All input synthetic sections that can be empty are placed after
  // all regular ones. We iterate over them all and exit at first
  // non-synthetic.
  for (InputSectionBase *S : llvm::reverse(InputSections)) {
    SyntheticSection *SS = dyn_cast<SyntheticSection>(S);
    if (!SS)
      return;
    OutputSection *OS = SS->getParent();
    if (!SS->empty() || !OS)
      continue;

    std::vector<BaseCommand *>::iterator Empty = OS->SectionCommands.end();
    for (auto I = OS->SectionCommands.begin(), E = OS->SectionCommands.end();
         I != E; ++I) {
      BaseCommand *B = *I;
      if (auto *ISD = dyn_cast<InputSectionDescription>(B)) {
        llvm::erase_if(ISD->Sections,
                       [=](InputSection *IS) { return IS == SS; });
        if (ISD->Sections.empty())
          Empty = I;
      }
    }
    if (Empty != OS->SectionCommands.end())
      OS->SectionCommands.erase(Empty);

    // If there are no other sections in the output section, remove it from the
    // output.
    if (OS->SectionCommands.empty())
      OS->Live = false;
  }
}

// Returns true if a symbol can be replaced at load-time by a symbol
// with the same name defined in other ELF executable or DSO.
static bool computeIsPreemptible(const Symbol &B) {
  assert(!B.isLocal());
  // Only symbols that appear in dynsym can be preempted.
  if (!B.includeInDynsym())
    return false;

  // Only default visibility symbols can be preempted.
  if (B.Visibility != STV_DEFAULT)
    return false;

  // At this point copy relocations have not been created yet, so any
  // symbol that is not defined locally is preemptible.
  if (!B.isDefined())
    return true;

  // If we have a dynamic list it specifies which local symbols are preemptible.
  if (Config->HasDynamicList)
    return false;

  if (!Config->Shared)
    return false;

  // -Bsymbolic means that definitions are not preempted.
  if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc()))
    return false;
  return true;
}

// Create output section objects and add them to OutputSections.
template <class ELFT> void Writer<ELFT>::finalizeSections() {
  Out::DebugInfo = findSection(".debug_info");
  Out::PreinitArray = findSection(".preinit_array");
  Out::InitArray = findSection(".init_array");
  Out::FiniArray = findSection(".fini_array");

  // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
  // symbols for sections, so that the runtime can get the start and end
  // addresses of each section by section name. Add such symbols.
  if (!Config->Relocatable) {
    addStartEndSymbols();
    for (BaseCommand *Base : Script->SectionCommands)
      if (auto *Sec = dyn_cast<OutputSection>(Base))
        addStartStopSymbols(Sec);
  }

  // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
  // It should be okay as no one seems to care about the type.
  // Even the author of gold doesn't remember why gold behaves that way.
  // https://sourceware.org/ml/binutils/2002-03/msg00360.html
  if (InX::DynSymTab)
    Symtab->addRegular("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/,
                       /*Size=*/0, STB_WEAK, InX::Dynamic,
                       /*File=*/nullptr);

  // Define __rel[a]_iplt_{start,end} symbols if needed.
  addRelIpltSymbols();

  // This responsible for splitting up .eh_frame section into
  // pieces. The relocation scan uses those pieces, so this has to be
  // earlier.
  applySynthetic({InX::EhFrame},
                 [](SyntheticSection *SS) { SS->finalizeContents(); });

  for (Symbol *S : Symtab->getSymbols())
    S->IsPreemptible |= computeIsPreemptible(*S);

  // Scan relocations. This must be done after every symbol is declared so that
  // we can correctly decide if a dynamic relocation is needed.
  if (!Config->Relocatable)
    forEachRelSec(scanRelocations<ELFT>);

  if (InX::Plt && !InX::Plt->empty())
    InX::Plt->addSymbols();
  if (InX::Iplt && !InX::Iplt->empty())
    InX::Iplt->addSymbols();

