aboutsummaryrefslogtreecommitdiff
path: root/ubuntu/dm-raid4-5/dm-raid4-5.c
blob: fcc782c80fb885b1fb7c3075fff03d2faee03df1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
/*[A[A
 * Copyright (C) 2005-2009 Red Hat, Inc. All rights reserved.
 *
 * Module Author: Heinz Mauelshagen <heinzm@redhat.com>
 *
 * This file is released under the GPL.
 *
 *
 * Linux 2.6 Device Mapper RAID4 and RAID5 target.
 *
 * Supports:
 *	o RAID4 with dedicated and selectable parity device
 *	o RAID5 with rotating parity (left+right, symmetric+asymmetric)
 *	o recovery of out of sync device for initial
 *	  RAID set creation or after dead drive replacement
 *	o run time optimization of xor algorithm used to calculate parity
 *
 *
 * Thanks to MD for:
 *    o the raid address calculation algorithm
 *    o the base of the biovec <-> page list copier.
 *
 *
 * Uses region hash to keep track of how many writes are in flight to
 * regions in order to use dirty log to keep state of regions to recover:
 *
 *    o clean regions (those which are synchronized
 * 	and don't have write io in flight)
 *    o dirty regions (those with write io in flight)
 *
 *
 * On startup, any dirty regions are migrated to the
 * 'nosync' state and are subject to recovery by the daemon.
 *
 * See raid_ctr() for table definition.
 *
 * FIXME: recovery bandwidth
 */ 

static const char *version = "v0.2594b";

#include "dm.h"
#include "dm-memcache.h"
#include "dm-message.h"
#include "dm-raid45.h"

#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/raid/xor.h>

#include <linux/bio.h>
#include <linux/dm-io.h>
#include <linux/dm-dirty-log.h>
#include "dm-region-hash.h"

#include <linux/slab.h>

/*
 * Configurable parameters
 */

/* Minimum/maximum and default # of selectable stripes. */
#define	STRIPES_MIN		8
#define	STRIPES_MAX		16384
#define	STRIPES_DEFAULT		80

/* Maximum and default chunk size in sectors if not set in constructor. */
#define	CHUNK_SIZE_MIN		8
#define	CHUNK_SIZE_MAX		16384
#define	CHUNK_SIZE_DEFAULT	64

/* Default io size in sectors if not set in constructor. */
#define	IO_SIZE_MIN		CHUNK_SIZE_MIN
#define	IO_SIZE_DEFAULT		IO_SIZE_MIN

/* Recover io size default in sectors. */
#define	RECOVER_IO_SIZE_MIN		64
#define	RECOVER_IO_SIZE_DEFAULT		256

/* Default, minimum and maximum percentage of recover io bandwidth. */
#define	BANDWIDTH_DEFAULT	10
#define	BANDWIDTH_MIN		1
#define	BANDWIDTH_MAX		100

/* # of parallel recovered regions */
#define RECOVERY_STRIPES_MIN	1
#define RECOVERY_STRIPES_MAX	64
#define RECOVERY_STRIPES_DEFAULT	RECOVERY_STRIPES_MIN
/*
 * END Configurable parameters
 */

#define	TARGET	"dm-raid45"
#define	DAEMON	"kraid45d"
#define	DM_MSG_PREFIX	TARGET

#define	SECTORS_PER_PAGE	(PAGE_SIZE >> SECTOR_SHIFT)

/* Amount/size for __xor(). */
#define	XOR_SIZE	PAGE_SIZE

/* Check value in range. */
#define	range_ok(i, min, max)	(i >= min && i <= max)

/* Check argument is power of 2. */
#define POWER_OF_2(a) (!(a & (a - 1)))

/* Structure access macros. */
/* Derive raid_set from stripe_cache pointer. */
#define	RS(x)	container_of(x, struct raid_set, sc)

/* Page reference. */
#define PAGE(stripe, p)  ((stripe)->obj[p].pl->page)

/* Stripe chunk reference. */
#define CHUNK(stripe, p) ((stripe)->chunk + p)

/* Bio list reference. */
#define	BL(stripe, p, rw)	(stripe->chunk[p].bl + rw)
#define	BL_CHUNK(chunk, rw)	(chunk->bl + rw)

/* Page list reference. */
#define	PL(stripe, p)		(stripe->obj[p].pl)
/* END: structure access macros. */

/* Factor out to dm-bio-list.h */
static inline void bio_list_push(struct bio_list *bl, struct bio *bio)
{
	bio->bi_next = bl->head;
	bl->head = bio;

	if (!bl->tail)
		bl->tail = bio;
}

/* Factor out to dm.h */
#define TI_ERR_RET(str, ret) \
	do { ti->error = str; return ret; } while (0);
#define TI_ERR(str)     TI_ERR_RET(str, -EINVAL)

/* Macro to define access IO flags access inline functions. */
#define	BITOPS(name, what, var, flag) \
static inline int TestClear ## name ## what(struct var *v) \
{ return test_and_clear_bit(flag, &v->io.flags); } \
static inline int TestSet ## name ## what(struct var *v) \
{ return test_and_set_bit(flag, &v->io.flags); } \
static inline void Clear ## name ## what(struct var *v) \
{ clear_bit(flag, &v->io.flags); } \
static inline void Set ## name ## what(struct var *v) \
{ set_bit(flag, &v->io.flags); } \
static inline int name ## what(struct var *v) \
{ return test_bit(flag, &v->io.flags); }

/*-----------------------------------------------------------------
 * Stripe cache
 *
 * Cache for all reads and writes to raid sets (operational or degraded)
 *
 * We need to run all data to and from a RAID set through this cache,
 * because parity chunks need to get calculated from data chunks
 * or, in the degraded/resynchronization case, missing chunks need
 * to be reconstructed using the other chunks of the stripe.
 *---------------------------------------------------------------*/
/* A chunk within a stripe (holds bios hanging off). */
/* IO status flags for chunks of a stripe. */
enum chunk_flags {
	CHUNK_DIRTY,		/* Pages of chunk dirty; need writing. */
	CHUNK_ERROR,		/* IO error on any chunk page. */
	CHUNK_IO,		/* Allow/prohibit IO on chunk pages. */
	CHUNK_LOCKED,		/* Chunk pages locked during IO. */
	CHUNK_MUST_IO,		/* Chunk must io. */
	CHUNK_UNLOCK,		/* Enforce chunk unlock. */
	CHUNK_UPTODATE,		/* Chunk pages are uptodate. */
};

#if READ != 0 || WRITE != 1
#error dm-raid45: READ/WRITE != 0/1 used as index!!!
#endif

enum bl_type {
	WRITE_QUEUED = WRITE + 1,
	WRITE_MERGED,
	NR_BL_TYPES,	/* Must be last one! */
};
struct stripe_chunk {
	atomic_t cnt;		/* Reference count. */
	struct stripe *stripe;	/* Backpointer to stripe for endio(). */
	/* Bio lists for reads, writes, and writes merged. */
	struct bio_list bl[NR_BL_TYPES];
	struct {
		unsigned long flags; /* IO status flags. */
	} io;
};

/* Define chunk bit operations. */
BITOPS(Chunk, Dirty,	 stripe_chunk, CHUNK_DIRTY)
BITOPS(Chunk, Error,	 stripe_chunk, CHUNK_ERROR)
BITOPS(Chunk, Io,	 stripe_chunk, CHUNK_IO)
BITOPS(Chunk, Locked,	 stripe_chunk, CHUNK_LOCKED)
BITOPS(Chunk, MustIo,	 stripe_chunk, CHUNK_MUST_IO)
BITOPS(Chunk, Unlock,	 stripe_chunk, CHUNK_UNLOCK)
BITOPS(Chunk, Uptodate,	 stripe_chunk, CHUNK_UPTODATE)

/*
 * Stripe linked list indexes. Keep order, because the stripe
 * and the stripe cache rely on the first 3!
 */
enum list_types {
	LIST_FLUSH,	/* Stripes to flush for io. */
	LIST_ENDIO,	/* Stripes to endio. */
	LIST_LRU,	/* Least recently used stripes. */
	SC_NR_LISTS,	/* # of lists in stripe cache. */
	LIST_HASH = SC_NR_LISTS,	/* Hashed stripes. */
	LIST_RECOVER = LIST_HASH, /* For recovery type stripes only. */
	STRIPE_NR_LISTS,/* To size array in struct stripe. */
};

/* Adressing region recovery. */
struct recover_addr {
	struct dm_region *reg;	/* Actual region to recover. */
	sector_t pos;	/* Position within region to recover. */
	sector_t end;	/* End of region to recover. */
};

/* A stripe: the io object to handle all reads and writes to a RAID set. */
struct stripe {
	atomic_t cnt;			/* Reference count. */
	struct stripe_cache *sc;	/* Backpointer to stripe cache. */

	/*
	 * 4 linked lists:
	 *   o io list to flush io
	 *   o endio list
	 *   o LRU list to put stripes w/o reference count on
	 *   o stripe cache hash
	 */
	struct list_head lists[STRIPE_NR_LISTS];

	sector_t key;	 /* Hash key. */
	region_t region; /* Region stripe is mapped to. */

	struct {
		unsigned long flags;	/* Stripe state flags (see below). */

		/*
		 * Pending ios in flight:
		 *
		 * used to control move of stripe to endio list
		 */
		atomic_t pending;

		/* Sectors to read and write for multi page stripe sets. */
		unsigned size;
	} io;

	/* Address region recovery. */
	struct recover_addr *recover;

	/* Lock on stripe (Future: for clustering). */
	void *lock;

	struct {
		unsigned short parity;	/* Parity chunk index. */
		short recover;		/* Recovery chunk index. */
	} idx;

	/*
	 * This stripe's memory cache object (dm-mem-cache);
	 * i.e. the io chunk pages.
	 */
	struct dm_mem_cache_object *obj;

	/* Array of stripe sets (dynamically allocated). */
	struct stripe_chunk chunk[0];
};

/* States stripes can be in (flags field). */
enum stripe_states {
	STRIPE_ERROR,		/* io error on stripe. */
	STRIPE_MERGED,		/* Writes got merged to be written. */
	STRIPE_RBW,		/* Read-before-write stripe. */
	STRIPE_RECONSTRUCT,	/* Reconstruct of a missing chunk required. */
	STRIPE_RECONSTRUCTED,	/* Reconstructed of a missing chunk. */
	STRIPE_RECOVER,		/* Stripe used for RAID set recovery. */
};

/* Define stripe bit operations. */
BITOPS(Stripe, Error,	      stripe, STRIPE_ERROR)
BITOPS(Stripe, Merged,        stripe, STRIPE_MERGED)
BITOPS(Stripe, RBW,	      stripe, STRIPE_RBW)
BITOPS(Stripe, Reconstruct,   stripe, STRIPE_RECONSTRUCT)
BITOPS(Stripe, Reconstructed, stripe, STRIPE_RECONSTRUCTED)
BITOPS(Stripe, Recover,	      stripe, STRIPE_RECOVER)

/* A stripe hash. */
struct stripe_hash {
	struct list_head *hash;
	unsigned buckets;
	unsigned mask;
	unsigned prime;
	unsigned shift;
};

enum sc_lock_types {
	LOCK_ENDIO,	/* Protect endio list. */
	LOCK_LRU,	/* Protect LRU list. */
	NR_LOCKS,       /* To size array in struct stripe_cache. */
};

/* A stripe cache. */
struct stripe_cache {
	/* Stripe hash. */
	struct stripe_hash hash;

	spinlock_t locks[NR_LOCKS];	/* Locks to protect lists. */

	/* Stripes with io to flush, stripes to endio and LRU lists. */
	struct list_head lists[SC_NR_LISTS];

	/* Slab cache to allocate stripes from. */
	struct {
		struct kmem_cache *cache;	/* Cache itself. */
		char name[32];	/* Unique name. */
	} kc;

	struct dm_io_client *dm_io_client; /* dm-io client resource context. */

	/* dm-mem-cache client resource context. */
	struct dm_mem_cache_client *mem_cache_client;

	int stripes_parm;	    /* # stripes parameter from constructor. */
	atomic_t stripes;	    /* actual # of stripes in cache. */
	atomic_t stripes_to_set;    /* # of stripes to resize cache to. */
	atomic_t stripes_last;	    /* last # of stripes in cache. */
	atomic_t active_stripes;    /* actual # of active stripes in cache. */

	/* REMOVEME: */
	atomic_t active_stripes_max; /* actual # of active stripes in cache. */
};

/* Flag specs for raid_dev */ ;
enum raid_dev_flags {
	DEV_FAILED,	/* Device failed. */
	DEV_IO_QUEUED,	/* Io got queued to device. */
};

/* The raid device in a set. */
struct raid_dev {
	struct dm_dev *dev;
	sector_t start;		/* Offset to map to. */
	struct {	/* Using struct to be able to BITOPS(). */
		unsigned long flags;	/* raid_dev_flags. */
	} io;
};

BITOPS(Dev, Failed,   raid_dev, DEV_FAILED)
BITOPS(Dev, IoQueued, raid_dev, DEV_IO_QUEUED)

/* Flags spec for raid_set. */
enum raid_set_flags {
	RS_CHECK_OVERWRITE,	/* Check for chunk overwrites. */
	RS_DEAD,		/* RAID set inoperational. */
	RS_DEGRADED,		/* Io errors on RAID device. */
	RS_DEVEL_STATS,		/* REMOVEME: display status information. */
	RS_RECOVER,		/* Do recovery. */
	RS_RECOVERY_BANDWIDTH,	/* Allow recovery bandwidth (delayed bios). */
	RS_SC_BUSY,		/* Stripe cache busy -> send an event. */
	RS_SUSPEND,		/* Suspend RAID set. */
};

/* REMOVEME: devel stats counters. */
enum stats_types {
	S_BIOS_READ,
	S_BIOS_ADDED_READ,
	S_BIOS_ENDIO_READ,
	S_BIOS_WRITE,
	S_BIOS_ADDED_WRITE,
	S_BIOS_ENDIO_WRITE,
	S_CAN_MERGE,
	S_CANT_MERGE,
	S_CONGESTED,
	S_DM_IO_READ,
	S_DM_IO_WRITE,
	S_BANDWIDTH,
	S_BARRIER,
	S_BIO_COPY_PL_NEXT,
	S_DEGRADED,
	S_DELAYED_BIOS,
	S_FLUSHS,
	S_HITS_1ST,
	S_IOS_POST,
	S_INSCACHE,
	S_MAX_LOOKUP,
	S_CHUNK_LOCKED,
	S_NO_BANDWIDTH,
	S_NOT_CONGESTED,
	S_NO_RW,
	S_NOSYNC,
	S_OVERWRITE,
	S_PROHIBITCHUNKIO,
	S_RECONSTRUCT_EI,
	S_RECONSTRUCT_DEV,
	S_RECONSTRUCT_SET,
	S_RECONSTRUCTED,
	S_REQUEUE,
	S_STRIPE_ERROR,
	S_SUM_DELAYED_BIOS,
	S_XORS,
	S_NR_STATS,	/* # of stats counters. Must be last! */
};

/* Status type -> string mappings. */
struct stats_map {
	const enum stats_types type;
	const char *str;
};

static struct stats_map stats_map[] = {
	{ S_BIOS_READ, "r=" },
	{ S_BIOS_ADDED_READ, "/" },
	{ S_BIOS_ENDIO_READ, "/" },
	{ S_BIOS_WRITE, " w=" },
	{ S_BIOS_ADDED_WRITE, "/" },
	{ S_BIOS_ENDIO_WRITE, "/" },
	{ S_DM_IO_READ, " rc=" },
	{ S_DM_IO_WRITE, " wc=" },
	{ S_BANDWIDTH, "\nbw=" },
	{ S_NO_BANDWIDTH, " no_bw=" },
	{ S_BARRIER, "\nbarrier=" },
	{ S_BIO_COPY_PL_NEXT, "\nbio_cp_next=" },
	{ S_CAN_MERGE, "\nmerge=" },
	{ S_CANT_MERGE, "/no_merge=" },
	{ S_CHUNK_LOCKED, "\nchunk_locked=" },
	{ S_CONGESTED, "\ncgst=" },
	{ S_NOT_CONGESTED, "/not_cgst=" },
	{ S_DEGRADED, "\ndegraded=" },
	{ S_DELAYED_BIOS, "\ndel_bios=" },
	{ S_SUM_DELAYED_BIOS, "/sum_del_bios=" },
	{ S_FLUSHS, "\nflushs=" },
	{ S_HITS_1ST, "\nhits_1st=" },
	{ S_IOS_POST, " ios_post=" },
	{ S_INSCACHE, " inscache=" },
	{ S_MAX_LOOKUP, " maxlookup=" },
	{ S_NO_RW, "\nno_rw=" },
	{ S_NOSYNC, " nosync=" },
	{ S_OVERWRITE, " ovr=" },
	{ S_PROHIBITCHUNKIO, " prhbt_io=" },
	{ S_RECONSTRUCT_EI, "\nrec_ei=" },
	{ S_RECONSTRUCT_DEV, " rec_dev=" },
	{ S_RECONSTRUCT_SET, " rec_set=" },
	{ S_RECONSTRUCTED, " rec=" },
	{ S_REQUEUE, " requeue=" },
	{ S_STRIPE_ERROR, " stripe_err=" },
	{ S_XORS, " xors=" },
};

/*
 * A RAID set.
 */
#define	dm_rh_client	dm_region_hash
enum count_type { IO_WORK = 0, IO_RECOVER, IO_NR_COUNT };
typedef void (*xor_function_t)(unsigned count, unsigned long **data);
struct raid_set {
	struct dm_target *ti;	/* Target pointer. */

	struct {
		unsigned long flags;	/* State flags. */
		struct mutex in_lock;	/* Protects central input list below. */
		struct bio_list in;	/* Pending ios (central input list). */
		struct bio_list work;	/* ios work set. */
		wait_queue_head_t suspendq;	/* suspend synchronization. */
		atomic_t in_process;	/* counter of queued bios (suspendq). */
		atomic_t in_process_max;/* counter of queued bios max. */

		/* io work. */
		struct workqueue_struct *wq;
		struct delayed_work dws_do_raid;	/* For main worker. */
		struct work_struct ws_do_table_event;	/* For event worker. */
	} io;

	/* Stripe locking abstraction. */
	struct dm_raid45_locking_type *locking;

	struct stripe_cache sc;	/* Stripe cache for this set. */

	/* Xor optimization. */
	struct {
		struct xor_func *f;
		unsigned chunks;
		unsigned speed;
	} xor;

