aboutsummaryrefslogtreecommitdiff
path: root/utils/TableGen/GlobalISelEmitter.cpp
blob: f0b7c436fb501e9cd64f7aab5aee111f43fba5ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This tablegen backend emits code for use by the GlobalISel instruction
/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
///
/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
/// backend, filters out the ones that are unsupported, maps
/// SelectionDAG-specific constructs to their GlobalISel counterpart
/// (when applicable: MVT to LLT;  SDNode to generic Instruction).
///
/// Not all patterns are supported: pass the tablegen invocation
/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
/// as well as why.
///
/// The generated file defines a single method:
///     bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
/// intended to be used in InstructionSelector::select as the first-step
/// selector for the patterns that don't require complex C++.
///
/// FIXME: We'll probably want to eventually define a base
/// "TargetGenInstructionSelector" class.
///
//===----------------------------------------------------------------------===//

#include "CodeGenDAGPatterns.h"
#include "SubtargetFeatureInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <string>
#include <numeric>
using namespace llvm;

#define DEBUG_TYPE "gisel-emitter"

STATISTIC(NumPatternTotal, "Total number of patterns");
STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
STATISTIC(NumPatternEmitted, "Number of patterns emitted");

cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");

static cl::opt<bool> WarnOnSkippedPatterns(
    "warn-on-skipped-patterns",
    cl::desc("Explain why a pattern was skipped for inclusion "
             "in the GlobalISel selector"),
    cl::init(false), cl::cat(GlobalISelEmitterCat));

namespace {
//===- Helper functions ---------------------------------------------------===//

/// This class stands in for LLT wherever we want to tablegen-erate an
/// equivalent at compiler run-time.
class LLTCodeGen {
private:
  LLT Ty;

public:
  LLTCodeGen(const LLT &Ty) : Ty(Ty) {}

  void emitCxxConstructorCall(raw_ostream &OS) const {
    if (Ty.isScalar()) {
      OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
      return;
    }
    if (Ty.isVector()) {
      OS << "LLT::vector(" << Ty.getNumElements() << ", " << Ty.getScalarSizeInBits()
         << ")";
      return;
    }
    llvm_unreachable("Unhandled LLT");
  }

  const LLT &get() const { return Ty; }
};

class InstructionMatcher;
/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
  MVT VT(SVT);
  if (VT.isVector() && VT.getVectorNumElements() != 1)
    return LLTCodeGen(LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
  if (VT.isInteger() || VT.isFloatingPoint())
    return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
  return None;
}

static std::string explainPredicates(const TreePatternNode *N) {
  std::string Explanation = "";
  StringRef Separator = "";
  for (const auto &P : N->getPredicateFns()) {
    Explanation +=
        (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
    if (P.isAlwaysTrue())
      Explanation += " always-true";
    if (P.isImmediatePattern())
      Explanation += " immediate";
  }
  return Explanation;
}

std::string explainOperator(Record *Operator) {
  if (Operator->isSubClassOf("SDNode"))
    return " (" + Operator->getValueAsString("Opcode") + ")";

  if (Operator->isSubClassOf("Intrinsic"))
    return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();

  return " (Operator not understood)";
}

/// Helper function to let the emitter report skip reason error messages.
static Error failedImport(const Twine &Reason) {
  return make_error<StringError>(Reason, inconvertibleErrorCode());
}

static Error isTrivialOperatorNode(const TreePatternNode *N) {
  std::string Explanation = "";
  std::string Separator = "";
  if (N->isLeaf()) {
    Explanation = "Is a leaf";
    Separator = ", ";
  }

  if (N->hasAnyPredicate()) {
    Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
    Separator = ", ";
  }

  if (N->getTransformFn()) {
    Explanation += Separator + "Has a transform function";
    Separator = ", ";
  }

  if (!N->isLeaf() && !N->hasAnyPredicate() && !N->getTransformFn())
    return Error::success();

  return failedImport(Explanation);
}

//===- Matchers -----------------------------------------------------------===//

class OperandMatcher;
class MatchAction;

/// Generates code to check that a match rule matches.
class RuleMatcher {
  /// A list of matchers that all need to succeed for the current rule to match.
  /// FIXME: This currently supports a single match position but could be
  /// extended to support multiple positions to support div/rem fusion or
  /// load-multiple instructions.
  std::vector<std::unique_ptr<InstructionMatcher>> Matchers;

  /// A list of actions that need to be taken when all predicates in this rule
  /// have succeeded.
  std::vector<std::unique_ptr<MatchAction>> Actions;

  /// A map of instruction matchers to the local variables created by
  /// emitCxxCaptureStmts().
  std::map<const InstructionMatcher *, std::string> InsnVariableNames;

  /// ID for the next instruction variable defined with defineInsnVar()
  unsigned NextInsnVarID;

  std::vector<Record *> RequiredFeatures;

public:
  RuleMatcher()
      : Matchers(), Actions(), InsnVariableNames(), NextInsnVarID(0) {}
  RuleMatcher(RuleMatcher &&Other) = default;
  RuleMatcher &operator=(RuleMatcher &&Other) = default;

  InstructionMatcher &addInstructionMatcher();
  void addRequiredFeature(Record *Feature);

  template <class Kind, class... Args> Kind &addAction(Args &&... args);

  std::string defineInsnVar(raw_ostream &OS, const InstructionMatcher &Matcher,
                            StringRef Value);
  StringRef getInsnVarName(const InstructionMatcher &InsnMatcher) const;

  void emitCxxCapturedInsnList(raw_ostream &OS);
  void emitCxxCaptureStmts(raw_ostream &OS, StringRef Expr);

void emit(raw_ostream &OS, SubtargetFeatureInfoMap SubtargetFeatures);

/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const RuleMatcher &B) const;

/// Report the maximum number of temporary operands needed by the rule
/// matcher.
unsigned countRendererFns() const;

// FIXME: Remove this as soon as possible
InstructionMatcher &insnmatcher_front() const { return *Matchers.front(); }
};

template <class PredicateTy> class PredicateListMatcher {
private:
  typedef std::vector<std::unique_ptr<PredicateTy>> PredicateVec;
  PredicateVec Predicates;

public:
  /// Construct a new operand predicate and add it to the matcher.
  template <class Kind, class... Args>
  Kind &addPredicate(Args&&... args) {
    Predicates.emplace_back(
        llvm::make_unique<Kind>(std::forward<Args>(args)...));
    return *static_cast<Kind *>(Predicates.back().get());
  }

  typename PredicateVec::const_iterator predicates_begin() const { return Predicates.begin(); }
  typename PredicateVec::const_iterator predicates_end() const { return Predicates.end(); }
  iterator_range<typename PredicateVec::const_iterator> predicates() const {
    return make_range(predicates_begin(), predicates_end());
  }
  typename PredicateVec::size_type predicates_size() const { return Predicates.size(); }

  /// Emit a C++ expression that tests whether all the predicates are met.
  template <class... Args>
  void emitCxxPredicateListExpr(raw_ostream &OS, Args &&... args) const {
    if (Predicates.empty()) {
      OS << "true";
      return;
    }