  // Now that we have defined all possible global symbols including linker-
  // synthesized ones. Visit all symbols to give the finishing touches.
  for (Symbol *Sym : Symtab->getSymbols()) {
    if (!includeInSymtab(*Sym))
      continue;
    if (InX::SymTab)
      InX::SymTab->addSymbol(Sym);

    if (InX::DynSymTab && Sym->includeInDynsym()) {
      InX::DynSymTab->addSymbol(Sym);
      if (auto *SS = dyn_cast<SharedSymbol>(Sym))
        if (cast<SharedFile<ELFT>>(Sym->File)->IsNeeded)
          In<ELFT>::VerNeed->addSymbol(SS);
    }
  }

  // Do not proceed if there was an undefined symbol.
  if (errorCount())
    return;

  removeUnusedSyntheticSections();

  sortSections();
  Script->removeEmptyCommands();

  // Now that we have the final list, create a list of all the
  // OutputSections for convenience.
  for (BaseCommand *Base : Script->SectionCommands)
    if (auto *Sec = dyn_cast<OutputSection>(Base))
      OutputSections.push_back(Sec);

  // Prefer command line supplied address over other constraints.
  for (OutputSection *Sec : OutputSections) {
    auto I = Config->SectionStartMap.find(Sec->Name);
    if (I != Config->SectionStartMap.end())
      Sec->AddrExpr = [=] { return I->second; };
  }

  // This is a bit of a hack. A value of 0 means undef, so we set it
  // to 1 t make __ehdr_start defined. The section number is not
  // particularly relevant.
  Out::ElfHeader->SectionIndex = 1;

  unsigned I = 1;
  for (OutputSection *Sec : OutputSections) {
    Sec->SectionIndex = I++;
    Sec->ShName = InX::ShStrTab->addString(Sec->Name);
  }

  // Binary and relocatable output does not have PHDRS.
  // The headers have to be created before finalize as that can influence the
  // image base and the dynamic section on mips includes the image base.
  if (!Config->Relocatable && !Config->OFormatBinary) {
    Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs();
    addPtArmExid(Phdrs);
    Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size();
  }

  // Some symbols are defined in term of program headers. Now that we
  // have the headers, we can find out which sections they point to.
  setReservedSymbolSections();

  // Dynamic section must be the last one in this list and dynamic
  // symbol table section (DynSymTab) must be the first one.
  applySynthetic(
      {InX::DynSymTab,   InX::Bss,          InX::BssRelRo, InX::GnuHashTab,
       InX::HashTab,     InX::SymTab,       InX::ShStrTab, InX::StrTab,
       In<ELFT>::VerDef, InX::DynStrTab,    InX::Got,      InX::MipsGot,
       InX::IgotPlt,     InX::GotPlt,       InX::RelaDyn,  InX::RelaIplt,
       InX::RelaPlt,     InX::Plt,          InX::Iplt,     InX::EhFrameHdr,
       In<ELFT>::VerSym, In<ELFT>::VerNeed, InX::Dynamic},
      [](SyntheticSection *SS) { SS->finalizeContents(); });

  if (!Script->HasSectionsCommand && !Config->Relocatable)
    fixSectionAlignments();

  // After link order processing .ARM.exidx sections can be deduplicated, which
  // needs to be resolved before any other address dependent operation.
  resolveShfLinkOrder();

  // Some architectures need to generate content that depends on the address
  // of InputSections. For example some architectures use small displacements
  // for jump instructions that is is the linker's responsibility for creating
  // range extension thunks for. As the generation of the content may also
  // alter InputSection addresses we must converge to a fixed point.
  if (Target->NeedsThunks || Config->AndroidPackDynRelocs) {
    ThunkCreator TC;
    AArch64Err843419Patcher A64P;
    bool Changed;
    do {
      Script->assignAddresses();
      Changed = false;
      if (Target->NeedsThunks)
        Changed |= TC.createThunks(OutputSections);
      if (Config->FixCortexA53Errata843419) {
        if (Changed)
          Script->assignAddresses();
        Changed |= A64P.createFixes();
      }
      if (InX::MipsGot)
        InX::MipsGot->updateAllocSize();
      Changed |= InX::RelaDyn->updateAllocSize();
    } while (Changed);
  }