	/* Recovery parameters. */
	struct recover {
		struct dm_dirty_log *dl;	/* Dirty log. */
		struct dm_rh_client *rh;	/* Region hash. */

		struct dm_io_client *dm_io_client; /* recovery dm-io client. */
		/* dm-mem-cache client resource context for recovery stripes. */
		struct dm_mem_cache_client *mem_cache_client;

		struct list_head stripes;	/* List of recovery stripes. */

		region_t nr_regions;
		region_t nr_regions_to_recover;
		region_t nr_regions_recovered;
		unsigned long start_jiffies;
		unsigned long end_jiffies;

		unsigned bandwidth;	 /* Recovery bandwidth [%]. */
		unsigned bandwidth_work; /* Recovery bandwidth [factor]. */
		unsigned bandwidth_parm; /*  " constructor parm. */
		unsigned io_size;        /* recovery io size <= region size. */
		unsigned io_size_parm;   /* recovery io size ctr parameter. */
		unsigned recovery;	 /* Recovery allowed/prohibited. */
		unsigned recovery_stripes; /* # of parallel recovery stripes. */

		/* recovery io throttling. */
		atomic_t io_count[IO_NR_COUNT];	/* counter recover/regular io.*/
		unsigned long last_jiffies;
	} recover;

	/* RAID set parameters. */
	struct {
		struct raid_type *raid_type;	/* RAID type (eg, RAID4). */
		unsigned raid_parms;	/* # variable raid parameters. */

		unsigned chunk_size;	/* Sectors per chunk. */
		unsigned chunk_size_parm;
		unsigned chunk_shift;	/* rsector chunk size shift. */

		unsigned io_size;	/* Sectors per io. */
		unsigned io_size_parm;
		unsigned io_mask;	/* Mask for bio_copy_page_list(). */
		unsigned io_inv_mask;	/* Mask for raid_address(). */

		sector_t sectors_per_dev;	/* Sectors per device. */

		atomic_t failed_devs;		/* Amount of devices failed. */

		/* Index of device to initialize. */
		int dev_to_init;
		int dev_to_init_parm;

		/* Raid devices dynamically allocated. */
		unsigned raid_devs;	/* # of RAID devices below. */
		unsigned data_devs;	/* # of RAID data devices. */

		int ei;		/* index of failed RAID device. */

		/* Index of dedicated parity device (i.e. RAID4). */
		int pi;
		int pi_parm;	/* constructor parm for status output. */
	} set;

	/* REMOVEME: devel stats counters. */
	atomic_t stats[S_NR_STATS];

	/* Dynamically allocated temporary pointers for xor(). */
	unsigned long **data;

	/* Dynamically allocated RAID devices. Alignment? */
	struct raid_dev dev[0];
};

/* Define RAID set bit operations. */
BITOPS(RS, Bandwidth, raid_set, RS_RECOVERY_BANDWIDTH)
BITOPS(RS, CheckOverwrite, raid_set, RS_CHECK_OVERWRITE)
BITOPS(RS, Dead, raid_set, RS_DEAD)
BITOPS(RS, Degraded, raid_set, RS_DEGRADED)
BITOPS(RS, DevelStats, raid_set, RS_DEVEL_STATS)
BITOPS(RS, Recover, raid_set, RS_RECOVER)
BITOPS(RS, ScBusy, raid_set, RS_SC_BUSY)
BITOPS(RS, Suspend, raid_set, RS_SUSPEND)
#undef BITOPS

/*-----------------------------------------------------------------
 * Raid-4/5 set structures.
 *---------------------------------------------------------------*/
/* RAID level definitions. */
enum raid_level {
	raid4,
	raid5,
};

/* Symmetric/Asymmetric, Left/Right parity rotating algorithms. */
enum raid_algorithm {
	none,
	left_asym,
	right_asym,
	left_sym,
	right_sym,
};

struct raid_type {
	const char *name;		/* RAID algorithm. */
	const char *descr;		/* Descriptor text for logging. */
	const unsigned parity_devs;	/* # of parity devices. */
	const unsigned minimal_devs;	/* minimal # of devices in set. */
	const enum raid_level level;		/* RAID level. */
	const enum raid_algorithm algorithm;	/* RAID algorithm. */
};

/* Supported raid types and properties. */
static struct raid_type raid_types[] = {
	{"raid4",    "RAID4 (dedicated parity disk)", 1, 3, raid4, none},
	{"raid5_la", "RAID5 (left asymmetric)",       1, 3, raid5, left_asym},
	{"raid5_ra", "RAID5 (right asymmetric)",      1, 3, raid5, right_asym},
	{"raid5_ls", "RAID5 (left symmetric)",        1, 3, raid5, left_sym},
	{"raid5_rs", "RAID5 (right symmetric)",       1, 3, raid5, right_sym},
};

/* Address as calculated by raid_address(). */
struct raid_address {
	sector_t key;		/* Hash key (address of stripe % chunk_size). */
	unsigned di, pi;	/* Data and parity disks index. */
};

/* REMOVEME: reset statistics counters. */
static void stats_reset(struct raid_set *rs)
{
	unsigned s = S_NR_STATS;

	while (s--)
		atomic_set(rs->stats + s, 0);
}

/*----------------------------------------------------------------
 * RAID set management routines.
 *--------------------------------------------------------------*/
/*
 * Begin small helper functions.
 */
/* No need to be called from region hash indirectly at dm_rh_dec(). */
static void wake_dummy(void *context) {}

/* Return # of io reference. */
static int io_ref(struct raid_set *rs)
{
	return atomic_read(&rs->io.in_process);
}

/* Get an io reference. */
static void io_get(struct raid_set *rs)
{
	int p = atomic_inc_return(&rs->io.in_process);

	if (p > atomic_read(&rs->io.in_process_max))
		atomic_set(&rs->io.in_process_max, p); /* REMOVEME: max. */
}

/* Put the io reference and conditionally wake io waiters. */
static void io_put(struct raid_set *rs)
{
	/* Intel: rebuild data corrupter? */
	if (atomic_dec_and_test(&rs->io.in_process))
		wake_up(&rs->io.suspendq);
	else
		BUG_ON(io_ref(rs) < 0);
}

/* Wait until all io has been processed. */
static void wait_ios(struct raid_set *rs)
{
	wait_event(rs->io.suspendq, !io_ref(rs));
}

/* Queue (optionally delayed) io work. */
static void wake_do_raid_delayed(struct raid_set *rs, unsigned long delay)
{
	queue_delayed_work(rs->io.wq, &rs->io.dws_do_raid, delay);
}

/* Queue io work immediately (called from region hash too). */
static void wake_do_raid(void *context)
{
	struct raid_set *rs = context;

	queue_work(rs->io.wq, &rs->io.dws_do_raid.work);
}

/* Calculate device sector offset. */
static sector_t _sector(struct raid_set *rs, struct bio *bio)
{
	sector_t sector = bio->bi_sector;

	sector_div(sector, rs->set.data_devs);
	return sector;
}

/* Return # of active stripes in stripe cache. */
static int sc_active(struct stripe_cache *sc)
{
	return atomic_read(&sc->active_stripes);
}

/* Stripe cache busy indicator. */
static int sc_busy(struct raid_set *rs)
{
	return sc_active(&rs->sc) >
	       atomic_read(&rs->sc.stripes) - (STRIPES_MIN / 2);
}

/* Set chunks states. */
enum chunk_dirty_type { CLEAN, DIRTY, ERROR };
static void chunk_set(struct stripe_chunk *chunk, enum chunk_dirty_type type)
{
	switch (type) {
	case CLEAN:
		ClearChunkDirty(chunk);
		break;
	case DIRTY:
		SetChunkDirty(chunk);
		break;
	case ERROR:
		SetChunkError(chunk);
		SetStripeError(chunk->stripe);
		return;
	default:
		BUG();
	}

	SetChunkUptodate(chunk);
	SetChunkIo(chunk);
	ClearChunkError(chunk);
}

/* Return region state for a sector. */
static int region_state(struct raid_set *rs, sector_t sector, 
			enum dm_rh_region_states state)
{
	struct dm_rh_client *rh = rs->recover.rh;
	region_t region = dm_rh_sector_to_region(rh, sector);

	return !!(dm_rh_get_state(rh, region, 1) & state);
}

/*
 * Return true in case a chunk should be read/written
 *
 * Conditions to read/write:
 *	o chunk not uptodate
 *	o chunk dirty
 *
 * Conditios to avoid io:
 *	o io already ongoing on chunk
 *	o io explitely prohibited
 */
static int chunk_io(struct stripe_chunk *chunk)
{
	/* 2nd run optimization (flag set below on first run). */
	if (TestClearChunkMustIo(chunk))
		return 1;

	/* Avoid io if prohibited or a locked chunk. */
	if (!ChunkIo(chunk) || ChunkLocked(chunk))
		return 0;

	if (!ChunkUptodate(chunk) || ChunkDirty(chunk)) {
		SetChunkMustIo(chunk); /* 2nd run optimization. */
		return 1;
	}

	return 0;
}

/* Call a function on each chunk needing io unless device failed. */
static unsigned for_each_io_dev(struct stripe *stripe,
			        void (*f_io)(struct stripe *stripe, unsigned p))
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned p, r = 0;

	for (p = 0; p < rs->set.raid_devs; p++) {
		if (chunk_io(CHUNK(stripe, p)) && !DevFailed(rs->dev + p)) {
			f_io(stripe, p);
			r++;
		}
	}

	return r;
}

/*
 * Index of device to calculate parity on.
 *
 * Either the parity device index *or* the selected
 * device to init after a spare replacement.
 */
static int dev_for_parity(struct stripe *stripe, int *sync)
{
	struct raid_set *rs = RS(stripe->sc);
	int r = region_state(rs, stripe->key, DM_RH_NOSYNC | DM_RH_RECOVERING);

	*sync = !r;

	/* Reconstruct a particular device ?. */
	if (r && rs->set.dev_to_init > -1)
		return rs->set.dev_to_init;
	else if (rs->set.raid_type->level == raid4)
		return rs->set.pi;
	else if (!StripeRecover(stripe))
		return stripe->idx.parity;
	else
		return -1;
}

/* RAID set congested function. */
static int rs_congested(void *congested_data, int bdi_bits)
{
	int r;
	unsigned p;
	struct raid_set *rs = congested_data;

	if (sc_busy(rs) || RSSuspend(rs))
		r = 1;
	else for (r = 0, p = rs->set.raid_devs; !r && p--; ) {
		/* If any of our component devices are overloaded. */
		struct request_queue *q = bdev_get_queue(rs->dev[p].dev->bdev);

		r |= bdi_congested(&q->backing_dev_info, bdi_bits);
	}

	/* REMOVEME: statistics. */
	atomic_inc(rs->stats + (r ? S_CONGESTED : S_NOT_CONGESTED));
	return r;
}

/* RAID device degrade check. */
static void rs_check_degrade_dev(struct raid_set *rs,
				       struct stripe *stripe, unsigned p)
{
	if (TestSetDevFailed(rs->dev + p))
		return;

	/* Through an event in case of member device errors. */
	if (atomic_inc_return(&rs->set.failed_devs) >
	    rs->set.raid_type->parity_devs &&
	    !TestSetRSDead(rs)) {
		/* Display RAID set dead message once. */
		unsigned p;
		char buf[BDEVNAME_SIZE];

		DMERR("FATAL: too many devices failed -> RAID set broken");
		for (p = 0; p < rs->set.raid_devs; p++) {
			if (DevFailed(rs->dev + p))
				DMERR("device /dev/%s failed",
				      bdevname(rs->dev[p].dev->bdev, buf));
		}
	}

	/* Only log the first member error. */
	if (!TestSetRSDegraded(rs)) {
		char buf[BDEVNAME_SIZE];

		/* Store index for recovery. */
		rs->set.ei = p;
		DMERR("CRITICAL: %sio error on device /dev/%s "
		      "in region=%llu; DEGRADING RAID set\n",
		      stripe ? "" : "FAKED ",
		      bdevname(rs->dev[p].dev->bdev, buf),
		      (unsigned long long) (stripe ? stripe->key : 0));
		DMERR("further device error messages suppressed");
	}

	schedule_work(&rs->io.ws_do_table_event);
}

/* RAID set degrade check. */
static void rs_check_degrade(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned p = rs->set.raid_devs;

	while (p--) {
		if (ChunkError(CHUNK(stripe, p)))
			rs_check_degrade_dev(rs, stripe, p);
	}
}

/* Lookup a RAID device by name or by major:minor number. */
static int raid_dev_lookup(struct raid_set *rs, struct raid_dev *dev_lookup)
{
	unsigned p;
	struct raid_dev *dev;

	/*
	 * Must be an incremental loop, because the device array
	 * can have empty slots still on calls from raid_ctr()
	 */
	for (dev = rs->dev, p = 0;
	     dev->dev && p < rs->set.raid_devs;
	     dev++, p++) {
		if (dev_lookup->dev->bdev->bd_dev == dev->dev->bdev->bd_dev)
			return p;
	}

	return -ENODEV;
}
/*
 * End small helper functions.
 */

/*
 * Stripe hash functions
 */
/* Initialize/destroy stripe hash. */
static int hash_init(struct stripe_hash *hash, unsigned stripes)
{
	unsigned buckets = 2, max_buckets = stripes >> 1;
	static unsigned hash_primes[] = {
		/* Table of primes for hash_fn/table size optimization. */
		1, 2, 3, 7, 13, 27, 53, 97, 193, 389, 769,
		1543, 3079, 6151, 12289, 24593, 49157, 98317,
	};

	/* Calculate number of buckets (2^^n <= stripes / 2). */
	while (buckets < max_buckets)
		buckets <<= 1;

	/* Allocate stripe hash buckets. */
	hash->hash = vmalloc(buckets * sizeof(*hash->hash));
	if (!hash->hash)
		return -ENOMEM;

	hash->buckets = buckets;
	hash->mask = buckets - 1;
	hash->shift = ffs(buckets);
	if (hash->shift > ARRAY_SIZE(hash_primes))
		hash->shift = ARRAY_SIZE(hash_primes) - 1;

	BUG_ON(hash->shift < 2);
	hash->prime = hash_primes[hash->shift];

	/* Initialize buckets. */
	while (buckets--)
		INIT_LIST_HEAD(hash->hash + buckets);
	return 0;
}

static void hash_exit(struct stripe_hash *hash)
{
	if (hash->hash) {
		vfree(hash->hash);
		hash->hash = NULL;
	}
}

static unsigned hash_fn(struct stripe_hash *hash, sector_t key)
{
	return (unsigned) (((key * hash->prime) >> hash->shift) & hash->mask);
}

static struct list_head *hash_bucket(struct stripe_hash *hash, sector_t key)
{
	return hash->hash + hash_fn(hash, key);
}

/* Insert an entry into a hash. */
static void stripe_insert(struct stripe_hash *hash, struct stripe *stripe)
{
	list_add(stripe->lists + LIST_HASH, hash_bucket(hash, stripe->key));
}

/* Lookup an entry in the stripe hash. */
static struct stripe *stripe_lookup(struct stripe_cache *sc, sector_t key)
{
	unsigned look = 0;
	struct stripe *stripe;
	struct list_head *bucket = hash_bucket(&sc->hash, key);

	list_for_each_entry(stripe, bucket, lists[LIST_HASH]) {
		look++;

		if (stripe->key == key) {
			/* REMOVEME: statisics. */
			if (look > atomic_read(RS(sc)->stats + S_MAX_LOOKUP))
				atomic_set(RS(sc)->stats + S_MAX_LOOKUP, look);
			return stripe;
		}
	}

	return NULL;
}

/* Resize the stripe cache hash on size changes. */
static int sc_hash_resize(struct stripe_cache *sc)
{
	/* Resize indicated ? */
	if (atomic_read(&sc->stripes) != atomic_read(&sc->stripes_last)) {
		int r;
		struct stripe_hash hash;

		r = hash_init(&hash, atomic_read(&sc->stripes));
		if (r)
			return r;

		if (sc->hash.hash) {
			unsigned b = sc->hash.buckets;
			struct list_head *pos, *tmp;

			/* Walk old buckets and insert into new. */
			while (b--) {
				list_for_each_safe(pos, tmp, sc->hash.hash + b)
				    stripe_insert(&hash,
						  list_entry(pos, struct stripe,
							     lists[LIST_HASH]));
			}

		}

		hash_exit(&sc->hash);
		memcpy(&sc->hash, &hash, sizeof(sc->hash));
		atomic_set(&sc->stripes_last, atomic_read(&sc->stripes));
	}

	return 0;
}
/* End hash stripe hash function. */

/* List add, delete, push and pop functions. */
/* Add stripe to flush list. */
#define	DEL_LIST(lh) \
	if (!list_empty(lh)) \
		list_del_init(lh);

/* Delete stripe from hash. */
static void stripe_hash_del(struct stripe *stripe)
{
	DEL_LIST(stripe->lists + LIST_HASH);
}

/* Return stripe reference count. */
static inline int stripe_ref(struct stripe *stripe)
{
	return atomic_read(&stripe->cnt);
}

static void stripe_flush_add(struct stripe *stripe)
{
	struct stripe_cache *sc = stripe->sc;
	struct list_head *lh = stripe->lists + LIST_FLUSH;

	if (!StripeReconstruct(stripe) && list_empty(lh))
		list_add_tail(lh, sc->lists + LIST_FLUSH);
}

/*
 * Add stripe to LRU (inactive) list.
 *
 * Need lock, because of concurrent access from message interface.
 */
static void stripe_lru_add(struct stripe *stripe)
{
	if (!StripeRecover(stripe)) {
		unsigned long flags;
		struct list_head *lh = stripe->lists + LIST_LRU;
		spinlock_t *lock = stripe->sc->locks + LOCK_LRU;

		spin_lock_irqsave(lock, flags);
		if (list_empty(lh))
			list_add_tail(lh, stripe->sc->lists + LIST_LRU);
		spin_unlock_irqrestore(lock, flags);
	}
}

#define POP_LIST(list) \
	do { \
		if (list_empty(sc->lists + (list))) \
			stripe = NULL; \
		else { \
			stripe = list_first_entry(sc->lists + (list), \
						  struct stripe, \
						  lists[(list)]); \
			list_del_init(stripe->lists + (list)); \
		} \
	} while (0);

/* Pop an available stripe off the LRU list. */
static struct stripe *stripe_lru_pop(struct stripe_cache *sc)
{
	struct stripe *stripe;
	spinlock_t *lock = sc->locks + LOCK_LRU;

	spin_lock_irq(lock);
	POP_LIST(LIST_LRU);
	spin_unlock_irq(lock);

	return stripe;
}

/* Pop an available stripe off the io list. */
static struct stripe *stripe_io_pop(struct stripe_cache *sc)
{
	struct stripe *stripe;