    StringRef Separator = "";
    for (const auto &Predicate : predicates()) {
      OS << Separator << "(";
      Predicate->emitCxxPredicateExpr(OS, std::forward<Args>(args)...);
      OS << ")";
      Separator = " &&\n";
    }
  }
};

/// Generates code to check a predicate of an operand.
///
/// Typical predicates include:
/// * Operand is a particular register.
/// * Operand is assigned a particular register bank.
/// * Operand is an MBB.
class OperandPredicateMatcher {
public:
  /// This enum is used for RTTI and also defines the priority that is given to
  /// the predicate when generating the matcher code. Kinds with higher priority
  /// must be tested first.
  ///
  /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
  /// but OPM_Int must have priority over OPM_RegBank since constant integers
  /// are represented by a virtual register defined by a G_CONSTANT instruction.
  enum PredicateKind {
    OPM_ComplexPattern,
    OPM_Instruction,
    OPM_Int,
    OPM_LLT,
    OPM_RegBank,
    OPM_MBB,
  };

protected:
  PredicateKind Kind;

public:
  OperandPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
  virtual ~OperandPredicateMatcher() {}

  PredicateKind getKind() const { return Kind; }

  /// Return the OperandMatcher for the specified operand or nullptr if there
  /// isn't one by that name in this operand predicate matcher.
  ///
  /// InstructionOperandMatcher is the only subclass that can return non-null
  /// for this.
  virtual Optional<const OperandMatcher *>
  getOptionalOperand(StringRef SymbolicName) const {
    assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
    return None;
  }

  /// Emit C++ statements to capture instructions into local variables.
  ///
  /// Only InstructionOperandMatcher needs to do anything for this method.
  virtual void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule,
                                   StringRef Expr) const {}

  /// Emit a C++ expression that checks the predicate for the given operand.
  virtual void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                                    StringRef OperandExpr) const = 0;

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const {
    return Kind < B.Kind;
  };

  /// Report the maximum number of temporary operands needed by the predicate
  /// matcher.
  virtual unsigned countRendererFns() const { return 0; }
};

/// Generates code to check that an operand is a particular LLT.
class LLTOperandMatcher : public OperandPredicateMatcher {
protected:
  LLTCodeGen Ty;

public:
  LLTOperandMatcher(const LLTCodeGen &Ty)
      : OperandPredicateMatcher(OPM_LLT), Ty(Ty) {}

  static bool classof(const OperandPredicateMatcher *P) {
    return P->getKind() == OPM_LLT;
  }

  void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                            StringRef OperandExpr) const override {
    OS << "MRI.getType(" << OperandExpr << ".getReg()) == (";
    Ty.emitCxxConstructorCall(OS);
    OS << ")";
  }
};

/// Generates code to check that an operand is a particular target constant.
class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
protected:
  const OperandMatcher &Operand;
  const Record &TheDef;

  unsigned getAllocatedTemporariesBaseID() const;

public:
  ComplexPatternOperandMatcher(const OperandMatcher &Operand,
                               const Record &TheDef)
      : OperandPredicateMatcher(OPM_ComplexPattern), Operand(Operand),
        TheDef(TheDef) {}

  static bool classof(const OperandPredicateMatcher *P) {
    return P->getKind() == OPM_ComplexPattern;
  }

  void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                            StringRef OperandExpr) const override {
    unsigned ID = getAllocatedTemporariesBaseID();
    OS << "(Renderer" << ID << " = " << TheDef.getValueAsString("MatcherFn")
       << "(" << OperandExpr << "))";
  }

  unsigned countRendererFns() const override {
    return 1;
  }
};

/// Generates code to check that an operand is in a particular register bank.
class RegisterBankOperandMatcher : public OperandPredicateMatcher {
protected:
  const CodeGenRegisterClass &RC;

public:
  RegisterBankOperandMatcher(const CodeGenRegisterClass &RC)
      : OperandPredicateMatcher(OPM_RegBank), RC(RC) {}

  static bool classof(const OperandPredicateMatcher *P) {
    return P->getKind() == OPM_RegBank;
  }

  void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                            StringRef OperandExpr) const override {
    OS << "(&RBI.getRegBankFromRegClass(" << RC.getQualifiedName()
       << "RegClass) == RBI.getRegBank(" << OperandExpr
       << ".getReg(), MRI, TRI))";
  }
};

/// Generates code to check that an operand is a basic block.
class MBBOperandMatcher : public OperandPredicateMatcher {
public:
  MBBOperandMatcher() : OperandPredicateMatcher(OPM_MBB) {}

  static bool classof(const OperandPredicateMatcher *P) {
    return P->getKind() == OPM_MBB;
  }

  void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                            StringRef OperandExpr) const override {
    OS << OperandExpr << ".isMBB()";
  }
};

/// Generates code to check that an operand is a particular int.
class IntOperandMatcher : public OperandPredicateMatcher {
protected:
  int64_t Value;

public:
  IntOperandMatcher(int64_t Value)
      : OperandPredicateMatcher(OPM_Int), Value(Value) {}

  static bool classof(const OperandPredicateMatcher *P) {
    return P->getKind() == OPM_Int;
  }

  void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                            StringRef OperandExpr) const override {
    OS << "isOperandImmEqual(" << OperandExpr << ", " << Value << ", MRI)";
  }
};

/// Generates code to check that a set of predicates match for a particular
/// operand.
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
protected:
  InstructionMatcher &Insn;
  unsigned OpIdx;
  std::string SymbolicName;

  /// The index of the first temporary variable allocated to this operand. The
  /// number of allocated temporaries can be found with
  /// countRendererFns().
  unsigned AllocatedTemporariesBaseID;

public:
  OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
                 const std::string &SymbolicName,
                 unsigned AllocatedTemporariesBaseID)
      : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
        AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}

  bool hasSymbolicName() const { return !SymbolicName.empty(); }
  const StringRef getSymbolicName() const { return SymbolicName; }
  void setSymbolicName(StringRef Name) {
    assert(SymbolicName.empty() && "Operand already has a symbolic name");
    SymbolicName = Name;
  }
  unsigned getOperandIndex() const { return OpIdx; }

  std::string getOperandExpr(StringRef InsnVarName) const {
    return (InsnVarName + ".getOperand(" + llvm::to_string(OpIdx) + ")").str();
  }

  Optional<const OperandMatcher *>
  getOptionalOperand(StringRef DesiredSymbolicName) const {
    assert(!DesiredSymbolicName.empty() && "Cannot lookup unnamed operand");
    if (DesiredSymbolicName == SymbolicName)
      return this;
    for (const auto &OP : predicates()) {
      const auto &MaybeOperand = OP->getOptionalOperand(DesiredSymbolicName);
      if (MaybeOperand.hasValue())
        return MaybeOperand.getValue();
    }
    return None;
  }

  InstructionMatcher &getInstructionMatcher() const { return Insn; }

  /// Emit C++ statements to capture instructions into local variables.
  void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule,
                           StringRef OperandExpr) const {
    for (const auto &Predicate : predicates())
      Predicate->emitCxxCaptureStmts(OS, Rule, OperandExpr);
  }