  // Fill other section headers. The dynamic table is finalized
  // at the end because some tags like RELSZ depend on result
  // of finalizing other sections.
  for (OutputSection *Sec : OutputSections)
    Sec->finalize<ELFT>();

  // createThunks may have added local symbols to the static symbol table
  applySynthetic({InX::SymTab},
                 [](SyntheticSection *SS) { SS->postThunkContents(); });
}

// The linker is expected to define SECNAME_start and SECNAME_end
// symbols for a few sections. This function defines them.
template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
  auto Define = [&](StringRef Start, StringRef End, OutputSection *OS) {
    // These symbols resolve to the image base if the section does not exist.
    // A special value -1 indicates end of the section.
    if (OS) {
      addOptionalRegular(Start, OS, 0);
      addOptionalRegular(End, OS, -1);
    } else {
      if (Config->Pic)
        OS = Out::ElfHeader;
      addOptionalRegular(Start, OS, 0);
      addOptionalRegular(End, OS, 0);
    }
  };

  Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray);
  Define("__init_array_start", "__init_array_end", Out::InitArray);
  Define("__fini_array_start", "__fini_array_end", Out::FiniArray);

  if (OutputSection *Sec = findSection(".ARM.exidx"))
    Define("__exidx_start", "__exidx_end", Sec);
}

// If a section name is valid as a C identifier (which is rare because of
// the leading '.'), linkers are expected to define __start_<secname> and
// __stop_<secname> symbols. They are at beginning and end of the section,
// respectively. This is not requested by the ELF standard, but GNU ld and
// gold provide the feature, and used by many programs.
template <class ELFT>
void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) {
  StringRef S = Sec->Name;
  if (!isValidCIdentifier(S))
    return;
  addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT);
  addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_DEFAULT);
}

static bool needsPtLoad(OutputSection *Sec) {
  if (!(Sec->Flags & SHF_ALLOC))
    return false;

  // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
  // responsible for allocating space for them, not the PT_LOAD that
  // contains the TLS initialization image.
  if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS)
    return false;
  return true;
}

// Linker scripts are responsible for aligning addresses. Unfortunately, most
// linker scripts are designed for creating two PT_LOADs only, one RX and one
// RW. This means that there is no alignment in the RO to RX transition and we
// cannot create a PT_LOAD there.
static uint64_t computeFlags(uint64_t Flags) {
  if (Config->Omagic)
    return PF_R | PF_W | PF_X;
  if (Config->SingleRoRx && !(Flags & PF_W))
    return Flags | PF_X;
  return Flags;
}

// Decide which program headers to create and which sections to include in each
// one.
template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() {
  std::vector<PhdrEntry *> Ret;
  auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * {
    Ret.push_back(make<PhdrEntry>(Type, Flags));
    return Ret.back();
  };

  // The first phdr entry is PT_PHDR which describes the program header itself.
  AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders);

  // PT_INTERP must be the second entry if exists.
  if (OutputSection *Cmd = findSection(".interp"))
    AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd);

  // Add the first PT_LOAD segment for regular output sections.
  uint64_t Flags = computeFlags(PF_R);
  PhdrEntry *Load = AddHdr(PT_LOAD, Flags);

  // Add the headers. We will remove them if they don't fit.
  Load->add(Out::ElfHeader);
  Load->add(Out::ProgramHeaders);

  for (OutputSection *Sec : OutputSections) {
    if (!(Sec->Flags & SHF_ALLOC))
      break;
    if (!needsPtLoad(Sec))
      continue;