	POP_LIST(LIST_FLUSH);
	return stripe;
}

/* Push a stripe safely onto the endio list to be handled by do_endios(). */
static void stripe_endio_push(struct stripe *stripe)
{
	unsigned long flags;
	struct stripe_cache *sc = stripe->sc;
	struct list_head *stripe_list = stripe->lists + LIST_ENDIO,
			 *sc_list = sc->lists + LIST_ENDIO;
	spinlock_t *lock = sc->locks + LOCK_ENDIO;

	/* This runs in parallel with do_endios(). */
	spin_lock_irqsave(lock, flags);
	if (list_empty(stripe_list))
		list_add_tail(stripe_list, sc_list);
	spin_unlock_irqrestore(lock, flags);

	wake_do_raid(RS(sc)); /* Wake myself. */
}

/* Pop a stripe off safely off the endio list. */
static struct stripe *stripe_endio_pop(struct stripe_cache *sc)
{
	struct stripe *stripe;
	spinlock_t *lock = sc->locks + LOCK_ENDIO;

	/* This runs in parallel with endio(). */
	spin_lock_irq(lock);
	POP_LIST(LIST_ENDIO)
	spin_unlock_irq(lock);
	return stripe;
}
#undef POP_LIST

/*
 * Stripe cache locking functions
 */
/* Dummy lock function for single host RAID4+5. */
static void *no_lock(sector_t key, enum dm_lock_type type)
{
	return &no_lock;
}

/* Dummy unlock function for single host RAID4+5. */
static void no_unlock(void *lock_handle)
{
}

/* No locking (for single host RAID 4+5). */
static struct dm_raid45_locking_type locking_none = {
	.lock = no_lock,
	.unlock = no_unlock,
};

/* Lock a stripe (for clustering). */
static int
stripe_lock(struct stripe *stripe, int rw, sector_t key)
{
	stripe->lock = RS(stripe->sc)->locking->lock(key, rw == READ ? DM_RAID45_SHARED : DM_RAID45_EX);
	return stripe->lock ? 0 : -EPERM;
}

/* Unlock a stripe (for clustering). */
static void stripe_unlock(struct stripe *stripe)
{
	RS(stripe->sc)->locking->unlock(stripe->lock);
	stripe->lock = NULL;
}

/* Test io pending on stripe. */
static int stripe_io_ref(struct stripe *stripe)
{
	return atomic_read(&stripe->io.pending);
}

static void stripe_io_get(struct stripe *stripe)
{
	if (atomic_inc_return(&stripe->io.pending) == 1)
		/* REMOVEME: statistics */
		atomic_inc(&stripe->sc->active_stripes);
	else
		BUG_ON(stripe_io_ref(stripe) < 0);
}

static void stripe_io_put(struct stripe *stripe)
{
	if (atomic_dec_and_test(&stripe->io.pending)) {
		if (unlikely(StripeRecover(stripe)))
			/* Don't put recovery stripe on endio list. */
			wake_do_raid(RS(stripe->sc));
		else
			/* Add regular stripe to endio list and wake daemon. */
			stripe_endio_push(stripe);

		/* REMOVEME: statistics */
		atomic_dec(&stripe->sc->active_stripes);
	} else
		BUG_ON(stripe_io_ref(stripe) < 0);
}

/* Take stripe reference out. */
static int stripe_get(struct stripe *stripe)
{
	int r;
	struct list_head *lh = stripe->lists + LIST_LRU;
	spinlock_t *lock = stripe->sc->locks + LOCK_LRU;

	/* Delete stripe from LRU (inactive) list if on. */
	spin_lock_irq(lock);
	DEL_LIST(lh);
	spin_unlock_irq(lock);

	BUG_ON(stripe_ref(stripe) < 0);

	/* Lock stripe on first reference */
	r = (atomic_inc_return(&stripe->cnt) == 1) ?
	    stripe_lock(stripe, WRITE, stripe->key) : 0;

	return r;
}
#undef DEL_LIST

/* Return references on a chunk. */
static int chunk_ref(struct stripe_chunk *chunk)
{
	return atomic_read(&chunk->cnt);
}

/* Take out reference on a chunk. */
static int chunk_get(struct stripe_chunk *chunk)
{
	return atomic_inc_return(&chunk->cnt);
}

/* Drop reference on a chunk. */
static void chunk_put(struct stripe_chunk *chunk)
{
	BUG_ON(atomic_dec_return(&chunk->cnt) < 0);
}

/*
 * Drop reference on a stripe.
 *
 * Move it to list of LRU stripes if zero.
 */
static void stripe_put(struct stripe *stripe)
{
	if (atomic_dec_and_test(&stripe->cnt)) {
		BUG_ON(stripe_io_ref(stripe));
		stripe_unlock(stripe);
	} else
		BUG_ON(stripe_ref(stripe) < 0);
}

/* Helper needed by for_each_io_dev(). */
static void stripe_get_references(struct stripe *stripe, unsigned p)
{

	/*
	 * Another one to reference the stripe in
	 * order to protect vs. LRU list moves.
	 */
	io_get(RS(stripe->sc));	/* Global io references. */
	stripe_get(stripe);
	stripe_io_get(stripe);	/* One for each chunk io. */
}

/* Helper for endio() to put all take references. */
static void stripe_put_references(struct stripe *stripe)
{
	stripe_io_put(stripe);	/* One for each chunk io. */
	stripe_put(stripe);
	io_put(RS(stripe->sc));
}

/*
 * Stripe cache functions.
 */
/*
 * Invalidate all chunks (i.e. their pages)  of a stripe.
 *
 * I only keep state for the whole chunk.
 */
static inline void stripe_chunk_invalidate(struct stripe_chunk *chunk)
{
	chunk->io.flags = 0;
}

static void
stripe_chunks_invalidate(struct stripe *stripe)
{
	unsigned p = RS(stripe->sc)->set.raid_devs;

	while (p--)
		stripe_chunk_invalidate(CHUNK(stripe, p));
}

/* Prepare stripe for (re)use. */
static void stripe_invalidate(struct stripe *stripe)
{
	stripe->io.flags = 0;
	stripe->idx.parity = stripe->idx.recover = -1;
	stripe_chunks_invalidate(stripe);
}

/*
 * Allow io on all chunks of a stripe.
 * If not set, IO will not occur; i.e. it's prohibited.
 *
 * Actual IO submission for allowed chunks depends
 * on their !uptodate or dirty state.
 */
static void stripe_allow_io(struct stripe *stripe)
{
	unsigned p = RS(stripe->sc)->set.raid_devs;

	while (p--)
		SetChunkIo(CHUNK(stripe, p));
}

/* Initialize a stripe. */
static void stripe_init(struct stripe_cache *sc, struct stripe *stripe)
{
	unsigned i, p = RS(sc)->set.raid_devs;

	/* Work all io chunks. */
	while (p--) {
		struct stripe_chunk *chunk = CHUNK(stripe, p);

		atomic_set(&chunk->cnt, 0);
		chunk->stripe = stripe;
		i = ARRAY_SIZE(chunk->bl);
		while (i--)
			bio_list_init(chunk->bl + i);
	}

	stripe->sc = sc;


	i = ARRAY_SIZE(stripe->lists);
	while (i--)
		INIT_LIST_HEAD(stripe->lists + i);

	stripe->io.size = RS(sc)->set.io_size;
	atomic_set(&stripe->cnt, 0);
	atomic_set(&stripe->io.pending, 0);
	stripe_invalidate(stripe);
}

/* Number of pages per chunk. */
static inline unsigned chunk_pages(unsigned sectors)
{
	return dm_div_up(sectors, SECTORS_PER_PAGE);
}

/* Number of pages per stripe. */
static inline unsigned stripe_pages(struct raid_set *rs, unsigned io_size)
{
	return chunk_pages(io_size) * rs->set.raid_devs;
}

/* Initialize part of page_list (recovery). */
static void stripe_zero_pl_part(struct stripe *stripe, int p,
				unsigned start, unsigned count)
{
	unsigned o = start / SECTORS_PER_PAGE, pages = chunk_pages(count);
	/* Get offset into the page_list. */
	struct page_list *pl = pl_elem(PL(stripe, p), o);

	BUG_ON(!pl);
	while (pl && pages--) {
		BUG_ON(!pl->page);
		memset(page_address(pl->page), 0, PAGE_SIZE);
		pl = pl->next;
	}
}

/* Initialize parity chunk of stripe. */
static void stripe_zero_chunk(struct stripe *stripe, int p)
{
	if (p > -1)
		stripe_zero_pl_part(stripe, p, 0, stripe->io.size);
}

/* Return dynamic stripe structure size. */
static size_t stripe_size(struct raid_set *rs)
{
	return sizeof(struct stripe) +
		      rs->set.raid_devs * sizeof(struct stripe_chunk);
}

/* Allocate a stripe and its memory object. */
/* XXX adjust to cope with stripe cache and recovery stripe caches. */
enum grow { SC_GROW, SC_KEEP };
static struct stripe *stripe_alloc(struct stripe_cache *sc,
				   struct dm_mem_cache_client *mc,
				   enum grow grow)
{
	int r;
	struct stripe *stripe;

	stripe = kmem_cache_zalloc(sc->kc.cache, GFP_KERNEL);
	if (stripe) {
		/* Grow the dm-mem-cache by one object. */
		if (grow == SC_GROW) {
			r = dm_mem_cache_grow(mc, 1);
			if (r)
				goto err_free;
		}

		stripe->obj = dm_mem_cache_alloc(mc);
		if (!stripe->obj)
			goto err_shrink;

		stripe_init(sc, stripe);
	}

	return stripe;

err_shrink:
	if (grow == SC_GROW)
		dm_mem_cache_shrink(mc, 1);
err_free:
	kmem_cache_free(sc->kc.cache, stripe);
	return NULL;
}

/*
 * Free a stripes memory object, shrink the
 * memory cache and free the stripe itself.
 */
static void stripe_free(struct stripe *stripe, struct dm_mem_cache_client *mc)
{
	dm_mem_cache_free(mc, stripe->obj);
	dm_mem_cache_shrink(mc, 1);
	kmem_cache_free(stripe->sc->kc.cache, stripe);
}

/* Free the recovery stripe. */
static void stripe_recover_free(struct raid_set *rs)
{
	struct recover *rec = &rs->recover;
	struct dm_mem_cache_client *mc;

	mc = rec->mem_cache_client;
	rec->mem_cache_client = NULL;
	if (mc) {
		struct stripe *stripe;

		while (!list_empty(&rec->stripes)) {
			stripe = list_first_entry(&rec->stripes, struct stripe,
						  lists[LIST_RECOVER]);
			list_del(stripe->lists + LIST_RECOVER);
			kfree(stripe->recover);
			stripe_free(stripe, mc);
		}
	
		dm_mem_cache_client_destroy(mc);
		dm_io_client_destroy(rec->dm_io_client);
		rec->dm_io_client = NULL;
	}
}

/* Grow stripe cache. */
static int sc_grow(struct stripe_cache *sc, unsigned stripes, enum grow grow)
{
	int r = 0;

	/* Try to allocate this many (additional) stripes. */
	while (stripes--) {
		struct stripe *stripe =
			stripe_alloc(sc, sc->mem_cache_client, grow);

		if (likely(stripe)) {
			stripe_lru_add(stripe);
			atomic_inc(&sc->stripes);
		} else {
			r = -ENOMEM;
			break;
		}
	}

	return r ? r : sc_hash_resize(sc);
}

/* Shrink stripe cache. */
static int sc_shrink(struct stripe_cache *sc, unsigned stripes)
{
	int r = 0;

	/* Try to get unused stripe from LRU list. */
	while (stripes--) {
		struct stripe *stripe;

		stripe = stripe_lru_pop(sc);
		if (stripe) {
			/* An LRU stripe may never have ios pending! */
			BUG_ON(stripe_io_ref(stripe));
			BUG_ON(stripe_ref(stripe));
			atomic_dec(&sc->stripes);
			/* Remove from hash if on before deletion. */
			stripe_hash_del(stripe);
			stripe_free(stripe, sc->mem_cache_client);
		} else {
			r = -ENOENT;
			break;
		}
	}

	/* Check if stats are still sane. */
	if (atomic_read(&sc->active_stripes_max) >
	    atomic_read(&sc->stripes))
		atomic_set(&sc->active_stripes_max, 0);

	if (r)
		return r;

	return atomic_read(&sc->stripes) ? sc_hash_resize(sc) : 0;
}

/* Create stripe cache and recovery. */
static int sc_init(struct raid_set *rs, unsigned stripes)
{
	unsigned i, r, rstripes;
	struct stripe_cache *sc = &rs->sc;
	struct stripe *stripe;
	struct recover *rec = &rs->recover;
	struct mapped_device *md;
	struct gendisk *disk;

	/* Initialize lists and locks. */
	i = ARRAY_SIZE(sc->lists);
	while (i--)
		INIT_LIST_HEAD(sc->lists + i);

	INIT_LIST_HEAD(&rec->stripes);

	/* Initialize endio and LRU list locks. */
	i = NR_LOCKS;
	while (i--)
		spin_lock_init(sc->locks + i);

	/* Initialize atomic variables. */
	atomic_set(&sc->stripes, 0);
	atomic_set(&sc->stripes_to_set, 0);
	atomic_set(&sc->active_stripes, 0);
	atomic_set(&sc->active_stripes_max, 0);	/* REMOVEME: statistics. */

	/*
	 * We need a runtime unique # to suffix the kmem cache name
	 * because we'll have one for each active RAID set.
	 */
	md = dm_table_get_md(rs->ti->table);
	disk = dm_disk(md);
	sprintf(sc->kc.name, "%s-%d", TARGET, disk->first_minor);
	dm_put(md);
	sc->kc.cache = kmem_cache_create(sc->kc.name, stripe_size(rs),
					 0, 0, NULL);
	if (!sc->kc.cache)
		return -ENOMEM;

	/* Create memory cache client context for RAID stripe cache. */
	sc->mem_cache_client =
		dm_mem_cache_client_create(stripes, rs->set.raid_devs,
					   chunk_pages(rs->set.io_size));
	if (IS_ERR(sc->mem_cache_client))
		return PTR_ERR(sc->mem_cache_client);

	/* Create memory cache client context for RAID recovery stripe(s). */
	rstripes = rec->recovery_stripes;
	rec->mem_cache_client =
		dm_mem_cache_client_create(rstripes, rs->set.raid_devs,
					   chunk_pages(rec->io_size));
	if (IS_ERR(rec->mem_cache_client))
		return PTR_ERR(rec->mem_cache_client);

	/* Create dm-io client context for IO stripes. */
	sc->dm_io_client =
		dm_io_client_create((stripes > 32 ? 32 : stripes) *
				    rs->set.raid_devs *
				    chunk_pages(rs->set.io_size));
	if (IS_ERR(sc->dm_io_client))
		return PTR_ERR(sc->dm_io_client);

	/* FIXME: intermingeled with stripe cache initialization. */
	/* Create dm-io client context for recovery stripes. */
	rec->dm_io_client =
		dm_io_client_create(rstripes * rs->set.raid_devs *
				    chunk_pages(rec->io_size));
	if (IS_ERR(rec->dm_io_client))
		return PTR_ERR(rec->dm_io_client);

	/* Allocate stripes for set recovery. */
	while (rstripes--) {
		stripe = stripe_alloc(sc, rec->mem_cache_client, SC_KEEP);
		if (!stripe)
			return -ENOMEM;

		stripe->recover = kzalloc(sizeof(*stripe->recover), GFP_KERNEL);
		if (!stripe->recover) {
			stripe_free(stripe, rec->mem_cache_client);
			return -ENOMEM;
		}

		SetStripeRecover(stripe);
		stripe->io.size = rec->io_size;
		list_add_tail(stripe->lists + LIST_RECOVER, &rec->stripes);
		/* Don't add recovery stripes to LRU list! */
	}

	/*
	 * Allocate the stripe objetcs from the
	 * cache and add them to the LRU list.
	 */
	r = sc_grow(sc, stripes, SC_KEEP);
	if (!r)
		atomic_set(&sc->stripes_last, stripes);

	return r;
}

/* Destroy the stripe cache. */
static void sc_exit(struct stripe_cache *sc)
{
	struct raid_set *rs = RS(sc);

	if (sc->kc.cache) {
		stripe_recover_free(rs);
		BUG_ON(sc_shrink(sc, atomic_read(&sc->stripes)));
		kmem_cache_destroy(sc->kc.cache);
		sc->kc.cache = NULL;

		if (sc->mem_cache_client && !IS_ERR(sc->mem_cache_client))
			dm_mem_cache_client_destroy(sc->mem_cache_client);

		if (sc->dm_io_client && !IS_ERR(sc->dm_io_client))
			dm_io_client_destroy(sc->dm_io_client);

		hash_exit(&sc->hash);
	}
}

/*
 * Calculate RAID address
 *
 * Delivers tuple with the index of the data disk holding the chunk
 * in the set, the parity disks index and the start of the stripe
 * within the address space of the set (used as the stripe cache hash key).
 */
/* thx MD. */
static struct raid_address *raid_address(struct raid_set *rs, sector_t sector,
					 struct raid_address *addr)
{
	sector_t stripe, tmp;

	/*
	 * chunk_number = sector / chunk_size
	 * stripe_number = chunk_number / data_devs
	 * di = stripe % data_devs;
	 */
	stripe = sector >> rs->set.chunk_shift;
	addr->di = sector_div(stripe, rs->set.data_devs);

	switch (rs->set.raid_type->level) {
	case raid4:
		addr->pi = rs->set.pi;
		goto check_shift_di;
	case raid5:
		tmp = stripe;
		addr->pi = sector_div(tmp, rs->set.raid_devs);

		switch (rs->set.raid_type->algorithm) {
		case left_asym:		/* Left asymmetric. */
			addr->pi = rs->set.data_devs - addr->pi;
		case right_asym:	/* Right asymmetric. */
check_shift_di:
			if (addr->di >= addr->pi)
				addr->di++;
			break;
		case left_sym:		/* Left symmetric. */
			addr->pi = rs->set.data_devs - addr->pi;
		case right_sym:		/* Right symmetric. */
			addr->di = (addr->pi + addr->di + 1) %
				   rs->set.raid_devs;
			break;
		case none: /* Ain't happen: RAID4 algorithm placeholder. */
			BUG();
		}
	}

	/*
	 * Start offset of the stripes chunk on any single device of the RAID
	 * set, adjusted in case io size differs from chunk size.
	 */
	addr->key = (stripe << rs->set.chunk_shift) +
		    (sector & rs->set.io_inv_mask);
	return addr;
}