  /// Emit a C++ expression that tests whether the instruction named in
  /// InsnVarName matches all the predicate and all the operands.
  void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                            StringRef InsnVarName) const {
    OS << "(/* ";
    if (SymbolicName.empty())
      OS << "Operand " << OpIdx;
    else
      OS << SymbolicName;
    OS << " */ ";
    emitCxxPredicateListExpr(OS, Rule, getOperandExpr(InsnVarName));
    OS << ")";
  }

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  bool isHigherPriorityThan(const OperandMatcher &B) const {
    // Operand matchers involving more predicates have higher priority.
    if (predicates_size() > B.predicates_size())
      return true;
    if (predicates_size() < B.predicates_size())
      return false;

    // This assumes that predicates are added in a consistent order.
    for (const auto &Predicate : zip(predicates(), B.predicates())) {
      if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
        return true;
      if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
        return false;
    }

    return false;
  };

  /// Report the maximum number of temporary operands needed by the operand
  /// matcher.
  unsigned countRendererFns() const {
    return std::accumulate(
        predicates().begin(), predicates().end(), 0,
        [](unsigned A,
           const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
          return A + Predicate->countRendererFns();
        });
  }

  unsigned getAllocatedTemporariesBaseID() const {
    return AllocatedTemporariesBaseID;
  }
};

unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
  return Operand.getAllocatedTemporariesBaseID();
}

/// Generates code to check a predicate on an instruction.
///
/// Typical predicates include:
/// * The opcode of the instruction is a particular value.
/// * The nsw/nuw flag is/isn't set.
class InstructionPredicateMatcher {
protected:
  /// This enum is used for RTTI and also defines the priority that is given to
  /// the predicate when generating the matcher code. Kinds with higher priority
  /// must be tested first.
  enum PredicateKind {
    IPM_Opcode,
  };

  PredicateKind Kind;

public:
  InstructionPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
  virtual ~InstructionPredicateMatcher() {}

  PredicateKind getKind() const { return Kind; }

  /// Emit a C++ expression that tests whether the instruction named in
  /// InsnVarName matches the predicate.
  virtual void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                                    StringRef InsnVarName) const = 0;

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  virtual bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
    return Kind < B.Kind;
  };

  /// Report the maximum number of temporary operands needed by the predicate
  /// matcher.
  virtual unsigned countRendererFns() const { return 0; }
};

/// Generates code to check the opcode of an instruction.
class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
protected:
  const CodeGenInstruction *I;

public:
  InstructionOpcodeMatcher(const CodeGenInstruction *I)
      : InstructionPredicateMatcher(IPM_Opcode), I(I) {}

  static bool classof(const InstructionPredicateMatcher *P) {
    return P->getKind() == IPM_Opcode;
  }

  void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                            StringRef InsnVarName) const override {
    OS << InsnVarName << ".getOpcode() == " << I->Namespace
       << "::" << I->TheDef->getName();
  }

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
    if (InstructionPredicateMatcher::isHigherPriorityThan(B))
      return true;
    if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
      return false;

    // Prioritize opcodes for cosmetic reasons in the generated source. Although
    // this is cosmetic at the moment, we may want to drive a similar ordering
    // using instruction frequency information to improve compile time.
    if (const InstructionOpcodeMatcher *BO =
            dyn_cast<InstructionOpcodeMatcher>(&B))
      return I->TheDef->getName() < BO->I->TheDef->getName();

    return false;
  };
};

/// Generates code to check that a set of predicates and operands match for a
/// particular instruction.
///
/// Typical predicates include:
/// * Has a specific opcode.
/// * Has an nsw/nuw flag or doesn't.
class InstructionMatcher
    : public PredicateListMatcher<InstructionPredicateMatcher> {
protected:
  typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;

  /// The operands to match. All rendered operands must be present even if the
  /// condition is always true.
  OperandVec Operands;

public:
  /// Add an operand to the matcher.
  OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
                             unsigned AllocatedTemporariesBaseID) {
    Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
                                             AllocatedTemporariesBaseID));
    return *Operands.back();
  }

  OperandMatcher &getOperand(unsigned OpIdx) {
    auto I = std::find_if(Operands.begin(), Operands.end(),
                          [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
                            return X->getOperandIndex() == OpIdx;
                          });
    if (I != Operands.end())
      return **I;
    llvm_unreachable("Failed to lookup operand");
  }

  Optional<const OperandMatcher *>
  getOptionalOperand(StringRef SymbolicName) const {
    assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
    for (const auto &Operand : Operands) {
      const auto &OM = Operand->getOptionalOperand(SymbolicName);
      if (OM.hasValue())
        return OM.getValue();
    }
    return None;
  }

  const OperandMatcher &getOperand(StringRef SymbolicName) const {
    Optional<const OperandMatcher *>OM = getOptionalOperand(SymbolicName);
    if (OM.hasValue())
      return *OM.getValue();
    llvm_unreachable("Failed to lookup operand");
  }

  unsigned getNumOperands() const { return Operands.size(); }
  OperandVec::iterator operands_begin() { return Operands.begin(); }
  OperandVec::iterator operands_end() { return Operands.end(); }
  iterator_range<OperandVec::iterator> operands() {
    return make_range(operands_begin(), operands_end());
  }
  OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
  OperandVec::const_iterator operands_end() const { return Operands.end(); }
  iterator_range<OperandVec::const_iterator> operands() const {
    return make_range(operands_begin(), operands_end());
  }

  /// Emit C++ statements to check the shape of the match and capture
  /// instructions into local variables.
  void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule, StringRef Expr) {
    OS << "if (" << Expr << ".getNumOperands() < " << getNumOperands() << ")\n"
       << "  return false;\n";
    for (const auto &Operand : Operands) {
      Operand->emitCxxCaptureStmts(OS, Rule, Operand->getOperandExpr(Expr));
    }
  }

  /// Emit a C++ expression that tests whether the instruction named in
  /// InsnVarName matches all the predicates and all the operands.
  void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                            StringRef InsnVarName) const {
    emitCxxPredicateListExpr(OS, Rule, InsnVarName);
    for (const auto &Operand : Operands) {
      OS << " &&\n(";
      Operand->emitCxxPredicateExpr(OS, Rule, InsnVarName);
      OS << ")";
    }
  }

  /// Compare the priority of this object and B.
  ///
  /// Returns true if this object is more important than B.
  bool isHigherPriorityThan(const InstructionMatcher &B) const {
    // Instruction matchers involving more operands have higher priority.
    if (Operands.size() > B.Operands.size())
      return true;
    if (Operands.size() < B.Operands.size())
      return false;

    for (const auto &Predicate : zip(predicates(), B.predicates())) {
      if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
        return true;
      if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
        return false;
    }

    for (const auto &Operand : zip(Operands, B.Operands)) {
      if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
        return true;
      if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
        return false;
    }

    return false;
  };

  /// Report the maximum number of temporary operands needed by the instruction
  /// matcher.
  unsigned countRendererFns() const {
    return std::accumulate(predicates().begin(), predicates().end(), 0,
                           [](unsigned A,
                              const std::unique_ptr<InstructionPredicateMatcher>
                                  &Predicate) {
                             return A + Predicate->countRendererFns();
                           }) +
           std::accumulate(
               Operands.begin(), Operands.end(), 0,
               [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
                 return A + Operand->countRendererFns();
               });
  }
};