    // Segments are contiguous memory regions that has the same attributes
    // (e.g. executable or writable). There is one phdr for each segment.
    // Therefore, we need to create a new phdr when the next section has
    // different flags or is loaded at a discontiguous address using AT linker
    // script command.
    uint64_t NewFlags = computeFlags(Sec->getPhdrFlags());
    if (Sec->LMAExpr || Flags != NewFlags) {
      Load = AddHdr(PT_LOAD, NewFlags);
      Flags = NewFlags;
    }

    Load->add(Sec);
  }

  // Add a TLS segment if any.
  PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
  for (OutputSection *Sec : OutputSections)
    if (Sec->Flags & SHF_TLS)
      TlsHdr->add(Sec);
  if (TlsHdr->FirstSec)
    Ret.push_back(TlsHdr);

  // Add an entry for .dynamic.
  if (InX::DynSymTab)
    AddHdr(PT_DYNAMIC, InX::Dynamic->getParent()->getPhdrFlags())
        ->add(InX::Dynamic->getParent());

  // PT_GNU_RELRO includes all sections that should be marked as
  // read-only by dynamic linker after proccessing relocations.
  // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
  // an error message if more than one PT_GNU_RELRO PHDR is required.
  PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
  bool InRelroPhdr = false;
  bool IsRelroFinished = false;
  for (OutputSection *Sec : OutputSections) {
    if (!needsPtLoad(Sec))
      continue;
    if (isRelroSection(Sec)) {
      InRelroPhdr = true;
      if (!IsRelroFinished)
        RelRo->add(Sec);
      else
        error("section: " + Sec->Name + " is not contiguous with other relro" +
              " sections");
    } else if (InRelroPhdr) {
      InRelroPhdr = false;
      IsRelroFinished = true;
    }
  }
  if (RelRo->FirstSec)
    Ret.push_back(RelRo);

  // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
  if (!InX::EhFrame->empty() && InX::EhFrameHdr && InX::EhFrame->getParent() &&
      InX::EhFrameHdr->getParent())
    AddHdr(PT_GNU_EH_FRAME, InX::EhFrameHdr->getParent()->getPhdrFlags())
        ->add(InX::EhFrameHdr->getParent());

  // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
  // the dynamic linker fill the segment with random data.
  if (OutputSection *Cmd = findSection(".openbsd.randomdata"))
    AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd);

  // PT_GNU_STACK is a special section to tell the loader to make the
  // pages for the stack non-executable. If you really want an executable
  // stack, you can pass -z execstack, but that's not recommended for
  // security reasons.
  unsigned Perm;
  if (Config->ZExecstack)
    Perm = PF_R | PF_W | PF_X;
  else
    Perm = PF_R | PF_W;
  AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize;

  // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
  // is expected to perform W^X violations, such as calling mprotect(2) or
  // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
  // OpenBSD.
  if (Config->ZWxneeded)
    AddHdr(PT_OPENBSD_WXNEEDED, PF_X);

  // Create one PT_NOTE per a group of contiguous .note sections.
  PhdrEntry *Note = nullptr;
  for (OutputSection *Sec : OutputSections) {
    if (Sec->Type == SHT_NOTE) {
      if (!Note || Sec->LMAExpr)
        Note = AddHdr(PT_NOTE, PF_R);
      Note->add(Sec);
    } else {
      Note = nullptr;
    }
  }
  return Ret;
}

template <class ELFT>
void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) {
  if (Config->EMachine != EM_ARM)
    return;
  auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) {
    return Cmd->Type == SHT_ARM_EXIDX;
  });
  if (I == OutputSections.end())
    return;

  // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
  PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R);
  ARMExidx->add(*I);
  Phdrs.push_back(ARMExidx);
}