/*
 * Copy data across between stripe pages and bio vectors.
 *
 * Pay attention to data alignment in stripe and bio pages.
 */
static void bio_copy_page_list(int rw, struct stripe *stripe,
			       struct page_list *pl, struct bio *bio)
{
	unsigned i, page_offset;
	void *page_addr;
	struct raid_set *rs = RS(stripe->sc);
	struct bio_vec *bv;

	/* Get start page in page list for this sector. */
	i = (bio->bi_sector & rs->set.io_mask) / SECTORS_PER_PAGE;
	pl = pl_elem(pl, i);
	BUG_ON(!pl);
	BUG_ON(!pl->page);

	page_addr = page_address(pl->page);
	page_offset = to_bytes(bio->bi_sector & (SECTORS_PER_PAGE - 1));

	/* Walk all segments and copy data across between bio_vecs and pages. */
	bio_for_each_segment(bv, bio, i) {
		int len = bv->bv_len, size;
		unsigned bio_offset = 0;
		void *bio_addr = __bio_kmap_atomic(bio, i, KM_USER0);
redo:
		size = (page_offset + len > PAGE_SIZE) ?
		       PAGE_SIZE - page_offset : len;

		if (rw == READ)
			memcpy(bio_addr + bio_offset,
			       page_addr + page_offset, size);
		else
			memcpy(page_addr + page_offset,
			       bio_addr + bio_offset, size);

		page_offset += size;
		if (page_offset == PAGE_SIZE) {
			/*
			 * We reached the end of the chunk page ->
			 * need to refer to the next one to copy more data.
			 */
			len -= size;
			if (len) {
				/* Get next page. */
				pl = pl->next;
				BUG_ON(!pl);
				BUG_ON(!pl->page);
				page_addr = page_address(pl->page);
				page_offset = 0;
				bio_offset += size;
				/* REMOVEME: statistics. */
				atomic_inc(rs->stats + S_BIO_COPY_PL_NEXT);
				goto redo;
			}
		}

		__bio_kunmap_atomic(bio_addr, KM_USER0);
	}
}

/*
 * Xor optimization macros.
 */
/* Xor data pointer declaration and initialization macros. */
#define DECLARE_2	unsigned long *d0 = data[0], *d1 = data[1]
#define DECLARE_3	DECLARE_2, *d2 = data[2]
#define DECLARE_4	DECLARE_3, *d3 = data[3]
#define DECLARE_5	DECLARE_4, *d4 = data[4]
#define DECLARE_6	DECLARE_5, *d5 = data[5]
#define DECLARE_7	DECLARE_6, *d6 = data[6]
#define DECLARE_8	DECLARE_7, *d7 = data[7]

/* Xor unrole macros. */
#define D2(n)	d0[n] = d0[n] ^ d1[n]
#define D3(n)	D2(n) ^ d2[n]
#define D4(n)	D3(n) ^ d3[n]
#define D5(n)	D4(n) ^ d4[n]
#define D6(n)	D5(n) ^ d5[n]
#define D7(n)	D6(n) ^ d6[n]
#define D8(n)	D7(n) ^ d7[n]

#define	X_2(macro, offset)	macro(offset); macro(offset + 1);
#define	X_4(macro, offset)	X_2(macro, offset); X_2(macro, offset + 2);
#define	X_8(macro, offset)	X_4(macro, offset); X_4(macro, offset + 4);
#define	X_16(macro, offset)	X_8(macro, offset); X_8(macro, offset + 8);
#define	X_32(macro, offset)	X_16(macro, offset); X_16(macro, offset + 16);
#define	X_64(macro, offset)	X_32(macro, offset); X_32(macro, offset + 32);

/* Define a _xor_#chunks_#xors_per_run() function. */
#define	_XOR(chunks, xors_per_run) \
static void _xor ## chunks ## _ ## xors_per_run(unsigned long **data) \
{ \
	unsigned end = XOR_SIZE / sizeof(data[0]), i; \
	DECLARE_ ## chunks; \
\
	for (i = 0; i < end; i += xors_per_run) { \
		X_ ## xors_per_run(D ## chunks, i); \
	} \
}

/* Define xor functions for 2 - 8 chunks and xors per run. */
#define	MAKE_XOR_PER_RUN(xors_per_run) \
	_XOR(2, xors_per_run); _XOR(3, xors_per_run); \
	_XOR(4, xors_per_run); _XOR(5, xors_per_run); \
	_XOR(6, xors_per_run); _XOR(7, xors_per_run); \
	_XOR(8, xors_per_run);

MAKE_XOR_PER_RUN(8)	/* Define _xor_*_8() functions. */
MAKE_XOR_PER_RUN(16)	/* Define _xor_*_16() functions. */
MAKE_XOR_PER_RUN(32)	/* Define _xor_*_32() functions. */
MAKE_XOR_PER_RUN(64)	/* Define _xor_*_64() functions. */

#define MAKE_XOR(xors_per_run) \
struct { \
	void (*f)(unsigned long **); \
} static xor_funcs ## xors_per_run[] = { \
	{ NULL }, /* NULL pointers to optimize indexing in xor(). */ \
	{ NULL }, \
	{ _xor2_ ## xors_per_run }, \
	{ _xor3_ ## xors_per_run }, \
	{ _xor4_ ## xors_per_run }, \
	{ _xor5_ ## xors_per_run }, \
	{ _xor6_ ## xors_per_run }, \
	{ _xor7_ ## xors_per_run }, \
	{ _xor8_ ## xors_per_run }, \
}; \
\
static void xor_ ## xors_per_run(unsigned n, unsigned long **data) \
{ \
	/* Call respective function for amount of chunks. */ \
	xor_funcs ## xors_per_run[n].f(data); \
}

/* Define xor_8() - xor_64 functions. */
MAKE_XOR(8)
MAKE_XOR(16)
MAKE_XOR(32)
MAKE_XOR(64)

/* Maximum number of chunks, which can be xor'ed in one go. */
#define	XOR_CHUNKS_MAX	(ARRAY_SIZE(xor_funcs8) - 1)

static void xor_blocks_wrapper(unsigned n, unsigned long **data)
{
	BUG_ON(n < 2 || n > MAX_XOR_BLOCKS + 1);
	xor_blocks(n - 1, XOR_SIZE, (void *) data[0], (void **) data + 1);
}

struct xor_func {
	xor_function_t f;
	const char *name;
} static xor_funcs[] = {
	{ xor_8,   "xor_8"  },
	{ xor_16,  "xor_16" },
	{ xor_32,  "xor_32" },
	{ xor_64,  "xor_64" },
	{ xor_blocks_wrapper, "xor_blocks" },
};

/*
 * Check, if chunk has to be xored in/out:
 *
 * o if writes are queued
 * o if writes are merged
 * o if stripe is to be reconstructed
 * o if recovery stripe
 */
static inline int chunk_must_xor(struct stripe_chunk *chunk)
{
	if (ChunkUptodate(chunk)) {
		BUG_ON(!bio_list_empty(BL_CHUNK(chunk, WRITE_QUEUED)) &&
		       !bio_list_empty(BL_CHUNK(chunk, WRITE_MERGED)));

		if (!bio_list_empty(BL_CHUNK(chunk, WRITE_QUEUED)) ||
		    !bio_list_empty(BL_CHUNK(chunk, WRITE_MERGED)))
			return 1;

		if (StripeReconstruct(chunk->stripe) ||
		    StripeRecover(chunk->stripe))
			return 1;
	}

	return 0;
}

/*
 * Calculate crc.
 *
 * This indexes into the chunks of a stripe and their pages.
 *
 * All chunks will be xored into the indexed (@pi)
 * chunk in maximum groups of xor.chunks.
 *
 */
static void xor(struct stripe *stripe, unsigned pi, unsigned sector)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned max_chunks = rs->xor.chunks, n = 1,
		 o = sector / SECTORS_PER_PAGE, /* Offset into the page_list. */
		 p = rs->set.raid_devs;
	unsigned long **d = rs->data;
	xor_function_t xor_f = rs->xor.f->f;

	BUG_ON(sector > stripe->io.size);

	/* Address of parity page to xor into. */
	d[0] = page_address(pl_elem(PL(stripe, pi), o)->page);

	while (p--) {
		/* Preset pointers to data pages. */
		if (p != pi && chunk_must_xor(CHUNK(stripe, p)))
			d[n++] = page_address(pl_elem(PL(stripe, p), o)->page);

		/* If max chunks -> xor. */
		if (n == max_chunks) {
			xor_f(n, d);
			n = 1;
		}
	}

	/* If chunks -> xor. */
	if (n > 1)
		xor_f(n, d);
}

/* Common xor loop through all stripe page lists. */
static void common_xor(struct stripe *stripe, sector_t count,
		       unsigned off, unsigned pi)
{
	unsigned sector;

	BUG_ON(!count);
	for (sector = off; sector < count; sector += SECTORS_PER_PAGE)
		xor(stripe, pi, sector);

	/* Set parity page uptodate and clean. */
	chunk_set(CHUNK(stripe, pi), CLEAN);
	atomic_inc(RS(stripe->sc)->stats + S_XORS); /* REMOVEME: statistics. */
}

/*
 * Calculate parity sectors on intact stripes.
 *
 * Need to calculate raid address for recover stripe, because its
 * chunk sizes differs and is typically larger than io chunk size.
 */
static void parity_xor(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned chunk_size = rs->set.chunk_size, io_size = stripe->io.size,
		 xor_size = chunk_size > io_size ? io_size : chunk_size;
	sector_t off;

	/* This can be the recover stripe with a larger io size. */
	for (off = 0; off < io_size; off += xor_size) {
		/*
		 * Recover stripe is likely bigger than regular io
		 * ones and has no precalculated parity disk index ->
		 * need to calculate RAID address.
		 */
		if (unlikely(StripeRecover(stripe))) {
			struct raid_address addr;

			raid_address(rs,
				     (stripe->key + off) * rs->set.data_devs,
				     &addr);
			stripe->idx.parity = addr.pi;
			stripe_zero_pl_part(stripe, addr.pi, off, xor_size);
		}

		common_xor(stripe, xor_size, off, stripe->idx.parity);
		chunk_set(CHUNK(stripe, stripe->idx.parity), DIRTY);
	}
}

/* Reconstruct missing chunk. */
static void stripe_reconstruct(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	int p = rs->set.raid_devs, pr = stripe->idx.recover;

	BUG_ON(pr < 0);

	/* Check if all but the chunk to be reconstructed are uptodate. */
	while (p--)
		BUG_ON(p != pr && !ChunkUptodate(CHUNK(stripe, p)));

	/* REMOVEME: statistics. */
	atomic_inc(rs->stats + (RSDegraded(rs) ? S_RECONSTRUCT_EI :
						 S_RECONSTRUCT_DEV));
	/* Zero chunk to be reconstructed. */
	stripe_zero_chunk(stripe, pr);
	common_xor(stripe, stripe->io.size, 0, pr);
	stripe->idx.recover = -1;
}

/*
 * Recovery io throttling
 */
/* Conditionally reset io counters. */
static int recover_io_reset(struct raid_set *rs)
{
	unsigned long j = jiffies;

	/* Pay attention to jiffies overflows. */
	if (j > rs->recover.last_jiffies + HZ / 20 ||
	    j < rs->recover.last_jiffies) {
		atomic_set(rs->recover.io_count + IO_WORK, 0);
		atomic_set(rs->recover.io_count + IO_RECOVER, 0);
		rs->recover.last_jiffies = j;
		return 1;
	}

	return 0;
}

/* Count ios. */
static void recover_io_count(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);

	recover_io_reset(rs);
	atomic_inc(rs->recover.io_count +
		   (StripeRecover(stripe) ? IO_RECOVER : IO_WORK));
}

/* Try getting a stripe either from the hash or from the LRU list. */
static struct stripe *stripe_find(struct raid_set *rs,
				  struct raid_address *addr)
{
	int r;
	struct stripe_cache *sc = &rs->sc;
	struct stripe *stripe;

	/* Try stripe from hash. */
	stripe = stripe_lookup(sc, addr->key);
	if (stripe) {
		r = stripe_get(stripe);
		if (r)
			goto get_lock_failed;

		atomic_inc(rs->stats + S_HITS_1ST); /* REMOVEME: statistics. */
	} else {
		/* Not in hash -> try to get an LRU stripe. */
		stripe = stripe_lru_pop(sc);
		if (stripe) {
			/*
			 * An LRU stripe may not be referenced
			 * and may never have ios pending!
			 */
			BUG_ON(stripe_ref(stripe));
			BUG_ON(stripe_io_ref(stripe));

			/* Remove from hash if on before reuse. */
			stripe_hash_del(stripe);

			/* Invalidate before reinserting with changed key. */
			stripe_invalidate(stripe);

			stripe->key = addr->key;
			stripe->region = dm_rh_sector_to_region(rs->recover.rh,
								addr->key);
			stripe->idx.parity = addr->pi;
			r = stripe_get(stripe);
			if (r)
				goto get_lock_failed;

			/* Insert stripe into the stripe hash. */
			stripe_insert(&sc->hash, stripe);
			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_INSCACHE);
		}
	}

	return stripe;

get_lock_failed:
	stripe_put(stripe);
	return NULL;
}

/*
 * Process end io
 *
 * I need to do it here because I can't in interrupt
 */
/* End io all bios on a bio list. */
static void bio_list_endio(struct stripe *stripe, struct bio_list *bl,
			   int p, int error)
{
	struct raid_set *rs = RS(stripe->sc);
	struct bio *bio;
	struct page_list *pl = PL(stripe, p);
	struct stripe_chunk *chunk = CHUNK(stripe, p);

	/* Update region counters. */
	while ((bio = bio_list_pop(bl))) {
		if (bio_data_dir(bio) == WRITE)
			/* Drop io pending count for any writes. */
			dm_rh_dec(rs->recover.rh, stripe->region);
		else if (!error)
			/* Copy data accross. */
			bio_copy_page_list(READ, stripe, pl, bio);

		bio_endio(bio, error);

		/* REMOVEME: statistics. */
		atomic_inc(rs->stats + (bio_data_dir(bio) == READ ?
			   S_BIOS_ENDIO_READ : S_BIOS_ENDIO_WRITE));

		chunk_put(chunk);
		stripe_put(stripe);
		io_put(rs);	/* Wake any suspend waiters on last bio. */
	}
}

/*
 * End io all reads/writes on a stripe copying
 * read data accross from stripe to bios and
 * decrementing region counters for writes.
 *
 * Processing of ios depeding on state:
 * o no chunk error -> endio ok
 * o degraded:
 *   - chunk error and read -> ignore to be requeued
 *   - chunk error and write -> endio ok
 * o dead (more than parity_devs failed) and chunk_error-> endio failed
 */
static void stripe_endio(int rw, struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned p = rs->set.raid_devs;
	int write = (rw != READ);

	while (p--) {
		struct stripe_chunk *chunk = CHUNK(stripe, p);
		struct bio_list *bl;

		BUG_ON(ChunkLocked(chunk));

		bl = BL_CHUNK(chunk, rw);
		if (bio_list_empty(bl))
			continue;

		if (unlikely(ChunkError(chunk) || !ChunkUptodate(chunk))) {
			/* RAID set dead. */
			if (unlikely(RSDead(rs)))
				bio_list_endio(stripe, bl, p, -EIO);
			/* RAID set degraded. */
			else if (write)
				bio_list_endio(stripe, bl, p, 0);
		} else {
			BUG_ON(!RSDegraded(rs) && ChunkDirty(chunk));
			bio_list_endio(stripe, bl, p, 0);
		}
	}
}

/* Fail all ios hanging off all bio lists of a stripe. */
static void stripe_fail_io(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned p = rs->set.raid_devs;

	while (p--) {
		struct stripe_chunk *chunk = CHUNK(stripe, p);
		int i = ARRAY_SIZE(chunk->bl);

		/* Fail all bios on all bio lists of the stripe. */
		while (i--) {
			struct bio_list *bl = chunk->bl + i;

			if (!bio_list_empty(bl))
				bio_list_endio(stripe, bl, p, -EIO);
		}
	}

	/* Put stripe on LRU list. */
	BUG_ON(stripe_io_ref(stripe));
	BUG_ON(stripe_ref(stripe));
}

/* Unlock all required chunks. */
static void stripe_chunks_unlock(struct stripe *stripe)
{
	unsigned p = RS(stripe->sc)->set.raid_devs;
	struct stripe_chunk *chunk;

	while (p--) {
		chunk = CHUNK(stripe, p);

		if (TestClearChunkUnlock(chunk))
			ClearChunkLocked(chunk);
	}
}

/*
 * Queue reads and writes to a stripe by hanging
 * their bios off the stripesets read/write lists.
 */
static int stripe_queue_bio(struct raid_set *rs, struct bio *bio,
			    struct bio_list *reject)
{
	struct raid_address addr;
	struct stripe *stripe;

	stripe = stripe_find(rs, raid_address(rs, bio->bi_sector, &addr));
	if (stripe) {
		int r = 0, rw = bio_data_dir(bio);

		/* Distinguish reads and writes. */
		bio_list_add(BL(stripe, addr.di, rw), bio);
	
		if (rw == READ)
			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_BIOS_ADDED_READ);
		else {
			/* Inrement pending write count on region. */
			dm_rh_inc(rs->recover.rh, stripe->region);
			r = 1;

			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_BIOS_ADDED_WRITE);
		}

		/*
		 * Put on io (flush) list in case of
		 * initial bio queued to chunk.
		 */
		if (chunk_get(CHUNK(stripe, addr.di)) == 1)
			stripe_flush_add(stripe);

		return r;
	}

	/* Got no stripe from cache or failed to lock it -> reject bio. */
	bio_list_add(reject, bio);
	atomic_inc(rs->stats + S_IOS_POST); /* REMOVEME: statistics. */
	return 0;
}

/*
 * Handle all stripes by handing them to the daemon, because we can't
 * map their chunk pages to copy the data in interrupt context.
 *
 * We don't want to handle them here either, while interrupts are disabled.
 */

/* Read/write endio function for dm-io (interrupt context). */
static void endio(unsigned long error, void *context)
{
	struct stripe_chunk *chunk = context;

	if (unlikely(error)) {
		chunk_set(chunk, ERROR);
		/* REMOVEME: statistics. */
		atomic_inc(RS(chunk->stripe->sc)->stats + S_STRIPE_ERROR);
	} else
		chunk_set(chunk, CLEAN);

	/*
	 * For recovery stripes, I need to reset locked locked
	 * here, because those aren't processed in do_endios().
	 */
	if (unlikely(StripeRecover(chunk->stripe)))
		ClearChunkLocked(chunk);
	else
		SetChunkUnlock(chunk);