/// Generates code to check that the operand is a register defined by an
/// instruction that matches the given instruction matcher.
///
/// For example, the pattern:
///   (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
/// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
/// the:
///   (G_ADD $src1, $src2)
/// subpattern.
class InstructionOperandMatcher : public OperandPredicateMatcher {
protected:
  std::unique_ptr<InstructionMatcher> InsnMatcher;

public:
  InstructionOperandMatcher()
      : OperandPredicateMatcher(OPM_Instruction),
        InsnMatcher(new InstructionMatcher()) {}

  static bool classof(const OperandPredicateMatcher *P) {
    return P->getKind() == OPM_Instruction;
  }

  InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }

  Optional<const OperandMatcher *>
  getOptionalOperand(StringRef SymbolicName) const override {
    assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
    return InsnMatcher->getOptionalOperand(SymbolicName);
  }

  void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule,
                           StringRef OperandExpr) const override {
    OS << "if (!" << OperandExpr + ".isReg())\n"
       << "  return false;\n";
    std::string InsnVarName = Rule.defineInsnVar(
        OS, *InsnMatcher,
        ("*MRI.getVRegDef(" + OperandExpr + ".getReg())").str());
    InsnMatcher->emitCxxCaptureStmts(OS, Rule, InsnVarName);
  }

  void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
                            StringRef OperandExpr) const override {
    OperandExpr = Rule.getInsnVarName(*InsnMatcher);
    OS << "(";
    InsnMatcher->emitCxxPredicateExpr(OS, Rule, OperandExpr);
    OS << ")\n";
  }
};

//===- Actions ------------------------------------------------------------===//
class OperandRenderer {
public:
  enum RendererKind { OR_Copy, OR_Imm, OR_Register, OR_ComplexPattern };

protected:
  RendererKind Kind;

public:
  OperandRenderer(RendererKind Kind) : Kind(Kind) {}
  virtual ~OperandRenderer() {}

  RendererKind getKind() const { return Kind; }

  virtual void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const = 0;
};

/// A CopyRenderer emits code to copy a single operand from an existing
/// instruction to the one being built.
class CopyRenderer : public OperandRenderer {
protected:
  /// The matcher for the instruction that this operand is copied from.
  /// This provides the facility for looking up an a operand by it's name so
  /// that it can be used as a source for the instruction being built.
  const InstructionMatcher &Matched;
  /// The name of the operand.
  const StringRef SymbolicName;

public:
  CopyRenderer(const InstructionMatcher &Matched, StringRef SymbolicName)
      : OperandRenderer(OR_Copy), Matched(Matched), SymbolicName(SymbolicName) {
  }

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Copy;
  }

  const StringRef getSymbolicName() const { return SymbolicName; }

  void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
    const OperandMatcher &Operand = Matched.getOperand(SymbolicName);
    StringRef InsnVarName =
        Rule.getInsnVarName(Operand.getInstructionMatcher());
    std::string OperandExpr = Operand.getOperandExpr(InsnVarName);
    OS << "    MIB.add(" << OperandExpr << "/*" << SymbolicName << "*/);\n";
  }
};

/// Adds a specific physical register to the instruction being built.
/// This is typically useful for WZR/XZR on AArch64.
class AddRegisterRenderer : public OperandRenderer {
protected:
  const Record *RegisterDef;

public:
  AddRegisterRenderer(const Record *RegisterDef)
      : OperandRenderer(OR_Register), RegisterDef(RegisterDef) {}

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Register;
  }

  void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
    OS << "    MIB.addReg(" << RegisterDef->getValueAsString("Namespace")
       << "::" << RegisterDef->getName() << ");\n";
  }
};

/// Adds a specific immediate to the instruction being built.
class ImmRenderer : public OperandRenderer {
protected:
  int64_t Imm;

public:
  ImmRenderer(int64_t Imm)
      : OperandRenderer(OR_Imm), Imm(Imm) {}

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_Imm;
  }

  void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
    OS << "    MIB.addImm(" << Imm << ");\n";
  }
};

/// Adds operands by calling a renderer function supplied by the ComplexPattern
/// matcher function.
class RenderComplexPatternOperand : public OperandRenderer {
private:
  const Record &TheDef;
  /// The name of the operand.
  const StringRef SymbolicName;
  /// The renderer number. This must be unique within a rule since it's used to
  /// identify a temporary variable to hold the renderer function.
  unsigned RendererID;

  unsigned getNumOperands() const {
    return TheDef.getValueAsDag("Operands")->getNumArgs();
  }

public:
  RenderComplexPatternOperand(const Record &TheDef, StringRef SymbolicName,
                              unsigned RendererID)
      : OperandRenderer(OR_ComplexPattern), TheDef(TheDef),
        SymbolicName(SymbolicName), RendererID(RendererID) {}

  static bool classof(const OperandRenderer *R) {
    return R->getKind() == OR_ComplexPattern;
  }

  void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
    OS << "Renderer" << RendererID << "(MIB);\n";
  }
};

/// An action taken when all Matcher predicates succeeded for a parent rule.
///
/// Typical actions include:
/// * Changing the opcode of an instruction.
/// * Adding an operand to an instruction.
class MatchAction {
public:
  virtual ~MatchAction() {}

  /// Emit the C++ statements to implement the action.
  ///
  /// \param RecycleVarName If given, it's an instruction to recycle. The
  ///                       requirements on the instruction vary from action to
  ///                       action.
  virtual void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
                                  StringRef RecycleVarName) const = 0;
};

/// Generates a comment describing the matched rule being acted upon.
class DebugCommentAction : public MatchAction {
private:
  const PatternToMatch &P;

public:
  DebugCommentAction(const PatternToMatch &P) : P(P) {}

  void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
                          StringRef RecycleVarName) const override {
    OS << "// " << *P.getSrcPattern() << "  =>  " << *P.getDstPattern() << "\n";
  }
};

/// Generates code to build an instruction or mutate an existing instruction
/// into the desired instruction when this is possible.
class BuildMIAction : public MatchAction {
private:
  const CodeGenInstruction *I;
  const InstructionMatcher &Matched;
  std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;