// The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the
// first section after PT_GNU_RELRO have to be page aligned so that the dynamic
// linker can set the permissions.
template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
  auto PageAlign = [](OutputSection *Cmd) {
    if (Cmd && !Cmd->AddrExpr)
      Cmd->AddrExpr = [=] {
        return alignTo(Script->getDot(), Config->MaxPageSize);
      };
  };

  for (const PhdrEntry *P : Phdrs)
    if (P->p_type == PT_LOAD && P->FirstSec)
      PageAlign(P->FirstSec);

  for (const PhdrEntry *P : Phdrs) {
    if (P->p_type != PT_GNU_RELRO)
      continue;
    if (P->FirstSec)
      PageAlign(P->FirstSec);
    // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
    // have to align it to a page.
    auto End = OutputSections.end();
    auto I = std::find(OutputSections.begin(), End, P->LastSec);
    if (I == End || (I + 1) == End)
      continue;
    OutputSection *Cmd = (*(I + 1));
    if (needsPtLoad(Cmd))
      PageAlign(Cmd);
  }
}

// Adjusts the file alignment for a given output section and returns
// its new file offset. The file offset must be the same with its
// virtual address (modulo the page size) so that the loader can load
// executables without any address adjustment.
static uint64_t getFileAlignment(uint64_t Off, OutputSection *Cmd) {
  OutputSection *First = Cmd->PtLoad ? Cmd->PtLoad->FirstSec : nullptr;
  // The first section in a PT_LOAD has to have congruent offset and address
  // module the page size.
  if (Cmd == First)
    return alignTo(Off, std::max<uint64_t>(Cmd->Alignment, Config->MaxPageSize),
                   Cmd->Addr);

  // For SHT_NOBITS we don't want the alignment of the section to impact the
  // offset of the sections that follow. Since nothing seems to care about the
  // sh_offset of the SHT_NOBITS section itself, just ignore it.
  if (Cmd->Type == SHT_NOBITS)
    return Off;

  // If the section is not in a PT_LOAD, we just have to align it.
  if (!Cmd->PtLoad)
    return alignTo(Off, Cmd->Alignment);

  // If two sections share the same PT_LOAD the file offset is calculated
  // using this formula: Off2 = Off1 + (VA2 - VA1).
  return First->Offset + Cmd->Addr - First->Addr;
}

static uint64_t setOffset(OutputSection *Cmd, uint64_t Off) {
  Off = getFileAlignment(Off, Cmd);
  Cmd->Offset = Off;

  // For SHT_NOBITS we should not count the size.
  if (Cmd->Type == SHT_NOBITS)
    return Off;

  return Off + Cmd->Size;
}

template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
  uint64_t Off = 0;
  for (OutputSection *Sec : OutputSections)
    if (Sec->Flags & SHF_ALLOC)
      Off = setOffset(Sec, Off);
  FileSize = alignTo(Off, Config->Wordsize);
}

// Assign file offsets to output sections.
template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
  uint64_t Off = 0;
  Off = setOffset(Out::ElfHeader, Off);
  Off = setOffset(Out::ProgramHeaders, Off);

  PhdrEntry *LastRX = nullptr;
  for (PhdrEntry *P : Phdrs)
    if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
      LastRX = P;

  for (OutputSection *Sec : OutputSections) {
    Off = setOffset(Sec, Off);
    if (Script->HasSectionsCommand)
      continue;
    // If this is a last section of the last executable segment and that
    // segment is the last loadable segment, align the offset of the
    // following section to avoid loading non-segments parts of the file.
    if (LastRX && LastRX->LastSec == Sec)
      Off = alignTo(Off, Target->PageSize);
  }

  SectionHeaderOff = alignTo(Off, Config->Wordsize);
  FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);
}

// Finalize the program headers. We call this function after we assign
// file offsets and VAs to all sections.
template <class ELFT> void Writer<ELFT>::setPhdrs() {
  for (PhdrEntry *P : Phdrs) {
    OutputSection *First = P->FirstSec;
    OutputSection *Last = P->LastSec;
    if (First) {
      P->p_filesz = Last->Offset - First->Offset;
      if (Last->Type != SHT_NOBITS)
        P->p_filesz += Last->Size;
      P->p_memsz = Last->Addr + Last->Size - First->Addr;
      P->p_offset = First->Offset;
      P->p_vaddr = First->Addr;
      if (!P->HasLMA)
        P->p_paddr = First->getLMA();
    }
    if (P->p_type == PT_LOAD)
      P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize);
    else if (P->p_type == PT_GNU_RELRO) {
      P->p_align = 1;
      // The glibc dynamic loader rounds the size down, so we need to round up
      // to protect the last page. This is a no-op on FreeBSD which always
      // rounds up.
      P->p_memsz = alignTo(P->p_memsz, Target->PageSize);
    }