	/* Indirectly puts stripe on cache's endio list via stripe_io_put(). */
	stripe_put_references(chunk->stripe);
}

/* Read/Write a chunk asynchronously. */
static void stripe_chunk_rw(struct stripe *stripe, unsigned p)
{
	struct stripe_cache *sc = stripe->sc;
	struct raid_set *rs = RS(sc);
	struct dm_mem_cache_object *obj = stripe->obj + p;
	struct page_list *pl = obj->pl;
	struct stripe_chunk *chunk = CHUNK(stripe, p);
	struct raid_dev *dev = rs->dev + p;
	struct dm_io_region io = {
		.bdev = dev->dev->bdev,
		.sector = stripe->key,
		.count = stripe->io.size,
	};
	struct dm_io_request control = {
		.bi_rw = ChunkDirty(chunk) ? WRITE : READ,
		.mem = {
			.type = DM_IO_PAGE_LIST,
			.ptr.pl = pl,
			.offset = 0,
		},
		.notify = {
			.fn = endio,
			.context = chunk,
		},
		.client = StripeRecover(stripe) ? rs->recover.dm_io_client :
						  sc->dm_io_client,
	};

	BUG_ON(ChunkLocked(chunk));
	BUG_ON(!ChunkUptodate(chunk) && ChunkDirty(chunk));
	BUG_ON(ChunkUptodate(chunk) && !ChunkDirty(chunk));

	/*
	 * Don't rw past end of device, which can happen, because
	 * typically sectors_per_dev isn't divisible by io_size.
	 */
	if (unlikely(io.sector + io.count > rs->set.sectors_per_dev))
		io.count = rs->set.sectors_per_dev - io.sector;

	BUG_ON(!io.count);
	io.sector += dev->start;	/* Add <offset>. */
	if (RSRecover(rs))
		recover_io_count(stripe);	/* Recovery io accounting. */

	/* REMOVEME: statistics. */
	atomic_inc(rs->stats + (ChunkDirty(chunk) ? S_DM_IO_WRITE :
						    S_DM_IO_READ));
	SetChunkLocked(chunk);
	SetDevIoQueued(dev);
	BUG_ON(dm_io(&control, 1, &io, NULL));
}

/*
 * Write dirty or read not uptodate page lists of a stripe.
 */
static int stripe_chunks_rw(struct stripe *stripe)
{
	int r;
	struct raid_set *rs = RS(stripe->sc);

	/*
	 * Increment the pending count on the stripe
	 * first, so that we don't race in endio().
	 *
	 * An inc (IO) is needed for any chunk unless !ChunkIo(chunk):
	 *
	 * o not uptodate
	 * o dirtied by writes merged
	 * o dirtied by parity calculations
	 */
	r = for_each_io_dev(stripe, stripe_get_references);
	if (r) {
		/* Io needed: chunks are either not uptodate or dirty. */
		int max;	/* REMOVEME: */
		struct stripe_cache *sc = &rs->sc;

		/* Submit actual io. */
		for_each_io_dev(stripe, stripe_chunk_rw);

		/* REMOVEME: statistics */
		max = sc_active(sc);
		if (atomic_read(&sc->active_stripes_max) < max)
			atomic_set(&sc->active_stripes_max, max);

		atomic_inc(rs->stats + S_FLUSHS);
		/* END REMOVEME: statistics */
	}

	return r;
}

/* Merge in all writes hence dirtying respective chunks. */
static void stripe_merge_writes(struct stripe *stripe)
{
	unsigned p = RS(stripe->sc)->set.raid_devs;

	while (p--) {
		struct stripe_chunk *chunk = CHUNK(stripe, p);
		struct bio_list *write = BL_CHUNK(chunk, WRITE_QUEUED);
	
		if (!bio_list_empty(write)) {
			struct bio *bio;
			struct page_list *pl = stripe->obj[p].pl;

			/*
			 * We can play with the lists without holding a lock,
			 * because it is just us accessing them anyway.
			 */
			bio_list_for_each(bio, write)
				bio_copy_page_list(WRITE, stripe, pl, bio);

			bio_list_merge(BL_CHUNK(chunk, WRITE_MERGED), write);
			bio_list_init(write);
			chunk_set(chunk, DIRTY);
		}
	}
}

/* Queue all writes to get merged. */
static int stripe_queue_writes(struct stripe *stripe)
{
	int r = 0;
	unsigned p = RS(stripe->sc)->set.raid_devs;

	while (p--) {
		struct stripe_chunk *chunk = CHUNK(stripe, p);
		struct bio_list *write = BL_CHUNK(chunk, WRITE);

		if (!bio_list_empty(write)) {
			bio_list_merge(BL_CHUNK(chunk, WRITE_QUEUED), write);
			bio_list_init(write);
SetChunkIo(chunk);
			r = 1;
		}
	}

	return r;
}


/* Check, if a chunk gets completely overwritten. */
static int stripe_check_chunk_overwrite(struct stripe *stripe, unsigned p)
{
	unsigned sectors = 0;
	struct bio *bio;
	struct bio_list *bl = BL(stripe, p, WRITE_QUEUED);

	bio_list_for_each(bio, bl)
		sectors += bio_sectors(bio);

	BUG_ON(sectors > RS(stripe->sc)->set.io_size);
	return sectors == RS(stripe->sc)->set.io_size;
}

/*
 * Avoid io on broken/reconstructed drive in order to
 * reconstruct date on endio.
 *
 * (*1*) We set StripeReconstruct() in here, so that _do_endios()
 *	 will trigger a reconstruct call before resetting it.
 */
static int stripe_chunk_set_io_flags(struct stripe *stripe, int pr)
{
	struct stripe_chunk *chunk = CHUNK(stripe, pr);

	/*
	 * Allow io on all chunks but the indexed one,
	 * because we're either degraded or prohibit it
	 * on the one for later reconstruction.
	 */
	/* Includes ClearChunkIo(), ClearChunkUptodate(). */
	stripe_chunk_invalidate(chunk);
	stripe->idx.recover = pr;
	SetStripeReconstruct(stripe);

	/* REMOVEME: statistics. */
	atomic_inc(RS(stripe->sc)->stats + S_PROHIBITCHUNKIO);
	return -EPERM;
}

/* Chunk locked/uptodate and device failed tests. */
static struct stripe_chunk *
stripe_chunk_check(struct stripe *stripe, unsigned p, unsigned *chunks_uptodate)
{
	struct raid_set *rs = RS(stripe->sc);
	struct stripe_chunk *chunk = CHUNK(stripe, p);

	/* Can't access active chunks. */
	if (ChunkLocked(chunk)) {
		/* REMOVEME: statistics. */
		atomic_inc(rs->stats + S_CHUNK_LOCKED);
		return NULL;
	}

	/* Can't access broken devive. */
	if (ChunkError(chunk) || DevFailed(rs->dev + p))
		return NULL;

	/* Can access uptodate chunks. */
	if (ChunkUptodate(chunk)) {
		(*chunks_uptodate)++;
		return NULL;
	}

	return chunk;
}

/*
 * Degraded/reconstruction mode.
 *
 * Check stripe state to figure which chunks don't need IO.
 *
 * Returns 0 for fully operational, -EPERM for degraded/resynchronizing.
 */
static int stripe_check_reconstruct(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);

	if (RSDead(rs)) {
		ClearStripeReconstruct(stripe);
		ClearStripeReconstructed(stripe);
		stripe_allow_io(stripe);
		return 0;
	}

	/* Avoid further reconstruction setting, when already set. */
	if (StripeReconstruct(stripe)) {
		/* REMOVEME: statistics. */
		atomic_inc(rs->stats + S_RECONSTRUCT_SET);
		return -EBUSY;
	}

	/* Initially allow io on all chunks. */
	stripe_allow_io(stripe);

	/* Return if stripe is already reconstructed. */
	if (StripeReconstructed(stripe)) {
		atomic_inc(rs->stats + S_RECONSTRUCTED);
		return 0;
	}

	/*
	 * Degraded/reconstruction mode (device failed) ->
	 * avoid io on the failed device.
	 */
	if (unlikely(RSDegraded(rs))) {
		/* REMOVEME: statistics. */
		atomic_inc(rs->stats + S_DEGRADED);
		/* Allow IO on all devices but the dead one. */
		BUG_ON(rs->set.ei < 0);
		return stripe_chunk_set_io_flags(stripe, rs->set.ei);
	} else {
		int sync, pi = dev_for_parity(stripe, &sync);

		/*
		 * Reconstruction mode (ie. a particular (replaced) device or
		 * some (rotating) parity chunk is being resynchronized) ->
		 *   o make sure all needed chunks are read in
		 *   o writes are allowed to go through
		 */
		if (!sync) {
			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_NOSYNC);
			/* Allow IO on all devs but the one to reconstruct. */
			return stripe_chunk_set_io_flags(stripe, pi);
		}
	}

	return 0;
}

/*
 * Check, if stripe is ready to merge writes.
 * I.e. if all chunks present to allow to merge bios.
 *
 * We prohibit io on:
 *
 * o chunks without bios
 * o chunks which get completely written over
 */
static int stripe_merge_possible(struct stripe *stripe, int nosync)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned chunks_overwrite = 0, chunks_prohibited = 0,
		 chunks_uptodate = 0, p = rs->set.raid_devs;

	/* Walk all chunks. */
	while (p--) {
		struct stripe_chunk *chunk;

		/* Prohibit io on broken devices. */
		if (DevFailed(rs->dev + p)) {
			chunk = CHUNK(stripe, p);
			goto prohibit_io;
		}

		/* We can't optimize any further if no chunk. */
		chunk = stripe_chunk_check(stripe, p, &chunks_uptodate);
		if (!chunk || nosync)
			continue;

		/*
		 * We have a chunk, which is not uptodate.
		 *
		 * If this is not parity and we don't have
		 * reads queued, we can optimize further.
		 */
		if (p != stripe->idx.parity &&
		    bio_list_empty(BL_CHUNK(chunk, READ)) &&
		    bio_list_empty(BL_CHUNK(chunk, WRITE_MERGED))) {
			if (bio_list_empty(BL_CHUNK(chunk, WRITE_QUEUED)))
				goto prohibit_io;
			else if (RSCheckOverwrite(rs) &&
				 stripe_check_chunk_overwrite(stripe, p))
				/* Completely overwritten chunk. */
				chunks_overwrite++;
		}

		/* Allow io for chunks with bios and overwritten ones. */
		SetChunkIo(chunk);
		continue;

prohibit_io:
		/* No io for broken devices or for chunks w/o bios. */
		ClearChunkIo(chunk);
		chunks_prohibited++;
		/* REMOVEME: statistics. */
		atomic_inc(RS(stripe->sc)->stats + S_PROHIBITCHUNKIO);
	}

	/* All data chunks will get written over. */
	if (chunks_overwrite == rs->set.data_devs)
		atomic_inc(rs->stats + S_OVERWRITE); /* REMOVEME: statistics.*/
	else if (chunks_uptodate + chunks_prohibited < rs->set.raid_devs) {
		/* We don't have enough chunks to merge. */
		atomic_inc(rs->stats + S_CANT_MERGE); /* REMOVEME: statistics.*/
		return -EPERM;
	}

	/*
	 * If we have all chunks up to date or overwrite them, we
	 * just zero the parity chunk and let stripe_rw() recreate it.
	 */
	if (chunks_uptodate == rs->set.raid_devs ||
	    chunks_overwrite == rs->set.data_devs) {
		stripe_zero_chunk(stripe, stripe->idx.parity);
		BUG_ON(StripeReconstruct(stripe));
		SetStripeReconstruct(stripe);	/* Enforce xor in caller. */
	} else {
		/*
		 * With less chunks, we xor parity out.
		 *
		 * (*4*) We rely on !StripeReconstruct() in chunk_must_xor(),
		 *	 so that only chunks with queued or merged writes 
		 *	 are being xored.
		 */
		parity_xor(stripe);
	}

	/*
	 * We do have enough chunks to merge.
	 * All chunks are uptodate or get written over.
	 */
	atomic_inc(rs->stats + S_CAN_MERGE); /* REMOVEME: statistics. */
	return 0;
}

/*
 * Avoid reading chunks in case we're fully operational.
 *
 * We prohibit io on any chunks without bios but the parity chunk.
 */
static void stripe_avoid_reads(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	unsigned dummy = 0, p = rs->set.raid_devs;

	/* Walk all chunks. */
	while (p--) {
		struct stripe_chunk *chunk =
			stripe_chunk_check(stripe, p, &dummy);

		if (!chunk)
			continue;

		/* If parity or any bios pending -> allow io. */
		if (chunk_ref(chunk) || p == stripe->idx.parity)
			SetChunkIo(chunk);
		else {
			ClearChunkIo(chunk);
			/* REMOVEME: statistics. */
			atomic_inc(RS(stripe->sc)->stats + S_PROHIBITCHUNKIO);
		}
	}
}

/*
 * Read/write a stripe.
 *
 * All stripe read/write activity goes through this function
 * unless recovery, which has to call stripe_chunk_rw() directly.
 *
 * Make sure we don't try already merged stripes in order
 * to avoid data corruption.
 *
 * Check the state of the RAID set and if degraded (or
 * resynchronizing for reads), read in all other chunks but
 * the one on the dead/resynchronizing device in order to be
 * able to reconstruct the missing one in _do_endios().
 *
 * Can be called on active stripes in order
 * to dispatch new io on inactive chunks.
 *
 * States to cover:
 *   o stripe to read and/or write
 *   o stripe with error to reconstruct
 */
static void stripe_rw(struct stripe *stripe)
{
	int nosync, r;
	struct raid_set *rs = RS(stripe->sc);

	/*
 	 * Check, if a chunk needs to be reconstructed
 	 * because of a degraded set or a region out of sync.
 	 */
	nosync = stripe_check_reconstruct(stripe);
	switch (nosync) {
	case -EBUSY:
		return; /* Wait for stripe reconstruction to finish. */
	case -EPERM:
		goto io;
	}

	/*
	 * If we don't have merged writes pending, we can schedule
	 * queued writes to be merged next without corrupting data.
	 */
	if (!StripeMerged(stripe)) {
		r = stripe_queue_writes(stripe);
		if (r)
			/* Writes got queued -> flag RBW. */
			SetStripeRBW(stripe);
	}

	/*
	 * Merge all writes hanging off uptodate/overwritten
	 * chunks of the stripe.
	 */
	if (StripeRBW(stripe)) {
		r = stripe_merge_possible(stripe, nosync);
		if (!r) { /* Merge possible. */
			struct stripe_chunk *chunk;

			/*
			 * I rely on valid parity in order
			 * to xor a fraction of chunks out
			 * of parity and back in.
			 */
			stripe_merge_writes(stripe);	/* Merge writes in. */
			parity_xor(stripe);		/* Update parity. */
			ClearStripeReconstruct(stripe);	/* Reset xor enforce. */
			SetStripeMerged(stripe);	/* Writes merged. */
			ClearStripeRBW(stripe);		/* Disable RBW. */

			/*
			 * REMOVEME: sanity check on parity chunk
			 * 	     states after writes got merged.
			 */
			chunk = CHUNK(stripe, stripe->idx.parity);
			BUG_ON(ChunkLocked(chunk));
			BUG_ON(!ChunkUptodate(chunk));
			BUG_ON(!ChunkDirty(chunk));
			BUG_ON(!ChunkIo(chunk));
		}
	} else if (!nosync && !StripeMerged(stripe))
		/* Read avoidance if not degraded/resynchronizing/merged. */
		stripe_avoid_reads(stripe);

io:
	/* Now submit any reads/writes for non-uptodate or dirty chunks. */
	r = stripe_chunks_rw(stripe);
	if (!r) {
		/*
		 * No io submitted because of chunk io
		 * prohibited or locked chunks/failed devices
		 * -> push to end io list for processing.
		 */
		stripe_endio_push(stripe);
		atomic_inc(rs->stats + S_NO_RW); /* REMOVEME: statistics. */
	}
}

/*
 * Recovery functions
 */
/* Read a stripe off a raid set for recovery. */
static int stripe_recover_read(struct stripe *stripe, int pi)
{
	BUG_ON(stripe_io_ref(stripe));

	/* Invalidate all chunks so that they get read in. */
	stripe_chunks_invalidate(stripe);
	stripe_allow_io(stripe); /* Allow io on all recovery chunks. */

	/*
	 * If we are reconstructing a perticular device, we can avoid
 	 * reading the respective chunk in, because we're going to
	 * reconstruct it anyway.
	 *
	 * We can't do that for resynchronization of rotating parity,
	 * because the recovery stripe chunk size is typically larger
	 * than the sets chunk size.
	 */
	if (pi > -1)
		ClearChunkIo(CHUNK(stripe, pi));

	return stripe_chunks_rw(stripe);
}

/* Write a stripe to a raid set for recovery. */
static int stripe_recover_write(struct stripe *stripe, int pi)
{
	BUG_ON(stripe_io_ref(stripe));

	/*
	 * If this is a reconstruct of a particular device, then
	 * reconstruct the respective chunk, else create parity chunk.
	 */
	if (pi > -1) {
		stripe_zero_chunk(stripe, pi);
		common_xor(stripe, stripe->io.size, 0, pi);
		chunk_set(CHUNK(stripe, pi), DIRTY);
	} else
		parity_xor(stripe);

	return stripe_chunks_rw(stripe);
}

/* Read/write a recovery stripe. */
static int stripe_recover_rw(struct stripe *stripe)
{
	int r = 0, sync = 0;

	/* Read/write flip-flop. */
	if (TestClearStripeRBW(stripe)) {
		SetStripeMerged(stripe);
		stripe->key = stripe->recover->pos;
		r = stripe_recover_read(stripe, dev_for_parity(stripe, &sync));
		BUG_ON(!r);
	} else if (TestClearStripeMerged(stripe)) {
		r = stripe_recover_write(stripe, dev_for_parity(stripe, &sync));
		BUG_ON(!r);
	}

	BUG_ON(sync);
	return r;
}

/* Recover bandwidth available ?. */
static int recover_bandwidth(struct raid_set *rs)
{
	int r, work;

	/* On reset or when bios delayed -> allow recovery. */
	r = recover_io_reset(rs);
	if (r || RSBandwidth(rs))
		goto out;

	work = atomic_read(rs->recover.io_count + IO_WORK);
	if (work) {
		/* Pay attention to larger recover stripe size. */
		int recover = atomic_read(rs->recover.io_count + IO_RECOVER) *
					  rs->recover.io_size / rs->set.io_size;