  /// True if the instruction can be built solely by mutating the opcode.
  bool canMutate() const {
    if (OperandRenderers.size() != Matched.getNumOperands())
      return false;

    for (const auto &Renderer : enumerate(OperandRenderers)) {
      if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
        const OperandMatcher &OM = Matched.getOperand(Copy->getSymbolicName());
        if (&Matched != &OM.getInstructionMatcher() ||
            OM.getOperandIndex() != Renderer.index())
          return false;
      } else
        return false;
    }

    return true;
  }

public:
  BuildMIAction(const CodeGenInstruction *I, const InstructionMatcher &Matched)
      : I(I), Matched(Matched) {}

  template <class Kind, class... Args>
  Kind &addRenderer(Args&&... args) {
    OperandRenderers.emplace_back(
        llvm::make_unique<Kind>(std::forward<Args>(args)...));
    return *static_cast<Kind *>(OperandRenderers.back().get());
  }

  void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
                          StringRef RecycleVarName) const override {
    if (canMutate()) {
      OS << "    " << RecycleVarName << ".setDesc(TII.get(" << I->Namespace
         << "::" << I->TheDef->getName() << "));\n";

      if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
        OS << "    auto MIB = MachineInstrBuilder(MF, &" << RecycleVarName
           << ");\n";

        for (auto Def : I->ImplicitDefs) {
          auto Namespace = Def->getValueAsString("Namespace");
          OS << "    MIB.addDef(" << Namespace << "::" << Def->getName()
             << ", RegState::Implicit);\n";
        }
        for (auto Use : I->ImplicitUses) {
          auto Namespace = Use->getValueAsString("Namespace");
          OS << "    MIB.addUse(" << Namespace << "::" << Use->getName()
             << ", RegState::Implicit);\n";
        }
      }

      OS << "    MachineInstr &NewI = " << RecycleVarName << ";\n";
      return;
    }

    // TODO: Simple permutation looks like it could be almost as common as
    //       mutation due to commutative operations.

    OS << "MachineInstrBuilder MIB = BuildMI(*I.getParent(), I, "
          "I.getDebugLoc(), TII.get("
       << I->Namespace << "::" << I->TheDef->getName() << "));\n";
    for (const auto &Renderer : OperandRenderers)
      Renderer->emitCxxRenderStmts(OS, Rule);
    OS << "    for (const auto *FromMI : ";
    Rule.emitCxxCapturedInsnList(OS);
    OS << ")\n";
    OS << "      for (const auto &MMO : FromMI->memoperands())\n";
    OS << "        MIB.addMemOperand(MMO);\n";
    OS << "    " << RecycleVarName << ".eraseFromParent();\n";
    OS << "    MachineInstr &NewI = *MIB;\n";
  }
};

InstructionMatcher &RuleMatcher::addInstructionMatcher() {
  Matchers.emplace_back(new InstructionMatcher());
  return *Matchers.back();
}

void RuleMatcher::addRequiredFeature(Record *Feature) {
  RequiredFeatures.push_back(Feature);
}

template <class Kind, class... Args>
Kind &RuleMatcher::addAction(Args &&... args) {
  Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
  return *static_cast<Kind *>(Actions.back().get());
}

std::string RuleMatcher::defineInsnVar(raw_ostream &OS,
                                       const InstructionMatcher &Matcher,
                                       StringRef Value) {
  std::string InsnVarName = "MI" + llvm::to_string(NextInsnVarID++);
  OS << "MachineInstr &" << InsnVarName << " = " << Value << ";\n";
  InsnVariableNames[&Matcher] = InsnVarName;
  return InsnVarName;
}

StringRef RuleMatcher::getInsnVarName(const InstructionMatcher &InsnMatcher) const {
  const auto &I = InsnVariableNames.find(&InsnMatcher);
  if (I != InsnVariableNames.end())
    return I->second;
  llvm_unreachable("Matched Insn was not captured in a local variable");
}

/// Emit a C++ initializer_list containing references to every matched instruction.
void RuleMatcher::emitCxxCapturedInsnList(raw_ostream &OS) {
  SmallVector<StringRef, 2> Names;
  for (const auto &Pair : InsnVariableNames)
    Names.push_back(Pair.second);
  std::sort(Names.begin(), Names.end());

  OS << "{";
  for (const auto &Name : Names)
    OS << "&" << Name << ", ";
  OS << "}";
}

/// Emit C++ statements to check the shape of the match and capture
/// instructions into local variables.
void RuleMatcher::emitCxxCaptureStmts(raw_ostream &OS, StringRef Expr) {
  assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
  std::string InsnVarName = defineInsnVar(OS, *Matchers.front(), Expr);
  Matchers.front()->emitCxxCaptureStmts(OS, *this, InsnVarName);
}

void RuleMatcher::emit(raw_ostream &OS,
                       SubtargetFeatureInfoMap SubtargetFeatures) {
  if (Matchers.empty())
    llvm_unreachable("Unexpected empty matcher!");

  // The representation supports rules that require multiple roots such as:
  //    %ptr(p0) = ...
  //    %elt0(s32) = G_LOAD %ptr
  //    %1(p0) = G_ADD %ptr, 4
  //    %elt1(s32) = G_LOAD p0 %1
  // which could be usefully folded into:
  //    %ptr(p0) = ...
  //    %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
  // on some targets but we don't need to make use of that yet.
  assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");

  OS << "if (";
  OS << "[&]() {\n";
  if (!RequiredFeatures.empty()) {
    OS << "  PredicateBitset ExpectedFeatures = {";
    StringRef Separator = "";
    for (const auto &Predicate : RequiredFeatures) {
      const auto &I = SubtargetFeatures.find(Predicate);
      assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
      OS << Separator << I->second.getEnumBitName();
      Separator = ", ";
    }
    OS << "};\n";
    OS << "if ((AvailableFeatures & ExpectedFeatures) != ExpectedFeatures)\n"
       << "  return false;\n";
  }

  emitCxxCaptureStmts(OS, "I");

  OS << "    if (";
  Matchers.front()->emitCxxPredicateExpr(OS, *this,
                                         getInsnVarName(*Matchers.front()));
  OS << ") {\n";

  // We must also check if it's safe to fold the matched instructions.
  if (InsnVariableNames.size() >= 2) {
    for (const auto &Pair : InsnVariableNames) {
      // Skip the root node since it isn't moving anywhere. Everything else is
      // sinking to meet it.
      if (Pair.first == Matchers.front().get())
        continue;

      // Reject the difficult cases until we have a more accurate check.
      OS << "      if (!isObviouslySafeToFold(" << Pair.second
         << ")) return false;\n";

      // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
      //        account for unsafe cases.
      //
      //        Example:
      //          MI1--> %0 = ...
      //                 %1 = ... %0
      //          MI0--> %2 = ... %0
      //          It's not safe to erase MI1. We currently handle this by not
      //          erasing %0 (even when it's dead).
      //
      //        Example:
      //          MI1--> %0 = load volatile @a
      //                 %1 = load volatile @a
      //          MI0--> %2 = ... %0
      //          It's not safe to sink %0's def past %1. We currently handle
      //          this by rejecting all loads.
      //
      //        Example:
      //          MI1--> %0 = load @a
      //                 %1 = store @a
      //          MI0--> %2 = ... %0
      //          It's not safe to sink %0's def past %1. We currently handle
      //          this by rejecting all loads.
      //
      //        Example:
      //                   G_CONDBR %cond, @BB1
      //                 BB0:
      //          MI1-->   %0 = load @a
      //                   G_BR @BB1
      //                 BB1:
      //          MI0-->   %2 = ... %0
      //          It's not always safe to sink %0 across control flow. In this
      //          case it may introduce a memory fault. We currentl handle this
      //          by rejecting all loads.
    }
  }

  for (const auto &MA : Actions) {
    MA->emitCxxActionStmts(OS, *this, "I");
  }

  OS << "      constrainSelectedInstRegOperands(NewI, TII, TRI, RBI);\n";
  OS << "      return true;\n";
  OS << "    }\n";
  OS << "    return false;\n";
  OS << "  }()) { return true; }\n\n";
}

bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
  // Rules involving more match roots have higher priority.
  if (Matchers.size() > B.Matchers.size())
    return true;
  if (Matchers.size() < B.Matchers.size())
    return false;

  for (const auto &Matcher : zip(Matchers, B.Matchers)) {
    if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
      return true;
    if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
      return false;
  }

  return false;
}

unsigned RuleMatcher::countRendererFns() const {
  return std::accumulate(
      Matchers.begin(), Matchers.end(), 0,
      [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
        return A + Matcher->countRendererFns();
      });
}