    // The TLS pointer goes after PT_TLS. At least glibc will align it,
    // so round up the size to make sure the offsets are correct.
    if (P->p_type == PT_TLS) {
      Out::TlsPhdr = P;
      if (P->p_memsz)
        P->p_memsz = alignTo(P->p_memsz, P->p_align);
    }
  }
}

// The entry point address is chosen in the following ways.
//
// 1. the '-e' entry command-line option;
// 2. the ENTRY(symbol) command in a linker control script;
// 3. the value of the symbol _start, if present;
// 4. the number represented by the entry symbol, if it is a number;
// 5. the address of the first byte of the .text section, if present;
// 6. the address 0.
template <class ELFT> uint64_t Writer<ELFT>::getEntryAddr() {
  // Case 1, 2 or 3
  if (Symbol *B = Symtab->find(Config->Entry))
    return B->getVA();

  // Case 4
  uint64_t Addr;
  if (to_integer(Config->Entry, Addr))
    return Addr;

  // Case 5
  if (OutputSection *Sec = findSection(".text")) {
    if (Config->WarnMissingEntry)
      warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" +
           utohexstr(Sec->Addr));
    return Sec->Addr;
  }

  // Case 6
  if (Config->WarnMissingEntry)
    warn("cannot find entry symbol " + Config->Entry +
         "; not setting start address");
  return 0;
}

static uint16_t getELFType() {
  if (Config->Pic)
    return ET_DYN;
  if (Config->Relocatable)
    return ET_REL;
  return ET_EXEC;
}

template <class ELFT> void Writer<ELFT>::writeHeader() {
  uint8_t *Buf = Buffer->getBufferStart();
  memcpy(Buf, "\177ELF", 4);

  // Write the ELF header.
  auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
  EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32;
  EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB;
  EHdr->e_ident[EI_VERSION] = EV_CURRENT;
  EHdr->e_ident[EI_OSABI] = Config->OSABI;
  EHdr->e_type = getELFType();
  EHdr->e_machine = Config->EMachine;
  EHdr->e_version = EV_CURRENT;
  EHdr->e_entry = getEntryAddr();
  EHdr->e_shoff = SectionHeaderOff;
  EHdr->e_flags = Config->EFlags;
  EHdr->e_ehsize = sizeof(Elf_Ehdr);
  EHdr->e_phnum = Phdrs.size();
  EHdr->e_shentsize = sizeof(Elf_Shdr);
  EHdr->e_shnum = OutputSections.size() + 1;
  EHdr->e_shstrndx = InX::ShStrTab->getParent()->SectionIndex;

  if (!Config->Relocatable) {
    EHdr->e_phoff = sizeof(Elf_Ehdr);
    EHdr->e_phentsize = sizeof(Elf_Phdr);
  }

  // Write the program header table.
  auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
  for (PhdrEntry *P : Phdrs) {
    HBuf->p_type = P->p_type;
    HBuf->p_flags = P->p_flags;
    HBuf->p_offset = P->p_offset;
    HBuf->p_vaddr = P->p_vaddr;
    HBuf->p_paddr = P->p_paddr;
    HBuf->p_filesz = P->p_filesz;
    HBuf->p_memsz = P->p_memsz;
    HBuf->p_align = P->p_align;
    ++HBuf;
  }

  // Write the section header table. Note that the first table entry is null.
  auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
  for (OutputSection *Sec : OutputSections)
    Sec->writeHeaderTo<ELFT>(++SHdrs);
}