		/*
		 * Don't use more than given bandwidth
		 * of the work io for recovery.
		 */
		if (recover > work / rs->recover.bandwidth_work) {
			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_NO_BANDWIDTH);
			return 0;
		}
	}

out:
	atomic_inc(rs->stats + S_BANDWIDTH);	/* REMOVEME: statistics. */
	return 1;
}

/* Try to get a region to recover. */
static int stripe_recover_get_region(struct stripe *stripe)
{
	struct raid_set *rs = RS(stripe->sc);
	struct recover *rec = &rs->recover;
	struct recover_addr *addr = stripe->recover;
	struct dm_dirty_log *dl = rec->dl;
	struct dm_rh_client *rh = rec->rh;

	BUG_ON(!dl);
	BUG_ON(!rh);

	/* Return, that we have region first to finish it during suspension. */
	if (addr->reg)
		return 1;

	if (RSSuspend(rs))
		return -EPERM;

	if (dl->type->get_sync_count(dl) >= rec->nr_regions)
		return -ENOENT;

	/* If we don't have enough bandwidth, we don't proceed recovering. */
	if (!recover_bandwidth(rs))
		return -EAGAIN;

	/* Start quiescing a region. */
	dm_rh_recovery_prepare(rh);
	addr->reg = dm_rh_recovery_start(rh);
	if (!addr->reg)
		return -EAGAIN;

	addr->pos = dm_rh_region_to_sector(rh, dm_rh_get_region_key(addr->reg));
	addr->end = addr->pos + dm_rh_get_region_size(rh);

	/*
	 * Take one global io reference out for the
	 * whole region, which is going to be released
	 * when the region is completely done with.
	 */
	io_get(rs);
	return 0;
}

/* Update region hash state. */
enum recover_type { REC_FAILURE = 0, REC_SUCCESS = 1 };
static void recover_rh_update(struct stripe *stripe, enum recover_type success)
{
	struct recover_addr *addr = stripe->recover;
	struct raid_set *rs = RS(stripe->sc);
	struct recover *rec = &rs->recover;

	if (!addr->reg) {
		DMERR("%s- Called w/o region", __func__);
		return;
	}

	dm_rh_recovery_end(addr->reg, success);
	if (success)
		rec->nr_regions_recovered++;

	addr->reg = NULL;

	/*
	 * Completely done with this region ->
	 * release the 1st io reference.
	 */
	io_put(rs);
}

/* Set start of recovery state. */
static void set_start_recovery(struct raid_set *rs)
{
	/* Initialize recovery. */
	rs->recover.start_jiffies = jiffies;
	rs->recover.end_jiffies = 0;
}

/* Set end of recovery state. */
static void set_end_recovery(struct raid_set *rs)
{
	ClearRSRecover(rs);
	rs->set.dev_to_init = -1;

	/* Check for jiffies overrun. */
	rs->recover.end_jiffies = jiffies;
	if (rs->recover.end_jiffies < rs->recover.start_jiffies)
		rs->recover.end_jiffies = ~0;
}

/* Handle recovery on one recovery stripe. */
static int _do_recovery(struct stripe *stripe)
{
	int r;
	struct raid_set *rs = RS(stripe->sc);
	struct recover_addr *addr = stripe->recover;

	/* If recovery is active -> return. */
	if (stripe_io_ref(stripe))
		return 1;

	/* IO error is fatal for recovery -> stop it. */
	if (unlikely(StripeError(stripe)))
		goto err;

	/* Recovery end required. */
	if (!RSRecover(rs))
		goto err;

	/* Get a region to recover. */
	r = stripe_recover_get_region(stripe);
	switch (r) {
	case 0:	/* Got a new region: flag initial read before write. */
		SetStripeRBW(stripe);
	case 1:	/* Have a region in the works. */
		break;
	case -EAGAIN:
		/* No bandwidth/quiesced region yet, try later. */
		if (!io_ref(rs))
			wake_do_raid_delayed(rs, HZ / 4);
	case -EPERM:
		/* Suspend. */
		return 1;
	case -ENOENT:	/* No more regions to recover. */
		schedule_work(&rs->io.ws_do_table_event);
		return 0;
	default:
		BUG();
	}

	/* Read/write a recover stripe. */
	r = stripe_recover_rw(stripe);
	if (r)
		/* IO initiated. */
		return 1;

	/* Read and write finished-> update recovery position within region. */
	addr->pos += stripe->io.size;

	/* If we're at end of region, update region hash. */
	if (addr->pos >= addr->end ||
	    addr->pos >= rs->set.sectors_per_dev)
		recover_rh_update(stripe, REC_SUCCESS);
	else
		/* Prepare to read next region segment. */
		SetStripeRBW(stripe);

	/* Schedule myself for another round... */
	wake_do_raid(rs);
	return 1;

err:
	/* FIXME: rather try recovering other regions on error? */
	rs_check_degrade(stripe);
	recover_rh_update(stripe, REC_FAILURE);

	/* Check state of partially recovered array. */
	if (RSDegraded(rs) && !RSDead(rs) &&
	    rs->set.dev_to_init != -1 &&
	    rs->set.ei != rs->set.dev_to_init)
		/* Broken drive != drive to recover -> FATAL. */
		SetRSDead(rs);

	if (StripeError(stripe)) {
		char buf[BDEVNAME_SIZE];

		DMERR("stopping recovery due to "
		      "ERROR on /dev/%s, stripe at offset %llu",
		      bdevname(rs->dev[rs->set.ei].dev->bdev, buf),
		      (unsigned long long) stripe->key);

	}

	/* Make sure, that all quiesced regions get released. */
	while (addr->reg) {
		dm_rh_recovery_end(addr->reg, -EIO);
		addr->reg = dm_rh_recovery_start(rs->recover.rh);
	}

	return 0;
}

/* Called by main io daemon to recover regions. */
static void do_recovery(struct raid_set *rs)
{
	if (RSRecover(rs)) {
		int r = 0;
		struct stripe *stripe;

		list_for_each_entry(stripe, &rs->recover.stripes,
				    lists[LIST_RECOVER])
			r += _do_recovery(stripe);

		if (!r) {
			set_end_recovery(rs);
			stripe_recover_free(rs);
		}
	}
}

/*
 * END recovery functions
 */

/* End io process all stripes handed in by endio() callback. */
static void _do_endios(struct raid_set *rs, struct stripe *stripe,
		       struct list_head *flush_list)
{
	/* First unlock all required chunks. */
	stripe_chunks_unlock(stripe);

	/*
	 * If an io error on a stripe occured, degrade the RAID set
	 * and try to endio as many bios as possible. If any bios can't
	 * be endio processed, requeue the stripe (stripe_ref() != 0).
	 */
	if (TestClearStripeError(stripe)) {
		/*
		 * FIXME: if read, rewrite the failed chunk after reconstruction
		 *        in order to trigger disk bad sector relocation.
		 */
		rs_check_degrade(stripe); /* Resets ChunkError(). */
		ClearStripeReconstruct(stripe);
		ClearStripeReconstructed(stripe);
	}

	/* Got to reconstruct a missing chunk. */
	if (StripeReconstruct(stripe)) {
		/*
		 * (*2*) We use StripeReconstruct() to allow for
		 *	 all chunks to be xored into the reconstructed
		 *	 one (see chunk_must_xor()).
		 */
		stripe_reconstruct(stripe);

		/*
		 * (*3*) Now we reset StripeReconstruct() and flag
		 * 	 StripeReconstructed() to show to stripe_rw(),
		 * 	 that we have reconstructed a missing chunk.
		 */
		ClearStripeReconstruct(stripe);
		SetStripeReconstructed(stripe);

		/* FIXME: reschedule to be written in case of read. */
		// if (!StripeRBW(stripe)) {
		// 	chunk_set(CHUNK(stripe, pr), DIRTY);
		// 	stripe_chunks_rw(stripe);
		// }
	}

	/*
	 * Now that we eventually got a complete stripe, we
	 * can process the rest of the end ios on reads.
	 */
	stripe_endio(READ, stripe);

	/* End io all merged writes. */
	if (TestClearStripeMerged(stripe))
		stripe_endio(WRITE_MERGED, stripe);

	/* If RAID set is dead -> fail any ios to dead drives. */
	if (RSDead(rs)) {
		DMERR_LIMIT("RAID set dead: failing ios to dead devices");
		stripe_fail_io(stripe);
	}

	/*
	 * We have stripe references still,
	 * beacuse of read befeore writes or IO errors ->
	 * got to put on flush list for processing.
	 */
	if (stripe_ref(stripe)) {
		BUG_ON(!list_empty(stripe->lists + LIST_LRU));
		list_add_tail(stripe->lists + LIST_FLUSH, flush_list);
		atomic_inc(rs->stats + S_REQUEUE); /* REMOVEME: statistics. */
	} else
		stripe_lru_add(stripe);
}

/* Pop any endio stripes off of the endio list and belabour them. */
static void do_endios(struct raid_set *rs)
{
	struct stripe_cache *sc = &rs->sc;
	struct stripe *stripe;
	/* IO flush list for sorted requeued stripes. */
	struct list_head flush_list;

	INIT_LIST_HEAD(&flush_list);

	while ((stripe = stripe_endio_pop(sc))) {
		/* Avoid endio on stripes with newly io'ed chunks. */
		if (!stripe_io_ref(stripe))
			_do_endios(rs, stripe, &flush_list);
	}

	/*
	 * Insert any requeued stripes in the proper
	 * order at the beginning of the io (flush) list.
	 */
	list_splice(&flush_list, sc->lists + LIST_FLUSH);
}

/* Flush any stripes on the io list. */
static void do_flush(struct raid_set *rs)
{
	struct stripe *stripe;

	while ((stripe = stripe_io_pop(&rs->sc)))
		stripe_rw(stripe); /* Read/write stripe. */
}

/* Stripe cache resizing. */
static void do_sc_resize(struct raid_set *rs)
{
	unsigned set = atomic_read(&rs->sc.stripes_to_set);

	if (set) {
		unsigned cur = atomic_read(&rs->sc.stripes);
		int r = (set > cur) ? sc_grow(&rs->sc, set - cur, SC_GROW) :
				      sc_shrink(&rs->sc, cur - set);

		/* Flag end of resizeing if ok. */
		if (!r)
			atomic_set(&rs->sc.stripes_to_set, 0);
	}
}

/*
 * Process all ios
 *
 * We do different things with the io depending
 * on the state of the region that it is in:
 *
 * o reads: hang off stripe cache or postpone if full
 *
 * o writes:
 *
 *  CLEAN/DIRTY/NOSYNC:	increment pending and hang io off stripe's stripe set.
 *			In case stripe cache is full or busy, postpone the io.
 *
 *  RECOVERING:		delay the io until recovery of the region completes.
 *
 */
static void do_ios(struct raid_set *rs, struct bio_list *ios)
{
	int r;
	unsigned flush = 0, delay = 0;
	sector_t sector;
	struct dm_rh_client *rh = rs->recover.rh;
	struct bio *bio;
	struct bio_list reject;

	bio_list_init(&reject);

	/*
	 * Classify each io:
	 *    o delay writes to recovering regions (let reads go through)
	 *    o queue io to all other regions
	 */
	while ((bio = bio_list_pop(ios))) {
		/*
		 * In case we get a barrier bio, push it back onto
		 * the input queue unless all work queues are empty
		 * and the stripe cache is inactive.
		 */
		if (unlikely(bio->bi_rw & REQ_FLUSH)) {
			/* REMOVEME: statistics. */
			atomic_inc(rs->stats + S_BARRIER);
			if (delay ||
			    !list_empty(rs->sc.lists + LIST_FLUSH) ||
			    !bio_list_empty(&reject) ||
			    sc_active(&rs->sc)) {
				bio_list_push(ios, bio);
				break;
			}
		}

		/* Check for recovering regions. */
		sector = _sector(rs, bio);
		r = region_state(rs, sector, DM_RH_RECOVERING);
		if (unlikely(r && bio_data_dir(bio) == WRITE)) {
			delay++;
			/* Wait writing to recovering regions. */
			dm_rh_delay_by_region(rh, bio,
					      dm_rh_sector_to_region(rh,
								     sector));
			/* REMOVEME: statistics.*/
			atomic_inc(rs->stats + S_DELAYED_BIOS);
			atomic_inc(rs->stats + S_SUM_DELAYED_BIOS);

			/* Force bandwidth tests in recovery. */
			SetRSBandwidth(rs);
		} else {
			/*
			 * Process ios to non-recovering regions by queueing
			 * them to stripes (does dm_rh_inc()) for writes).
			 */
			flush += stripe_queue_bio(rs, bio, &reject);
		}
	}

	if (flush) {
		/* FIXME: better error handling. */
		r = dm_rh_flush(rh); /* Writes got queued -> flush dirty log. */
		if (r)
			DMERR_LIMIT("dirty log flush");
	}

	/* Merge any rejected bios back to the head of the input list. */
	bio_list_merge_head(ios, &reject);
}

/* Send an event in case we're getting too busy. */
static void do_busy_event(struct raid_set *rs)
{
	if (sc_busy(rs)) {
		if (!TestSetRSScBusy(rs))
			schedule_work(&rs->io.ws_do_table_event);
	}

	ClearRSScBusy(rs);
}

/* Throw an event. */
static void do_table_event(struct work_struct *ws)
{
	struct raid_set *rs = container_of(ws, struct raid_set,
					   io.ws_do_table_event);
	dm_table_event(rs->ti->table);
}


/*-----------------------------------------------------------------
 * RAID daemon
 *---------------------------------------------------------------*/
/*
 * o belabour all end ios
 * o update the region hash states
 * o optionally shrink the stripe cache
 * o optionally do recovery
 * o unplug any component raid devices with queued bios
 * o grab the input queue
 * o work an all requeued or new ios and perform stripe cache flushs
 * o unplug any component raid devices with queued bios
 * o check, if the stripe cache gets too busy and throw an event if so
 */
static void do_raid(struct work_struct *ws)
{
	struct raid_set *rs = container_of(ws, struct raid_set,
					   io.dws_do_raid.work);
	struct bio_list *ios = &rs->io.work, *ios_in = &rs->io.in;
	struct blk_plug plug;

	/*
	 * We always need to end io, so that ios can get errored in
	 * case the set failed and the region counters get decremented
	 * before we update region hash states and go any further.
	 */
	do_endios(rs);
	dm_rh_update_states(rs->recover.rh, 1);

	/*
	 * Now that we've end io'd, which may have put stripes on the LRU list
	 * to allow for shrinking, we resize the stripe cache if requested.
	 */
	do_sc_resize(rs);

	/* Try to recover regions. */
	blk_start_plug(&plug);
	do_recovery(rs);
	blk_finish_plug(&plug);	/* Unplug the queue */

	/* Quickly grab all new ios queued and add them to the work list. */
	mutex_lock(&rs->io.in_lock);
	bio_list_merge(ios, ios_in);
	bio_list_init(ios_in);
	mutex_unlock(&rs->io.in_lock);

	blk_start_plug(&plug);
	if (!bio_list_empty(ios))
		do_ios(rs, ios); /* Got ios to work into the cache. */

	do_flush(rs);		/* Flush any stripes on io list. */
	blk_finish_plug(&plug);	/* Unplug the queue */
	do_busy_event(rs);	/* Check if we got too busy. */
}

/*
 * Callback for region hash to dispatch
 * delayed bios queued to recovered regions
 * (gets called via dm_rh_update_states()).
 */
static void dispatch_delayed_bios(void *context, struct bio_list *bl)
{
	struct raid_set *rs = context;
	struct bio *bio;

	/* REMOVEME: statistics; decrement pending delayed bios counter. */
	bio_list_for_each(bio, bl)
		atomic_dec(rs->stats + S_DELAYED_BIOS);

	/* Merge region hash private list to work list. */
	bio_list_merge_head(&rs->io.work, bl);
	bio_list_init(bl);
	ClearRSBandwidth(rs);
}

/*************************************************************
 * Constructor helpers
 *************************************************************/
/* Calculate MB/sec. */
static unsigned mbpers(struct raid_set *rs, unsigned speed)
{
	return to_bytes(speed * rs->set.data_devs *
			rs->recover.io_size * HZ >> 10) >> 10;
}

/*
 * Discover fastest xor algorithm and # of chunks combination.
 */
/* Calculate speed for algorithm and # of chunks. */
static unsigned xor_speed(struct stripe *stripe)
{
	unsigned r = 0;
	unsigned long j;

	/* Wait for next tick. */
	for (j = jiffies; j == jiffies; )
		;

	/* Do xors for a full tick. */
	for (j = jiffies; j == jiffies; ) {
		mb();
		common_xor(stripe, stripe->io.size, 0, 0);
		mb();
		r++;
	}

	return r;
}

/* Optimize xor algorithm for this RAID set. */
static unsigned xor_optimize(struct raid_set *rs)
{
	unsigned chunks_max = 2, p = rs->set.raid_devs, speed_max = 0;
	struct xor_func *f = ARRAY_END(xor_funcs), *f_max = NULL;
	struct stripe *stripe;

	BUG_ON(list_empty(&rs->recover.stripes));
	stripe = list_first_entry(&rs->recover.stripes, struct stripe,
				  lists[LIST_RECOVER]);

	/* Must set uptodate so that xor() will belabour chunks. */
	while (p--)
		SetChunkUptodate(CHUNK(stripe, p));

	/* Try all xor functions. */
	while (f-- > xor_funcs) {
		unsigned speed;

		/* Set actual xor function for common_xor(). */
		rs->xor.f = f;
		rs->xor.chunks = (f->f == xor_blocks_wrapper ?
				  (MAX_XOR_BLOCKS + 1) : XOR_CHUNKS_MAX) + 1;

		while (rs->xor.chunks-- > 2) {
			speed = xor_speed(stripe);
			if (speed > speed_max) {
				speed_max = speed;
				chunks_max = rs->xor.chunks;
				f_max = f;
			}
		}
	}

	/* Memorize optimum parameters. */
	rs->xor.f = f_max;
	rs->xor.chunks = chunks_max;
	return speed_max;
}

/*
 * Allocate a RAID context (a RAID set)
 */
/* Structure for variable RAID parameters. */
struct variable_parms {
	int bandwidth;
	int bandwidth_parm;
	int chunk_size;
	int chunk_size_parm;
	int io_size;
	int io_size_parm;
	int stripes;
	int stripes_parm;
	int recover_io_size;
	int recover_io_size_parm;
	int raid_parms;
	int recovery;
	int recovery_stripes;
	int recovery_stripes_parm;
};

static struct raid_set *
context_alloc(struct raid_type *raid_type, struct variable_parms *p,
	      unsigned raid_devs, sector_t sectors_per_dev,
	      struct dm_target *ti, unsigned dl_parms, char **argv)
{
	int r;
	size_t len;
	sector_t region_size, ti_len;
	struct raid_set *rs = NULL;
	struct dm_dirty_log *dl;
	struct recover *rec;