//===- GlobalISelEmitter class --------------------------------------------===//

class GlobalISelEmitter {
public:
  explicit GlobalISelEmitter(RecordKeeper &RK);
  void run(raw_ostream &OS);

private:
  const RecordKeeper &RK;
  const CodeGenDAGPatterns CGP;
  const CodeGenTarget &Target;

  /// Keep track of the equivalence between SDNodes and Instruction.
  /// This is defined using 'GINodeEquiv' in the target description.
  DenseMap<Record *, const CodeGenInstruction *> NodeEquivs;

  /// Keep track of the equivalence between ComplexPattern's and
  /// GIComplexOperandMatcher. Map entries are specified by subclassing
  /// GIComplexPatternEquiv.
  DenseMap<const Record *, const Record *> ComplexPatternEquivs;

  // Map of predicates to their subtarget features.
  SubtargetFeatureInfoMap SubtargetFeatures;

  void gatherNodeEquivs();
  const CodeGenInstruction *findNodeEquiv(Record *N) const;

  Error importRulePredicates(RuleMatcher &M, ArrayRef<Init *> Predicates);
  Expected<InstructionMatcher &>
  createAndImportSelDAGMatcher(InstructionMatcher &InsnMatcher,
                               const TreePatternNode *Src) const;
  Error importChildMatcher(InstructionMatcher &InsnMatcher,
                           TreePatternNode *SrcChild, unsigned OpIdx,
                           unsigned &TempOpIdx) const;
  Expected<BuildMIAction &> createAndImportInstructionRenderer(
      RuleMatcher &M, const TreePatternNode *Dst,
      const InstructionMatcher &InsnMatcher) const;
  Error importExplicitUseRenderer(BuildMIAction &DstMIBuilder,
                                  TreePatternNode *DstChild,
                                  const InstructionMatcher &InsnMatcher) const;
  Error
  importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
                             const std::vector<Record *> &ImplicitDefs) const;

  /// Analyze pattern \p P, returning a matcher for it if possible.
  /// Otherwise, return an Error explaining why we don't support it.
  Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);

  void declareSubtargetFeature(Record *Predicate);
};

void GlobalISelEmitter::gatherNodeEquivs() {
  assert(NodeEquivs.empty());
  for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
    NodeEquivs[Equiv->getValueAsDef("Node")] =
        &Target.getInstruction(Equiv->getValueAsDef("I"));

  assert(ComplexPatternEquivs.empty());
  for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
    Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
    if (!SelDAGEquiv)
      continue;
    ComplexPatternEquivs[SelDAGEquiv] = Equiv;
 }
}

const CodeGenInstruction *GlobalISelEmitter::findNodeEquiv(Record *N) const {
  return NodeEquivs.lookup(N);
}

GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
    : RK(RK), CGP(RK), Target(CGP.getTargetInfo()) {}

//===- Emitter ------------------------------------------------------------===//

Error
GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
                                        ArrayRef<Init *> Predicates) {
  for (const Init *Predicate : Predicates) {
    const DefInit *PredicateDef = static_cast<const DefInit *>(Predicate);
    declareSubtargetFeature(PredicateDef->getDef());
    M.addRequiredFeature(PredicateDef->getDef());
  }

  return Error::success();
}

Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
    InstructionMatcher &InsnMatcher, const TreePatternNode *Src) const {
  // Start with the defined operands (i.e., the results of the root operator).
  if (Src->getExtTypes().size() > 1)
    return failedImport("Src pattern has multiple results");

  auto SrcGIOrNull = findNodeEquiv(Src->getOperator());
  if (!SrcGIOrNull)
    return failedImport("Pattern operator lacks an equivalent Instruction" +
                        explainOperator(Src->getOperator()));
  auto &SrcGI = *SrcGIOrNull;

  // The operators look good: match the opcode and mutate it to the new one.
  InsnMatcher.addPredicate<InstructionOpcodeMatcher>(&SrcGI);

  unsigned OpIdx = 0;
  unsigned TempOpIdx = 0;
  for (const EEVT::TypeSet &Ty : Src->getExtTypes()) {
    auto OpTyOrNone = MVTToLLT(Ty.getConcrete());

    if (!OpTyOrNone)
      return failedImport(
          "Result of Src pattern operator has an unsupported type");

    // Results don't have a name unless they are the root node. The caller will
    // set the name if appropriate.
    OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
    OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
  }

  // Match the used operands (i.e. the children of the operator).
  for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
    if (auto Error = importChildMatcher(InsnMatcher, Src->getChild(i), OpIdx++,
                                        TempOpIdx))
      return std::move(Error);
  }

  return InsnMatcher;
}

Error GlobalISelEmitter::importChildMatcher(InstructionMatcher &InsnMatcher,
                                            TreePatternNode *SrcChild,
                                            unsigned OpIdx,
                                            unsigned &TempOpIdx) const {
  OperandMatcher &OM =
      InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);

  if (SrcChild->hasAnyPredicate())
    return failedImport("Src pattern child has predicate (" +
                        explainPredicates(SrcChild) + ")");

  ArrayRef<EEVT::TypeSet> ChildTypes = SrcChild->getExtTypes();
  if (ChildTypes.size() != 1)
    return failedImport("Src pattern child has multiple results");

  // Check MBB's before the type check since they are not a known type.
  if (!SrcChild->isLeaf()) {
    if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
      auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
      if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
        OM.addPredicate<MBBOperandMatcher>();
        return Error::success();
      }
    }
  }

  auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
  if (!OpTyOrNone)
    return failedImport("Src operand has an unsupported type");
  OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);

  // Check for nested instructions.
  if (!SrcChild->isLeaf()) {
    // Map the node to a gMIR instruction.
    InstructionOperandMatcher &InsnOperand =
        OM.addPredicate<InstructionOperandMatcher>();
    auto InsnMatcherOrError =
        createAndImportSelDAGMatcher(InsnOperand.getInsnMatcher(), SrcChild);
    if (auto Error = InsnMatcherOrError.takeError())
      return Error;

    return Error::success();
  }

  // Check for constant immediates.
  if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
    OM.addPredicate<IntOperandMatcher>(ChildInt->getValue());
    return Error::success();
  }

  // Check for def's like register classes or ComplexPattern's.
  if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
    auto *ChildRec = ChildDefInit->getDef();