// Open a result file.
template <class ELFT> void Writer<ELFT>::openFile() {
  if (!Config->Is64 && FileSize > UINT32_MAX) {
    error("output file too large: " + Twine(FileSize) + " bytes");
    return;
  }

  unlinkAsync(Config->OutputFile);
  unsigned Flags = 0;
  if (!Config->Relocatable)
    Flags = FileOutputBuffer::F_executable;
  Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
      FileOutputBuffer::create(Config->OutputFile, FileSize, Flags);

  if (!BufferOrErr)
    error("failed to open " + Config->OutputFile + ": " +
          llvm::toString(BufferOrErr.takeError()));
  else
    Buffer = std::move(*BufferOrErr);
}

template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
  uint8_t *Buf = Buffer->getBufferStart();
  for (OutputSection *Sec : OutputSections)
    if (Sec->Flags & SHF_ALLOC)
      Sec->writeTo<ELFT>(Buf + Sec->Offset);
}

static void fillTrap(uint8_t *I, uint8_t *End) {
  for (; I + 4 <= End; I += 4)
    memcpy(I, &Target->TrapInstr, 4);
}

// Fill the last page of executable segments with trap instructions
// instead of leaving them as zero. Even though it is not required by any
// standard, it is in general a good thing to do for security reasons.
//
// We'll leave other pages in segments as-is because the rest will be
// overwritten by output sections.
template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
  if (Script->HasSectionsCommand)
    return;

  // Fill the last page.
  uint8_t *Buf = Buffer->getBufferStart();
  for (PhdrEntry *P : Phdrs)
    if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
      fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize),
               Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize));

  // Round up the file size of the last segment to the page boundary iff it is
  // an executable segment to ensure that other tools don't accidentally
  // trim the instruction padding (e.g. when stripping the file).
  PhdrEntry *Last = nullptr;
  for (PhdrEntry *P : Phdrs)
    if (P->p_type == PT_LOAD)
      Last = P;

  if (Last && (Last->p_flags & PF_X))
    Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize);
}

// Write section contents to a mmap'ed file.
template <class ELFT> void Writer<ELFT>::writeSections() {
  uint8_t *Buf = Buffer->getBufferStart();

  // PPC64 needs to process relocations in the .opd section
  // before processing relocations in code-containing sections.
  if (auto *OpdCmd = findSection(".opd")) {
    Out::Opd = OpdCmd;
    Out::OpdBuf = Buf + Out::Opd->Offset;
    OpdCmd->template writeTo<ELFT>(Buf + Out::Opd->Offset);
  }

  OutputSection *EhFrameHdr = nullptr;
  if (InX::EhFrameHdr && !InX::EhFrameHdr->empty())
    EhFrameHdr = InX::EhFrameHdr->getParent();

  // In -r or -emit-relocs mode, write the relocation sections first as in
  // ELf_Rel targets we might find out that we need to modify the relocated
  // section while doing it.
  for (OutputSection *Sec : OutputSections)
    if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA)
      Sec->writeTo<ELFT>(Buf + Sec->Offset);

  for (OutputSection *Sec : OutputSections)
    if (Sec != Out::Opd && Sec != EhFrameHdr && Sec->Type != SHT_REL &&
        Sec->Type != SHT_RELA)
      Sec->writeTo<ELFT>(Buf + Sec->Offset);

  // The .eh_frame_hdr depends on .eh_frame section contents, therefore
  // it should be written after .eh_frame is written.
  if (EhFrameHdr)
    EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset);
}

template <class ELFT> void Writer<ELFT>::writeBuildId() {
  if (!InX::BuildId || !InX::BuildId->getParent())
    return;

  // Compute a hash of all sections of the output file.
  uint8_t *Start = Buffer->getBufferStart();
  uint8_t *End = Start + FileSize;
  InX::BuildId->writeBuildId({Start, End});
}

template void elf::writeResult<ELF32LE>();
template void elf::writeResult<ELF32BE>();
template void elf::writeResult<ELF64LE>();
template void elf::writeResult<ELF64BE>();