	/*
	 * Create the dirty log
	 *
	 * We need to change length for the dirty log constructor,
	 * because we want an amount of regions for all stripes derived
	 * from the single device size, so that we can keep region
	 * size = 2^^n independant of the number of devices
	 */
	ti_len = ti->len;
	ti->len = sectors_per_dev;
	dl = dm_dirty_log_create(argv[0], ti, NULL, dl_parms, argv + 2);
	ti->len = ti_len;
	if (!dl)
		goto bad_dirty_log;

	/* Chunk size *must* be smaller than region size. */
	region_size = dl->type->get_region_size(dl);
	if (p->chunk_size > region_size)
		goto bad_chunk_size;

	/* Recover io size *must* be smaller than region size as well. */
	if (p->recover_io_size > region_size)
		goto bad_recover_io_size;

	/* Size and allocate the RAID set structure. */
	len = sizeof(*rs->data) + sizeof(*rs->dev);
	if (dm_array_too_big(sizeof(*rs), len, raid_devs))
		goto bad_array;

	len = sizeof(*rs) + raid_devs * len;
	rs = kzalloc(len, GFP_KERNEL);
	if (!rs)
		goto bad_alloc;

	rec = &rs->recover;
	atomic_set(&rs->io.in_process, 0);
	atomic_set(&rs->io.in_process_max, 0);
	rec->io_size = p->recover_io_size;

	/* Pointer to data array. */
	rs->data = (unsigned long **)
		   ((void *) rs->dev + raid_devs * sizeof(*rs->dev));
	rec->dl = dl;
	rs->set.raid_devs = raid_devs;
	rs->set.data_devs = raid_devs - raid_type->parity_devs;
	rs->set.raid_type = raid_type;

	rs->set.raid_parms = p->raid_parms;
	rs->set.chunk_size_parm = p->chunk_size_parm;
	rs->set.io_size_parm = p->io_size_parm;
	rs->sc.stripes_parm = p->stripes_parm;
	rec->io_size_parm = p->recover_io_size_parm;
	rec->bandwidth_parm = p->bandwidth_parm;
	rec->recovery = p->recovery;
	rec->recovery_stripes = p->recovery_stripes;

	/*
	 * Set chunk and io size and respective shifts
	 * (used to avoid divisions)
	 */
	rs->set.chunk_size = p->chunk_size;
	rs->set.chunk_shift = ffs(p->chunk_size) - 1;

	rs->set.io_size = p->io_size;
	rs->set.io_mask = p->io_size - 1;
	/* Mask to adjust address key in case io_size != chunk_size. */
	rs->set.io_inv_mask = (p->chunk_size - 1) & ~rs->set.io_mask;

	rs->set.sectors_per_dev = sectors_per_dev;

	rs->set.ei = -1;	/* Indicate no failed device. */
	atomic_set(&rs->set.failed_devs, 0);

	rs->ti = ti;

	atomic_set(rec->io_count + IO_WORK, 0);
	atomic_set(rec->io_count + IO_RECOVER, 0);

	/* Initialize io lock and queues. */
	mutex_init(&rs->io.in_lock);
	bio_list_init(&rs->io.in);
	bio_list_init(&rs->io.work);

	init_waitqueue_head(&rs->io.suspendq);	/* Suspend waiters (dm-io). */

	rec->nr_regions = dm_sector_div_up(sectors_per_dev, region_size);
	rec->rh = dm_region_hash_create(rs, dispatch_delayed_bios,
			wake_dummy, wake_do_raid, 0, p->recovery_stripes,
			dl, region_size, rec->nr_regions);
	if (IS_ERR(rec->rh))
		goto bad_rh;

	/* Initialize stripe cache. */
	r = sc_init(rs, p->stripes);
	if (r)
		goto bad_sc;

	/* REMOVEME: statistics. */
	stats_reset(rs);
	ClearRSDevelStats(rs);	/* Disnable development status. */
	return rs;

bad_dirty_log:
	TI_ERR_RET("Error creating dirty log", ERR_PTR(-ENOMEM));

bad_chunk_size:
	dm_dirty_log_destroy(dl);
	TI_ERR_RET("Chunk size larger than region size", ERR_PTR(-EINVAL));

bad_recover_io_size:
	dm_dirty_log_destroy(dl);
	TI_ERR_RET("Recover stripe io size larger than region size",
			ERR_PTR(-EINVAL));

bad_array:
	dm_dirty_log_destroy(dl);
	TI_ERR_RET("Arry too big", ERR_PTR(-EINVAL));

bad_alloc:
	dm_dirty_log_destroy(dl);
	TI_ERR_RET("Cannot allocate raid context", ERR_PTR(-ENOMEM));

bad_rh:
	dm_dirty_log_destroy(dl);
	ti->error = DM_MSG_PREFIX "Error creating dirty region hash";
	goto free_rs;

bad_sc:
	dm_region_hash_destroy(rec->rh); /* Destroys dirty log too. */
	sc_exit(&rs->sc);
	ti->error = DM_MSG_PREFIX "Error creating stripe cache";
free_rs:
	kfree(rs);
	return ERR_PTR(-ENOMEM);
}

/* Free a RAID context (a RAID set). */
static void context_free(struct raid_set *rs, unsigned p)
{
	while (p--)
		dm_put_device(rs->ti, rs->dev[p].dev);

	sc_exit(&rs->sc);
	dm_region_hash_destroy(rs->recover.rh); /* Destroys dirty log too. */
	kfree(rs);
}

/* Create work queue and initialize delayed work. */
static int rs_workqueue_init(struct raid_set *rs)
{
	struct dm_target *ti = rs->ti;

	rs->io.wq = create_singlethread_workqueue(DAEMON);
	if (!rs->io.wq)
		TI_ERR_RET("failed to create " DAEMON, -ENOMEM);

	INIT_DELAYED_WORK(&rs->io.dws_do_raid, do_raid);
	INIT_WORK(&rs->io.ws_do_table_event, do_table_event);
	return 0;
}

/* Return pointer to raid_type structure for raid name. */
static struct raid_type *get_raid_type(char *name)
{
	struct raid_type *r = ARRAY_END(raid_types);

	while (r-- > raid_types) {
		if (!strcmp(r->name, name))
			return r;
	}

	return NULL;
}

/* FIXME: factor out to dm core. */
static int multiple(sector_t a, sector_t b, sector_t *n)
{
	sector_t r = a;

	sector_div(r, b);
	*n = r;
	return a == r * b;
}

/* Log RAID set information to kernel log. */
static void rs_log(struct raid_set *rs, unsigned speed)
{
	unsigned p;
	char buf[BDEVNAME_SIZE];

	for (p = 0; p < rs->set.raid_devs; p++)
		DMINFO("/dev/%s is raid disk %u%s",
				bdevname(rs->dev[p].dev->bdev, buf), p,
				(p == rs->set.pi) ? " (parity)" : "");

	DMINFO("%d/%d/%d sectors chunk/io/recovery size, %u stripes\n"
	       "algorithm \"%s\", %u chunks with %uMB/s\n"
	       "%s set with net %u/%u devices",
	       rs->set.chunk_size, rs->set.io_size, rs->recover.io_size,
	       atomic_read(&rs->sc.stripes),
	       rs->xor.f->name, rs->xor.chunks, mbpers(rs, speed),
	       rs->set.raid_type->descr, rs->set.data_devs, rs->set.raid_devs);
}

/* Get all devices and offsets. */
static int dev_parms(struct raid_set *rs, char **argv, int *p)
{
	struct dm_target *ti = rs->ti;

	for (*p = 0; *p < rs->set.raid_devs; (*p)++, argv += 2) {
		int r;
		unsigned long long tmp;
		struct raid_dev *dev = rs->dev + *p;

		/* Get offset and device. */
		if (sscanf(argv[1], "%llu", &tmp) != 1 ||
		    tmp > rs->set.sectors_per_dev)
			TI_ERR("Invalid RAID device offset parameter");

		dev->start = tmp;
		r = dm_get_device(ti, *argv, dm_table_get_mode(ti->table), &dev->dev);
		if (r)
			TI_ERR_RET("RAID device lookup failure", r);

		r = raid_dev_lookup(rs, dev);
		if (r != -ENODEV && r < *p) {
			(*p)++;	/* Ensure dm_put_device() on actual device. */
			TI_ERR_RET("Duplicate RAID device", -ENXIO);
		}
	}

	return 0;
}

/* Set recovery bandwidth. */
static void
recover_set_bandwidth(struct raid_set *rs, unsigned bandwidth)
{
	rs->recover.bandwidth = bandwidth;
	rs->recover.bandwidth_work = 100 / bandwidth;
}

/* Handle variable number of RAID parameters. */
static int get_raid_variable_parms(struct dm_target *ti, char **argv, 
				   struct variable_parms *vp)
{
	int p, value;
	struct {
		int action; /* -1: skip, 0: no pwer2 check, 1: power2 check */
		char *errmsg;
		int min, max;
		int *var, *var2, *var3;
	} argctr[] = {
		{ 1,
		  "Invalid chunk size; must be -1 or 2^^n and <= 16384",
 		  IO_SIZE_MIN, CHUNK_SIZE_MAX,
		  &vp->chunk_size_parm, &vp->chunk_size, &vp->io_size },
		{ 0,
		  "Invalid number of stripes: must be -1 or >= 8 and <= 16384",
		  STRIPES_MIN, STRIPES_MAX,
		  &vp->stripes_parm, &vp->stripes, NULL },
		{ 1,
		  "Invalid io size; must -1 or >= 8, 2^^n and less equal "
		  "min(BIO_MAX_SECTORS/2, chunk size)",
		  IO_SIZE_MIN, 0, /* Needs to be updated in loop below. */
		  &vp->io_size_parm, &vp->io_size, NULL },
		{ 1,
		  "Invalid recovery io size; must be -1 or "
		  "2^^n and less equal BIO_MAX_SECTORS/2",
		  RECOVER_IO_SIZE_MIN, BIO_MAX_SECTORS / 2,
		  &vp->recover_io_size_parm, &vp->recover_io_size, NULL },
		{ 0,
		  "Invalid recovery bandwidth percentage; "
		  "must be -1 or > 0 and <= 100",
		  BANDWIDTH_MIN, BANDWIDTH_MAX,
		  &vp->bandwidth_parm, &vp->bandwidth, NULL },
		/* Handle sync argument seperately in loop. */
		{ -1,
		  "Invalid recovery switch; must be \"sync\" or \"nosync\"" },
		{ 0,
		  "Invalid number of recovery stripes;"
		  "must be -1, > 0 and <= 16384",
		  RECOVERY_STRIPES_MIN, RECOVERY_STRIPES_MAX,
		  &vp->recovery_stripes_parm, &vp->recovery_stripes, NULL },
	}, *varp;

	/* Fetch # of variable raid parameters. */
	if (sscanf(*(argv++), "%d", &vp->raid_parms) != 1 ||
	    !range_ok(vp->raid_parms, 0, 7))
		TI_ERR("Bad variable raid parameters number");

	/* Preset variable RAID parameters. */
	vp->chunk_size = CHUNK_SIZE_DEFAULT;
	vp->io_size = IO_SIZE_DEFAULT;
	vp->stripes = STRIPES_DEFAULT;
	vp->recover_io_size = RECOVER_IO_SIZE_DEFAULT;
	vp->bandwidth = BANDWIDTH_DEFAULT;
	vp->recovery = 1;
	vp->recovery_stripes = RECOVERY_STRIPES_DEFAULT;

	/* Walk the array of argument constraints for all given ones. */
	for (p = 0, varp = argctr; p < vp->raid_parms; p++, varp++) {
	     	BUG_ON(varp >= ARRAY_END(argctr));

		/* Special case for "[no]sync" string argument. */
		if (varp->action < 0) {
			if (!strcmp(*argv, "sync"))
				;
			else if (!strcmp(*argv, "nosync"))
				vp->recovery = 0;
			else
				TI_ERR(varp->errmsg);

			argv++;
			continue;
		}

		/*
		 * Special case for io_size depending
		 * on previously set chunk size.
		 */
		if (p == 2)
			varp->max = min(BIO_MAX_SECTORS / 2, vp->chunk_size);

		if (sscanf(*(argv++), "%d", &value) != 1 ||
		    (value != -1 &&
		     ((varp->action && !POWER_OF_2(value)) ||
		      !range_ok(value, varp->min, varp->max))))
			TI_ERR(varp->errmsg);

		*varp->var = value;
		if (value != -1) {
			if (varp->var2)
				*varp->var2 = value;
			if (varp->var3)
				*varp->var3 = value;
		}
	}

	return 0;
}

/* Parse optional locking parameters. */
static int get_raid_locking_parms(struct dm_target *ti, char **argv,
				  int *locking_parms,
				  struct dm_raid45_locking_type **locking_type)
{
	if (!strnicmp(argv[0], "locking", strlen(argv[0]))) {
		char *lckstr = argv[1];
		size_t lcksz = strlen(lckstr);

		if (!strnicmp(lckstr, "none", lcksz)) {
			*locking_type = &locking_none;
			*locking_parms = 2;
		} else if (!strnicmp(lckstr, "cluster", lcksz)) {
			DMERR("locking type \"%s\" not yet implemented",
			      lckstr);
			return -EINVAL;
		} else {
			DMERR("unknown locking type \"%s\"", lckstr);
			return -EINVAL;
		}
	}

	*locking_parms = 0;
	*locking_type = &locking_none;
	return 0;
}

/* Set backing device read ahead properties of RAID set. */
static void rs_set_read_ahead(struct raid_set *rs,
			      unsigned sectors, unsigned stripes)
{
	unsigned ra_pages = dm_div_up(sectors, SECTORS_PER_PAGE);
	struct mapped_device *md = dm_table_get_md(rs->ti->table);
	struct backing_dev_info *bdi = &dm_disk(md)->queue->backing_dev_info;

	/* Set read-ahead for the RAID set and the component devices. */
	if (ra_pages) {
		unsigned p = rs->set.raid_devs;

		bdi->ra_pages = stripes * ra_pages * rs->set.data_devs;

		while (p--) {
			struct request_queue *q =
				bdev_get_queue(rs->dev[p].dev->bdev);

			q->backing_dev_info.ra_pages = ra_pages;
		}
	}

	dm_put(md);
}

/* Set congested function. */
static void rs_set_congested_fn(struct raid_set *rs)
{
	struct mapped_device *md = dm_table_get_md(rs->ti->table);
	struct backing_dev_info *bdi = &dm_disk(md)->queue->backing_dev_info;

	/* Set congested function and data. */
	bdi->congested_fn = rs_congested;
	bdi->congested_data = rs;
	dm_put(md);
}

/*
 * Construct a RAID4/5 mapping:
 *
 * log_type #log_params <log_params> \
 * raid_type [#parity_dev] #raid_variable_params <raid_params> \
 * [locking "none"/"cluster"]
 * #raid_devs #dev_to_initialize [<dev_path> <offset>]{3,}
 *
 * log_type = "core"/"disk",
 * #log_params = 1-3 (1-2 for core dirty log type, 3 for disk dirty log only)
 * log_params = [dirty_log_path] region_size [[no]sync])
 *
 * raid_type = "raid4", "raid5_la", "raid5_ra", "raid5_ls", "raid5_rs"
 *
 * #parity_dev = N if raid_type = "raid4"
 * o N = -1: pick default = last device
 * o N >= 0 and < #raid_devs: parity device index
 *
 * #raid_variable_params = 0-7; raid_params (-1 = default):
 *   [chunk_size [#stripes [io_size [recover_io_size \
 *    [%recovery_bandwidth [recovery_switch [#recovery_stripes]]]]]]]
 *   o chunk_size (unit to calculate drive addresses; must be 2^^n, > 8
 *     and <= CHUNK_SIZE_MAX)
 *   o #stripes is number of stripes allocated to stripe cache
 *     (must be > 1 and < STRIPES_MAX)
 *   o io_size (io unit size per device in sectors; must be 2^^n and > 8)
 *   o recover_io_size (io unit size per device for recovery in sectors;
 must be 2^^n, > SECTORS_PER_PAGE and <= region_size)
 *   o %recovery_bandwith is the maximum amount spend for recovery during
 *     application io (1-100%)
 *   o recovery switch = [sync|nosync]
 *   o #recovery_stripes is the number of recovery stripes used for
 *     parallel recovery of the RAID set
 * If raid_variable_params = 0, defaults will be used.
 * Any raid_variable_param can be set to -1 to apply a default
 *
 * #raid_devs = N (N >= 3)
 *
 * #dev_to_initialize = N
 * -1: initialize parity on all devices
 * >= 0 and < #raid_devs: initialize raid_path; used to force reconstruction
 * of a failed devices content after replacement
 *
 * <dev_path> = device_path (eg, /dev/sdd1)
 * <offset>   = begin at offset on <dev_path>
 *
 */
#define	MIN_PARMS	13
static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
{
	int dev_to_init, dl_parms, i, locking_parms,
	    parity_parm, pi = -1, r, raid_devs;
	unsigned speed;
	sector_t tmp, sectors_per_dev;
	struct dm_raid45_locking_type *locking;
	struct raid_set *rs;
	struct raid_type *raid_type;
	struct variable_parms parms;

	/* Ensure minimum number of parameters. */
	if (argc < MIN_PARMS)
		TI_ERR("Not enough parameters");

	/* Fetch # of dirty log parameters. */
	if (sscanf(argv[1], "%d", &dl_parms) != 1 ||
	    !range_ok(dl_parms, 1, 4711)) /* ;-) */
		TI_ERR("Bad dirty log parameters number");

	/* Check raid_type. */
	raid_type = get_raid_type(argv[dl_parms + 2]);
	if (!raid_type)
		TI_ERR("Bad raid type");

	/* In case of RAID4, parity drive is selectable. */
	parity_parm = !!(raid_type->level == raid4);

	/* Handle variable number of RAID parameters. */
	r = get_raid_variable_parms(ti, argv + dl_parms + parity_parm + 3,
				    &parms);
	if (r)
		return r;

	/* Handle any locking parameters. */
	r = get_raid_locking_parms(ti,
				   argv + dl_parms + parity_parm +
				   parms.raid_parms + 4,
				   &locking_parms, &locking);
	if (r)
		return r;

	/* # of raid devices. */
	i = dl_parms + parity_parm + parms.raid_parms + locking_parms + 4;
	if (sscanf(argv[i], "%d", &raid_devs) != 1 ||
	    raid_devs < raid_type->minimal_devs)
		TI_ERR("Invalid number of raid devices");