    // Check for register classes.
    if (ChildRec->isSubClassOf("RegisterClass")) {
      OM.addPredicate<RegisterBankOperandMatcher>(
          Target.getRegisterClass(ChildRec));
      return Error::success();
    }

    if (ChildRec->isSubClassOf("RegisterOperand")) {
      OM.addPredicate<RegisterBankOperandMatcher>(
          Target.getRegisterClass(ChildRec->getValueAsDef("RegClass")));
      return Error::success();
    }

    // Check for ComplexPattern's.
    if (ChildRec->isSubClassOf("ComplexPattern")) {
      const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
      if (ComplexPattern == ComplexPatternEquivs.end())
        return failedImport("SelectionDAG ComplexPattern (" +
                            ChildRec->getName() + ") not mapped to GlobalISel");

      OM.addPredicate<ComplexPatternOperandMatcher>(OM,
                                                    *ComplexPattern->second);
      TempOpIdx++;
      return Error::success();
    }

    if (ChildRec->isSubClassOf("ImmLeaf")) {
      return failedImport(
          "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
    }

    return failedImport(
        "Src pattern child def is an unsupported tablegen class");
  }

  return failedImport("Src pattern child is an unsupported kind");
}

Error GlobalISelEmitter::importExplicitUseRenderer(
    BuildMIAction &DstMIBuilder, TreePatternNode *DstChild,
    const InstructionMatcher &InsnMatcher) const {
  // The only non-leaf child we accept is 'bb': it's an operator because
  // BasicBlockSDNode isn't inline, but in MI it's just another operand.
  if (!DstChild->isLeaf()) {
    if (DstChild->getOperator()->isSubClassOf("SDNode")) {
      auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
      if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
        DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher,
                                               DstChild->getName());
        return Error::success();
      }
    }
    return failedImport("Dst pattern child isn't a leaf node or an MBB");
  }

  // Otherwise, we're looking for a bog-standard RegisterClass operand.
  if (DstChild->hasAnyPredicate())
    return failedImport("Dst pattern child has predicate (" +
                        explainPredicates(DstChild) + ")");

  if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
    auto *ChildRec = ChildDefInit->getDef();

    ArrayRef<EEVT::TypeSet> ChildTypes = DstChild->getExtTypes();
    if (ChildTypes.size() != 1)
      return failedImport("Dst pattern child has multiple results");

    auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
    if (!OpTyOrNone)
      return failedImport("Dst operand has an unsupported type");

    if (ChildRec->isSubClassOf("Register")) {
      DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
      return Error::success();
    }

    if (ChildRec->isSubClassOf("RegisterClass") ||
        ChildRec->isSubClassOf("RegisterOperand")) {
      DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, DstChild->getName());
      return Error::success();
    }

    if (ChildRec->isSubClassOf("ComplexPattern")) {
      const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
      if (ComplexPattern == ComplexPatternEquivs.end())
        return failedImport(
            "SelectionDAG ComplexPattern not mapped to GlobalISel");

      const OperandMatcher &OM = InsnMatcher.getOperand(DstChild->getName());
      DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
          *ComplexPattern->second, DstChild->getName(),
          OM.getAllocatedTemporariesBaseID());
      return Error::success();
    }

    if (ChildRec->isSubClassOf("SDNodeXForm"))
      return failedImport("Dst pattern child def is an unsupported tablegen "
                          "class (SDNodeXForm)");

    return failedImport(
        "Dst pattern child def is an unsupported tablegen class");
  }

  return failedImport("Dst pattern child is an unsupported kind");
}

Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
    RuleMatcher &M, const TreePatternNode *Dst,
    const InstructionMatcher &InsnMatcher) const {
  Record *DstOp = Dst->getOperator();
  if (!DstOp->isSubClassOf("Instruction")) {
    if (DstOp->isSubClassOf("ValueType"))
      return failedImport(
          "Pattern operator isn't an instruction (it's a ValueType)");
    return failedImport("Pattern operator isn't an instruction");
  }
  auto &DstI = Target.getInstruction(DstOp);

  auto &DstMIBuilder = M.addAction<BuildMIAction>(&DstI, InsnMatcher);

  // Render the explicit defs.
  for (unsigned I = 0; I < DstI.Operands.NumDefs; ++I) {
    const auto &DstIOperand = DstI.Operands[I];
    DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, DstIOperand.Name);
  }

  // Figure out which operands need defaults inserted. Operands that subclass
  // OperandWithDefaultOps are considered from left to right until we have
  // enough operands to render the instruction.
  SmallSet<unsigned, 2> DefaultOperands;
  unsigned DstINumUses = DstI.Operands.size() - DstI.Operands.NumDefs;
  unsigned NumDefaultOperands = 0;
  for (unsigned I = 0; I < DstINumUses &&
                       DstINumUses > Dst->getNumChildren() + NumDefaultOperands;
       ++I) {
    const auto &DstIOperand = DstI.Operands[DstI.Operands.NumDefs + I];
    if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
      DefaultOperands.insert(I);
      NumDefaultOperands +=
          DstIOperand.Rec->getValueAsDag("DefaultOps")->getNumArgs();
    }
  }
  if (DstINumUses > Dst->getNumChildren() + DefaultOperands.size())
    return failedImport("Insufficient operands supplied and default ops "
                        "couldn't make up the shortfall");
  if (DstINumUses < Dst->getNumChildren() + DefaultOperands.size())
    return failedImport("Too many operands supplied");

  // Render the explicit uses.
  unsigned Child = 0;
  for (unsigned I = 0; I != DstINumUses; ++I) {
    // If we need to insert default ops here, then do so.
    if (DefaultOperands.count(I)) {
      const auto &DstIOperand = DstI.Operands[DstI.Operands.NumDefs + I];

      DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
      for (const auto *DefaultOp : DefaultOps->args()) {
        // Look through ValueType operators.
        if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
          if (const DefInit *DefaultDagOperator =
                  dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
            if (DefaultDagOperator->getDef()->isSubClassOf("ValueType"))
              DefaultOp = DefaultDagOp->getArg(0);
          }
        }

        if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
          DstMIBuilder.addRenderer<AddRegisterRenderer>(DefaultDefOp->getDef());
          continue;
        }

        if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
          DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
          continue;
        }

        return failedImport("Could not add default op");
      }

      continue;
    }

    if (auto Error = importExplicitUseRenderer(
            DstMIBuilder, Dst->getChild(Child), InsnMatcher))
      return std::move(Error);
    ++Child;
  }

  return DstMIBuilder;
}

Error GlobalISelEmitter::importImplicitDefRenderers(
    BuildMIAction &DstMIBuilder,
    const std::vector<Record *> &ImplicitDefs) const {
  if (!ImplicitDefs.empty())
    return failedImport("Pattern defines a physical register");
  return Error::success();
}

Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
  // Keep track of the matchers and actions to emit.
  RuleMatcher M;
  M.addAction<DebugCommentAction>(P);

  if (auto Error = importRulePredicates(M, P.getPredicates()->getValues()))
    return std::move(Error);

  // Next, analyze the pattern operators.
  TreePatternNode *Src = P.getSrcPattern();
  TreePatternNode *Dst = P.getDstPattern();