	/* In case of RAID4, check parity drive index is in limits. */
	if (raid_type->level == raid4) {
		/* Fetch index of parity device. */
		if (sscanf(argv[dl_parms + 3], "%d", &pi) != 1 ||
		    (pi != -1 && !range_ok(pi, 0, raid_devs - 1)))
			TI_ERR("Invalid RAID4 parity device index");
	}

	/*
	 * Index of device to initialize starts at 0
	 *
	 * o -1 -> don't initialize a selected device;
	 *         initialize parity conforming to algorithm
	 * o 0..raid_devs-1 -> initialize respective device
	 *   (used for reconstruction of a replaced device)
	 */
	if (sscanf(argv[dl_parms + parity_parm + parms.raid_parms +
		   locking_parms + 5], "%d", &dev_to_init) != 1 ||
	    !range_ok(dev_to_init, -1, raid_devs - 1))
		TI_ERR("Invalid number for raid device to initialize");

	/* Check # of raid device arguments. */
	if (argc - dl_parms - parity_parm - parms.raid_parms - 6 !=
	    2 * raid_devs)
		TI_ERR("Wrong number of raid device/offset arguments");

	/*
	 * Check that the table length is devisable
	 * w/o rest by (raid_devs - parity_devs)
	 */
	if (!multiple(ti->len, raid_devs - raid_type->parity_devs,
		      &sectors_per_dev))
		TI_ERR("Target length not divisible by number of data devices");

	/*
	 * Check that the device size is
	 * devisable w/o rest by chunk size
	 */
	if (!multiple(sectors_per_dev, parms.chunk_size, &tmp))
		TI_ERR("Device length not divisible by chunk_size");

	/****************************************************************
	 * Now that we checked the constructor arguments ->
	 * let's allocate the RAID set
	 ****************************************************************/
	rs = context_alloc(raid_type, &parms, raid_devs, sectors_per_dev,
			   ti, dl_parms, argv);
	if (IS_ERR(rs))
		return PTR_ERR(rs);


	rs->set.dev_to_init = rs->set.dev_to_init_parm = dev_to_init;
	rs->set.pi = rs->set.pi_parm = pi;

	/* Set RAID4 parity drive index. */
	if (raid_type->level == raid4)
		rs->set.pi = (pi == -1) ? rs->set.data_devs : pi;

	recover_set_bandwidth(rs, parms.bandwidth);

	/* Use locking type to lock stripe access. */
	rs->locking = locking;

	/* Get the device/offset tupels. */
	argv += dl_parms + 6 + parity_parm + parms.raid_parms;
	r = dev_parms(rs, argv, &i);
	if (r)
		goto err;

	/* Set backing device information (eg. read ahead). */
	rs_set_read_ahead(rs, 2 * rs->set.chunk_size, 4 /* stripes */);
	rs_set_congested_fn(rs); /* Set congested function. */
	SetRSCheckOverwrite(rs); /* Allow chunk overwrite checks. */
	speed = xor_optimize(rs); /* Select best xor algorithm. */

	/* Set for recovery of any nosync regions. */
	if (parms.recovery)
		SetRSRecover(rs);
	else {
		/*
		 * Need to free recovery stripe(s) here in case
		 * of nosync, because xor_optimize uses one.
		 */
		set_start_recovery(rs);
		set_end_recovery(rs);
		stripe_recover_free(rs);
	}

	/*
	 * Make sure that dm core only hands maximum io size
	 * length down and pays attention to io boundaries.
	 */
	ti->split_io = rs->set.io_size;
	ti->private = rs;

	/* Initialize work queue to handle this RAID set's io. */
	r = rs_workqueue_init(rs);
	if (r)
		goto err;

	rs_log(rs, speed); /* Log information about RAID set. */
	return 0;

err:
	context_free(rs, i);
	return r;
}

/*
 * Destruct a raid mapping
 */
static void raid_dtr(struct dm_target *ti)
{
	struct raid_set *rs = ti->private;

	destroy_workqueue(rs->io.wq);
	context_free(rs, rs->set.raid_devs);
}

/* Raid mapping function. */
static int raid_map(struct dm_target *ti, struct bio *bio,
		    union map_info *map_context)
{
	/* I don't want to waste stripe cache capacity. */
	if (bio_rw(bio) == READA)
		return -EIO;
	else {
		struct raid_set *rs = ti->private;

		/*
		 * Get io reference to be waiting for to drop
		 * to zero on device suspension/destruction.
		 */
		io_get(rs);
		bio->bi_sector -= ti->begin;	/* Remap sector. */

		/* Queue io to RAID set. */
		mutex_lock(&rs->io.in_lock);
		bio_list_add(&rs->io.in, bio);
		mutex_unlock(&rs->io.in_lock);

		/* Wake daemon to process input list. */
		wake_do_raid(rs);

		/* REMOVEME: statistics. */
		atomic_inc(rs->stats + (bio_data_dir(bio) == READ ?
				        S_BIOS_READ : S_BIOS_WRITE));
		return DM_MAPIO_SUBMITTED;	/* Handle later. */
	}
}

/* Device suspend. */
static void raid_presuspend(struct dm_target *ti)
{
	struct raid_set *rs = ti->private;
	struct dm_dirty_log *dl = rs->recover.dl;

	SetRSSuspend(rs);

	if (RSRecover(rs))
		dm_rh_stop_recovery(rs->recover.rh);

	cancel_delayed_work(&rs->io.dws_do_raid);
	flush_workqueue(rs->io.wq);
	wait_ios(rs);	/* Wait for completion of all ios being processed. */

	if (dl->type->presuspend && dl->type->presuspend(dl))
		/* FIXME: need better error handling. */
		DMWARN("log presuspend failed");
}

static void raid_postsuspend(struct dm_target *ti)
{
	struct raid_set *rs = ti->private;
	struct dm_dirty_log *dl = rs->recover.dl;

	if (dl->type->postsuspend && dl->type->postsuspend(dl))
		/* FIXME: need better error handling. */
		DMWARN("log postsuspend failed");

}

/* Device resume. */
static void raid_resume(struct dm_target *ti)
{
	struct raid_set *rs = ti->private;
	struct recover *rec = &rs->recover;
	struct dm_dirty_log *dl = rec->dl;

	if (dl->type->resume && dl->type->resume(dl))
		/* Resume dirty log. */
		/* FIXME: need better error handling. */
		DMWARN("log resume failed");

	rec->nr_regions_to_recover =
		rec->nr_regions - dl->type->get_sync_count(dl);

	/* Restart any unfinished recovery. */
	if (RSRecover(rs)) {
		set_start_recovery(rs);
		dm_rh_start_recovery(rec->rh);
	}

	ClearRSSuspend(rs);
	wake_do_raid(rs);
}

/* Return stripe cache size. */
static unsigned sc_size(struct raid_set *rs)
{
	return to_sector(atomic_read(&rs->sc.stripes) *
			 (sizeof(struct stripe) +
			  (sizeof(struct stripe_chunk) +
			   (sizeof(struct page_list) +
			    to_bytes(rs->set.io_size) *
			    rs->set.raid_devs)) +
			  (rs->recover.end_jiffies ?
			   0 : rs->recover.recovery_stripes *
			   to_bytes(rs->set.raid_devs * rs->recover.io_size))));
}

/* REMOVEME: status output for development. */
static void raid_devel_stats(struct dm_target *ti, char *result,
			     unsigned *size, unsigned maxlen)
{
	unsigned sz = *size;
	unsigned long j;
	char buf[BDEVNAME_SIZE], *p;
	struct stats_map *sm;
	struct raid_set *rs = ti->private;
	struct recover *rec = &rs->recover;
	struct timespec ts;

	DMEMIT("%s %s %u\n", version, rs->xor.f->name, rs->xor.chunks);
	DMEMIT("act_ios=%d ", io_ref(rs));
	DMEMIT("act_ios_max=%d\n", atomic_read(&rs->io.in_process_max));
	DMEMIT("act_stripes=%d ", sc_active(&rs->sc));
	DMEMIT("act_stripes_max=%d\n",
	       atomic_read(&rs->sc.active_stripes_max));

	for (sm = stats_map; sm < ARRAY_END(stats_map); sm++)
		DMEMIT("%s%d", sm->str, atomic_read(rs->stats + sm->type));

	DMEMIT(" checkovr=%s\n", RSCheckOverwrite(rs) ? "on" : "off");
	DMEMIT("sc=%u/%u/%u/%u/%u/%u/%u\n", rs->set.chunk_size,
	       atomic_read(&rs->sc.stripes), rs->set.io_size,
	       rec->recovery_stripes, rec->io_size, rs->sc.hash.buckets,
	       sc_size(rs));

	j = (rec->end_jiffies ? rec->end_jiffies : jiffies) -
	    rec->start_jiffies;
	jiffies_to_timespec(j, &ts);
	sprintf(buf, "%ld.%ld", ts.tv_sec, ts.tv_nsec);
	p = strchr(buf, '.');
	p[3] = 0;

	DMEMIT("rg=%llu/%llu/%llu/%u %s\n",
	       (unsigned long long) rec->nr_regions_recovered,
	       (unsigned long long) rec->nr_regions_to_recover,
	       (unsigned long long) rec->nr_regions, rec->bandwidth, buf);

	*size = sz;
}

static int raid_status(struct dm_target *ti, status_type_t type,
		       char *result, unsigned maxlen)
{
	unsigned p, sz = 0;
	char buf[BDEVNAME_SIZE];
	struct raid_set *rs = ti->private;
	int raid_parms[] = {
		rs->set.chunk_size_parm,
		rs->sc.stripes_parm,
		rs->set.io_size_parm,
		rs->recover.io_size_parm,
		rs->recover.bandwidth_parm,
		-2,
		rs->recover.recovery_stripes,
	};

	switch (type) {
	case STATUSTYPE_INFO:
		/* REMOVEME: statistics. */
		if (RSDevelStats(rs))
			raid_devel_stats(ti, result, &sz, maxlen);

		DMEMIT("%u ", rs->set.raid_devs);

		for (p = 0; p < rs->set.raid_devs; p++)
			DMEMIT("%s ",
			       format_dev_t(buf, rs->dev[p].dev->bdev->bd_dev));

		DMEMIT("1 ");
		for (p = 0; p < rs->set.raid_devs; p++) {
			DMEMIT("%c", !DevFailed(rs->dev + p) ? 'A' : 'D');

			if (p == rs->set.pi)
				DMEMIT("p");

			if (rs->set.dev_to_init == p)
				DMEMIT("i");
		}

		break;
	case STATUSTYPE_TABLE:
		sz = rs->recover.dl->type->status(rs->recover.dl, type,
						  result, maxlen);
		DMEMIT("%s %u ", rs->set.raid_type->name,
		       rs->set.raid_parms);

		for (p = 0; p < rs->set.raid_parms; p++) {
			if (raid_parms[p] > -2)
				DMEMIT("%d ", raid_parms[p]);
			else
				DMEMIT("%s ", rs->recover.recovery ?
					      "sync" : "nosync");
		}

		DMEMIT("%u %d ", rs->set.raid_devs, rs->set.dev_to_init);

		for (p = 0; p < rs->set.raid_devs; p++)
			DMEMIT("%s %llu ",
			       format_dev_t(buf, rs->dev[p].dev->bdev->bd_dev),
			       (unsigned long long) rs->dev[p].start);
	}

	return 0;
}

/*
 * Message interface
 */
enum raid_msg_actions {
	act_bw,			/* Recovery bandwidth switch. */
	act_dev,		/* Device failure switch. */
	act_overwrite,		/* Stripe overwrite check. */
	act_stats,		/* Development statistics switch. */
	act_sc,			/* Stripe cache switch. */

	act_on,			/* Set entity on. */
	act_off,		/* Set entity off. */
	act_reset,		/* Reset entity. */

	act_set = act_on,	/* Set # absolute. */
	act_grow = act_off,	/* Grow # by an amount. */
	act_shrink = act_reset,	/* Shrink # by an amount. */
};

/* Turn a delta into an absolute value. */
static int _absolute(unsigned long action, int act, int r)
{
	/* Make delta absolute. */
	if (test_bit(act_set, &action))
		;
	else if (test_bit(act_grow, &action))
		r += act;
	else if (test_bit(act_shrink, &action))
		r = act - r;
	else
		r = -EINVAL;

	return r;
}

 /* Change recovery io bandwidth. */
static int bandwidth_change(struct dm_msg *msg, void *context)
{
	struct raid_set *rs = context;
	int act = rs->recover.bandwidth;
	int bandwidth = DM_MSG_INT_ARG(msg);

	if (range_ok(bandwidth, BANDWIDTH_MIN, BANDWIDTH_MAX)) {
		/* Make delta bandwidth absolute. */
		bandwidth = _absolute(msg->action, act, bandwidth);

		/* Check range. */
		if (range_ok(bandwidth, BANDWIDTH_MIN, BANDWIDTH_MAX)) {
			recover_set_bandwidth(rs, bandwidth);
			return 0;
		}
	}

	set_bit(dm_msg_ret_arg, &msg->ret);
	set_bit(dm_msg_ret_inval, &msg->ret);
	return -EINVAL;
}

/* Set/reset development feature flags. */
static int devel_flags(struct dm_msg *msg, void *context)
{
	struct raid_set *rs = context;

	if (test_bit(act_on, &msg->action))
		return test_and_set_bit(msg->spec->parm,
					&rs->io.flags) ? -EPERM : 0;
	else if (test_bit(act_off, &msg->action))
		return test_and_clear_bit(msg->spec->parm,
					  &rs->io.flags) ? 0 : -EPERM;
	else if (test_bit(act_reset, &msg->action)) {
		if (test_bit(act_stats, &msg->action)) {
			stats_reset(rs);
			goto on;
		} else if (test_bit(act_overwrite, &msg->action)) {
on:
			set_bit(msg->spec->parm, &rs->io.flags);
			return 0;
		}
	}

	return -EINVAL;
}

/* Resize the stripe cache. */
static int sc_resize(struct dm_msg *msg, void *context)
{
	int act, stripes;
	struct raid_set *rs = context;

	/* Deny permission in case the daemon is still resizing!. */
	if (atomic_read(&rs->sc.stripes_to_set))
		return -EPERM;

	stripes = DM_MSG_INT_ARG(msg);
	if (stripes > 0) {
		act = atomic_read(&rs->sc.stripes);

		/* Make delta stripes absolute. */
		stripes = _absolute(msg->action, act, stripes);

		/*
		 * Check range and that the # of stripes changes.
		 * We leave the resizing to the wroker.
		 */
		if (range_ok(stripes, STRIPES_MIN, STRIPES_MAX) &&
		    stripes != atomic_read(&rs->sc.stripes)) {
			atomic_set(&rs->sc.stripes_to_set, stripes);
			wake_do_raid(rs);
			return 0;
		}
	}

	set_bit(dm_msg_ret_arg, &msg->ret);
	set_bit(dm_msg_ret_inval, &msg->ret);
	return -EINVAL;
}

/* Parse the RAID message action. */
/*
 * 'ba[ndwidth] {se[t],g[row],sh[rink]} #'	# e.g 'ba se 50'
 * "o[verwrite]  {on,of[f],r[eset]}'		# e.g. 'o of'
 * 'sta[tistics] {on,of[f],r[eset]}'		# e.g. 'stat of'
 * 'str[ipecache] {se[t],g[row],sh[rink]} #'	# e.g. 'stripe set 1024'
 *
 */
static int raid_message(struct dm_target *ti, unsigned argc, char **argv)
{
	/* Variables to store the parsed parameters im. */
	static int i[2];
	static unsigned long *i_arg[] = {
		(unsigned long *) i + 0,
		(unsigned long *) i + 1,
	};

	/* Declare all message option strings. */
	static char *str_sgs[] = { "set", "grow", "shrink" };
	static char *str_oor[] = { "on", "off", "reset" };

	/* Declare all actions. */
	static unsigned long act_sgs[] = { act_set, act_grow, act_shrink };
	static unsigned long act_oor[] = { act_on, act_off, act_reset };

	/* Bandwidth option. */
	static struct dm_message_option bw_opt = { 3, str_sgs, act_sgs };
	static struct dm_message_argument bw_args = {
		1, i_arg, { dm_msg_int_t }
	};

	static struct dm_message_argument null_args = {
		0, NULL, { dm_msg_int_t }
	};

	/* Overwrite and statistics option. */
	static struct dm_message_option ovr_stats_opt = { 3, str_oor, act_oor };

	/* Sripecache option. */
	static struct dm_message_option stripe_opt = { 3, str_sgs, act_sgs };

	/* Declare messages. */
	static struct dm_msg_spec specs[] = {
		{ "bandwidth", act_bw, &bw_opt, &bw_args,
		  0, bandwidth_change },
		{ "overwrite", act_overwrite, &ovr_stats_opt, &null_args,
		  RS_CHECK_OVERWRITE, devel_flags },
		{ "statistics", act_stats, &ovr_stats_opt, &null_args,
		  RS_DEVEL_STATS, devel_flags },
		{ "stripecache", act_sc, &stripe_opt, &bw_args,
		  0, sc_resize },
	};

	/* The message for the parser. */
	struct dm_msg msg = {
		.num_specs = ARRAY_SIZE(specs),
		.specs = specs,
	};

	return dm_message_parse(TARGET, &msg, ti->private, argc, argv);
}
/*
 * END message interface
 */

static struct target_type raid_target = {
	.name = "raid45",
	.version = {1, 0, 0},
	.module = THIS_MODULE,
	.ctr = raid_ctr,
	.dtr = raid_dtr,
	.map = raid_map,
	.presuspend = raid_presuspend,
	.postsuspend = raid_postsuspend,
	.resume = raid_resume,
	.status = raid_status,
	.message = raid_message,
};

static void init_exit(const char *bad_msg, const char *good_msg, int r)
{
	if (r)
		DMERR("Failed to %sregister target [%d]", bad_msg, r);
	else
		DMINFO("%s %s", good_msg, version);
}

static int __init dm_raid_init(void)
{
	int r = dm_register_target(&raid_target);

	init_exit("", "initialized", r);
	return r;
}

static void __exit dm_raid_exit(void)
{
	dm_unregister_target(&raid_target);
	init_exit("un", "exit", 0);
}

/* Module hooks. */
module_init(dm_raid_init);
module_exit(dm_raid_exit);

MODULE_DESCRIPTION(DM_NAME " raid4/5 target");
MODULE_AUTHOR("Heinz Mauelshagen <hjm@redhat.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("dm-raid4");
MODULE_ALIAS("dm-raid5");