  // If the root of either pattern isn't a simple operator, ignore it.
  if (auto Err = isTrivialOperatorNode(Dst))
    return failedImport("Dst pattern root isn't a trivial operator (" +
                        toString(std::move(Err)) + ")");
  if (auto Err = isTrivialOperatorNode(Src))
    return failedImport("Src pattern root isn't a trivial operator (" +
                        toString(std::move(Err)) + ")");

  // Start with the defined operands (i.e., the results of the root operator).
  Record *DstOp = Dst->getOperator();
  if (!DstOp->isSubClassOf("Instruction"))
    return failedImport("Pattern operator isn't an instruction");

  auto &DstI = Target.getInstruction(DstOp);
  if (DstI.Operands.NumDefs != Src->getExtTypes().size())
    return failedImport("Src pattern results and dst MI defs are different (" +
                        to_string(Src->getExtTypes().size()) + " def(s) vs " +
                        to_string(DstI.Operands.NumDefs) + " def(s))");

  InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher();
  auto InsnMatcherOrError = createAndImportSelDAGMatcher(InsnMatcherTemp, Src);
  if (auto Error = InsnMatcherOrError.takeError())
    return std::move(Error);
  InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();

  // The root of the match also has constraints on the register bank so that it
  // matches the result instruction.
  unsigned OpIdx = 0;
  for (const EEVT::TypeSet &Ty : Src->getExtTypes()) {
    (void)Ty;

    const auto &DstIOperand = DstI.Operands[OpIdx];
    Record *DstIOpRec = DstIOperand.Rec;
    if (DstIOpRec->isSubClassOf("RegisterOperand"))
      DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
    if (!DstIOpRec->isSubClassOf("RegisterClass"))
      return failedImport("Dst MI def isn't a register class");

    OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
    OM.setSymbolicName(DstIOperand.Name);
    OM.addPredicate<RegisterBankOperandMatcher>(
        Target.getRegisterClass(DstIOpRec));
    ++OpIdx;
  }

  auto DstMIBuilderOrError =
      createAndImportInstructionRenderer(M, Dst, InsnMatcher);
  if (auto Error = DstMIBuilderOrError.takeError())
    return std::move(Error);
  BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();

  // Render the implicit defs.
  // These are only added to the root of the result.
  if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
    return std::move(Error);

  // We're done with this pattern!  It's eligible for GISel emission; return it.
  ++NumPatternImported;
  return std::move(M);
}

void GlobalISelEmitter::run(raw_ostream &OS) {
  // Track the GINodeEquiv definitions.
  gatherNodeEquivs();

  emitSourceFileHeader(("Global Instruction Selector for the " +
                       Target.getName() + " target").str(), OS);
  std::vector<RuleMatcher> Rules;
  // Look through the SelectionDAG patterns we found, possibly emitting some.
  for (const PatternToMatch &Pat : CGP.ptms()) {
    ++NumPatternTotal;
    auto MatcherOrErr = runOnPattern(Pat);

    // The pattern analysis can fail, indicating an unsupported pattern.
    // Report that if we've been asked to do so.
    if (auto Err = MatcherOrErr.takeError()) {
      if (WarnOnSkippedPatterns) {
        PrintWarning(Pat.getSrcRecord()->getLoc(),
                     "Skipped pattern: " + toString(std::move(Err)));
      } else {
        consumeError(std::move(Err));
      }
      ++NumPatternImportsSkipped;
      continue;
    }

    Rules.push_back(std::move(MatcherOrErr.get()));
  }

  std::stable_sort(Rules.begin(), Rules.end(),
            [&](const RuleMatcher &A, const RuleMatcher &B) {
              if (A.isHigherPriorityThan(B)) {
                assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
                                                     "and less important at "
                                                     "the same time");
                return true;
              }
              return false;
            });

  unsigned MaxTemporaries = 0;
  for (const auto &Rule : Rules)
    MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());

  OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
     << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
     << ";\n"
     << "using PredicateBitset = "
        "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
     << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";

  OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n";
  for (unsigned I = 0; I < MaxTemporaries; ++I)
    OS << "  mutable ComplexRendererFn Renderer" << I << ";\n";
  OS << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";

  OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n";
  for (unsigned I = 0; I < MaxTemporaries; ++I)
    OS << ", Renderer" << I << "(nullptr)\n";
  OS << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";

  OS << "#ifdef GET_GLOBALISEL_IMPL\n";
  SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
                                                           OS);
  SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, OS);

  // Separate subtarget features by how often they must be recomputed.
  SubtargetFeatureInfoMap ModuleFeatures;
  std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
               std::inserter(ModuleFeatures, ModuleFeatures.end()),
               [](const SubtargetFeatureInfoMap::value_type &X) {
                 return !X.second.mustRecomputePerFunction();
               });
  SubtargetFeatureInfoMap FunctionFeatures;
  std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
               std::inserter(FunctionFeatures, FunctionFeatures.end()),
               [](const SubtargetFeatureInfoMap::value_type &X) {
                 return X.second.mustRecomputePerFunction();
               });

  SubtargetFeatureInfo::emitComputeAvailableFeatures(
      Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
      ModuleFeatures, OS);
  SubtargetFeatureInfo::emitComputeAvailableFeatures(
      Target.getName(), "InstructionSelector",
      "computeAvailableFunctionFeatures", FunctionFeatures, OS,
      "const MachineFunction *MF");

  OS << "bool " << Target.getName()
     << "InstructionSelector::selectImpl(MachineInstr &I) const {\n"
     << "  MachineFunction &MF = *I.getParent()->getParent();\n"
     << "  const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
     << "  // FIXME: This should be computed on a per-function basis rather than per-insn.\n"
     << "  AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, &MF);\n"
     << "  const PredicateBitset AvailableFeatures = getAvailableFeatures();\n";

  for (auto &Rule : Rules) {
    Rule.emit(OS, SubtargetFeatures);
    ++NumPatternEmitted;
  }

  OS << "  return false;\n"
     << "}\n"
     << "#endif // ifdef GET_GLOBALISEL_IMPL\n";

  OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
     << "PredicateBitset AvailableModuleFeatures;\n"
     << "mutable PredicateBitset AvailableFunctionFeatures;\n"
     << "PredicateBitset getAvailableFeatures() const {\n"
     << "  return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
     << "}\n"
     << "PredicateBitset\n"
     << "computeAvailableModuleFeatures(const " << Target.getName()
     << "Subtarget *Subtarget) const;\n"
     << "PredicateBitset\n"
     << "computeAvailableFunctionFeatures(const " << Target.getName()
     << "Subtarget *Subtarget,\n"
     << "                                 const MachineFunction *MF) const;\n"
     << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";

  OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
     << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
     << "AvailableFunctionFeatures()\n"
     << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
}

void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
  if (SubtargetFeatures.count(Predicate) == 0)
    SubtargetFeatures.emplace(
        Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
}

} // end anonymous namespace

//===----------------------------------------------------------------------===//

namespace llvm {
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
  GlobalISelEmitter(RK).run(OS);
}
} // End llvm namespace