/* spi.c - SPI based Bluetooth driver */ /* * Copyright (c) 2017 Linaro Ltd. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #define BT_DBG_ENABLED IS_ENABLED(CONFIG_BLUETOOTH_DEBUG_HCI_DRIVER) #include #include #define HCI_CMD 0x01 #define HCI_ACL 0x02 #define HCI_SCO 0x03 #define HCI_EVT 0x04 /* Special Values */ #define SPI_WRITE 0x0A #define SPI_READ 0x0B #define READY_NOW 0x02 #define EVT_BLUE_INITIALIZED 0x01 /* Offsets */ #define STATUS_HEADER_READY 0 #define STATUS_HEADER_TOREAD 3 #define PACKET_TYPE 0 #define EVT_HEADER_TYPE 0 #define EVT_HEADER_EVENT 1 #define EVT_HEADER_SIZE 2 #define EVT_VENDOR_CODE_LSB 3 #define EVT_VENDOR_CODE_MSB 4 #define CMD_OGF 1 #define CMD_OCF 2 #define GPIO_IRQ_PIN CONFIG_BLUETOOTH_SPI_IRQ_PIN #define GPIO_CS_PIN CONFIG_BLUETOOTH_SPI_CHIP_SELECT_PIN #define GPIO_RESET_PIN CONFIG_BLUETOOTH_SPI_RESET_PIN #define MAX_RX_MSG_LEN CONFIG_BLUETOOTH_SPI_RX_BUFFER_SIZE #define MAX_TX_MSG_LEN CONFIG_BLUETOOTH_SPI_TX_BUFFER_SIZE static struct device *spi_dev; static struct device *cs_dev; static struct device *irq_dev; static struct device *rst_dev; static struct gpio_callback gpio_cb; static K_SEM_DEFINE(sem_initialised, 0, 1); static K_SEM_DEFINE(sem_request, 0, 1); static K_SEM_DEFINE(sem_busy, 1, 1); static BT_STACK_NOINIT(rx_stack, 448); static struct spi_config spi_conf = { .config = SPI_WORD(8), .max_sys_freq = CONFIG_BLUETOOTH_SPI_MAX_CLK_FREQ, }; #if defined(CONFIG_BLUETOOTH_DEBUG_HCI_DRIVER) #include static inline void spi_dump_message(const uint8_t *pre, uint8_t *buf, uint8_t size) { uint8_t i, c; printk("%s (%d): ", pre, size); for (i = 0; i < size; i++) { c = buf[i]; printk("%x ", c); if (c >= 31 && c <= 126) { printk("[%c] ", c); } else { printk("[.] "); } } printk("\n"); } #else static inline void spi_dump_message(const uint8_t *pre, uint8_t *buf, uint8_t size) {} #endif static inline uint16_t bt_spi_get_cmd(uint8_t *txmsg) { return (txmsg[CMD_OCF] << 8) | txmsg[CMD_OGF]; } static inline uint16_t bt_spi_get_evt(uint8_t *rxmsg) { return (rxmsg[EVT_VENDOR_CODE_MSB] << 8) | rxmsg[EVT_VENDOR_CODE_LSB]; } static void bt_spi_isr(struct device *unused1, struct gpio_callback *unused2, unsigned int unused3) { k_sem_give(&sem_request); } static void bt_spi_handle_vendor_evt(uint8_t *rxmsg) { switch (bt_spi_get_evt(rxmsg)) { case EVT_BLUE_INITIALIZED: k_sem_give(&sem_initialised); default: break; } } static void bt_spi_rx_thread(void) { struct net_buf *buf; uint8_t header_master[5] = { SPI_READ, 0x00, 0x00, 0x00, 0x00 }; uint8_t header_slave[5]; uint8_t rxmsg[MAX_RX_MSG_LEN]; uint8_t dummy = 0xFF, size, i; struct bt_hci_acl_hdr acl_hdr; while (true) { k_sem_take(&sem_request, K_FOREVER); k_sem_take(&sem_busy, K_FOREVER); do { gpio_pin_write(cs_dev, GPIO_CS_PIN, 1); gpio_pin_write(cs_dev, GPIO_CS_PIN, 0); spi_transceive(spi_dev, header_master, 5, header_slave, 5); } while (header_slave[STATUS_HEADER_TOREAD] == 0 || header_slave[STATUS_HEADER_TOREAD] == 0xFF); size = header_slave[STATUS_HEADER_TOREAD]; for (i = 0; i < size; i++) { spi_transceive(spi_dev, &dummy, 1, &rxmsg[i], 1); } gpio_pin_write(cs_dev, GPIO_CS_PIN, 1); k_sem_give(&sem_busy); spi_dump_message("RX:ed", rxmsg, size); switch (rxmsg[PACKET_TYPE]) { case HCI_EVT: /* Vendor events are currently unsupported */ if (rxmsg[EVT_HEADER_EVENT] == BT_HCI_EVT_VENDOR) { bt_spi_handle_vendor_evt(rxmsg); continue; } buf = bt_buf_get_rx(K_FOREVER); bt_buf_set_type(buf, BT_BUF_EVT); net_buf_add_mem(buf, &rxmsg[1], rxmsg[EVT_HEADER_SIZE] + 2); break; case HCI_ACL: buf = bt_buf_get_rx(K_FOREVER); bt_buf_set_type(buf, BT_BUF_ACL_IN); memcpy(&acl_hdr, &rxmsg[1], sizeof(acl_hdr)); net_buf_add_mem(buf, &acl_hdr, sizeof(acl_hdr)); net_buf_add_mem(buf, &rxmsg[5], sys_le16_to_cpu(acl_hdr.len)); break; default: BT_ERR("Unknown BT buf type %d", rxmsg[0]); continue; } if (rxmsg[PACKET_TYPE] == HCI_EVT && bt_hci_evt_is_prio(rxmsg[EVT_HEADER_EVENT])) { bt_recv_prio(buf); } else { bt_recv(buf); } } } static int bt_spi_send(struct net_buf *buf) { uint8_t header[5] = { SPI_WRITE, 0x00, 0x00, 0x00, 0x00 }; uint8_t rxmsg[MAX_TX_MSG_LEN + 1]; /* Extra Byte to account for TYPE */ uint32_t pending; if (buf->len > MAX_TX_MSG_LEN) { BT_ERR("Message too long"); return -EINVAL; } /* Allow time for the read thread to handle interrupt */ while (true) { gpio_pin_read(irq_dev, GPIO_IRQ_PIN, &pending); if (!pending) { break; } k_sleep(1); } k_sem_take(&sem_busy, K_FOREVER); switch (bt_buf_get_type(buf)) { case BT_BUF_ACL_OUT: net_buf_push_u8(buf, HCI_ACL); break; case BT_BUF_CMD: net_buf_push_u8(buf, HCI_CMD); break; default: BT_ERR("Unsupported type"); k_sem_give(&sem_busy); return -EINVAL; } /* Poll sanity values until device has woken-up */ do { gpio_pin_write(cs_dev, GPIO_CS_PIN, 1); gpio_pin_write(cs_dev, GPIO_CS_PIN, 0); spi_transceive(spi_dev, header, 5, rxmsg, 5); /* * RX Header (rxmsg) must contain a sanity check Byte and size * information. If it does not contain BOTH then it is * sleeping or still in the initialisation stage (waking-up). */ } while (rxmsg[STATUS_HEADER_READY] != READY_NOW || (rxmsg[1] | rxmsg[2] | rxmsg[3] | rxmsg[4]) == 0); /* Transmit the message */ spi_transceive(spi_dev, buf->data, buf->len, rxmsg, buf->len); /* Deselect chip */ gpio_pin_write(cs_dev, GPIO_CS_PIN, 1); k_sem_give(&sem_busy); spi_dump_message("TX:ed", buf->data, buf->len); /* * Since a RESET has been requested, the chip will now restart. * Unfortunately the BlueNRG will reply with "reset received" but * since it does not send back a NOP, we have no way to tell when the * RESET has actually taken palce. Instead, we use the vendor command * EVT_BLUE_INITIALIZED as an indication that it is safe to proceed. */ if (bt_spi_get_cmd(buf->data) == BT_HCI_OP_RESET) { k_sem_take(&sem_initialised, K_FOREVER); } net_buf_unref(buf); return 0; } static int bt_spi_open(void) { /* Configure RST pin and hold BLE in Reset */ gpio_pin_configure(rst_dev, GPIO_RESET_PIN, GPIO_DIR_OUT | GPIO_PUD_PULL_UP); gpio_pin_write(rst_dev, GPIO_RESET_PIN, 0); spi_configure(spi_dev, &spi_conf); /* Configure the CS (Chip Select) pin */ gpio_pin_configure(cs_dev, GPIO_CS_PIN, GPIO_DIR_OUT | GPIO_PUD_PULL_UP); gpio_pin_write(cs_dev, GPIO_CS_PIN, 1); /* Configure IRQ pin and the IRQ call-back/handler */ gpio_pin_configure(irq_dev, GPIO_IRQ_PIN, GPIO_DIR_IN | GPIO_INT | GPIO_INT_EDGE | GPIO_INT_ACTIVE_HIGH); gpio_init_callback(&gpio_cb, bt_spi_isr, BIT(GPIO_IRQ_PIN)); if (gpio_add_callback(irq_dev, &gpio_cb)) { return -EINVAL; } if (gpio_pin_enable_callback(irq_dev, GPIO_IRQ_PIN)) { return -EINVAL; } /* Start RX thread */ k_thread_spawn(rx_stack, sizeof(rx_stack), (k_thread_entry_t)bt_spi_rx_thread, NULL, NULL, NULL, K_PRIO_COOP(7), 0, K_NO_WAIT); /* Take BLE out of reset */ gpio_pin_write(rst_dev, GPIO_RESET_PIN, 1); /* Device will let us know when it's ready */ k_sem_take(&sem_initialised, K_FOREVER); return 0; } static struct bt_hci_driver drv = { .name = "BT SPI", .bus = BT_HCI_DRIVER_BUS_SPI, .open = bt_spi_open, .send = bt_spi_send, }; static int _bt_spi_init(struct device *unused) { ARG_UNUSED(unused); spi_dev = device_get_binding(CONFIG_BLUETOOTH_SPI_DEV_NAME); if (!spi_dev) { BT_ERR("Failed to initialize SPI driver: %s", CONFIG_BLUETOOTH_SPI_DEV_NAME); return -EIO; } cs_dev = device_get_binding(CONFIG_BLUETOOTH_SPI_CHIP_SELECT_DEV_NAME); if (!cs_dev) { BT_ERR("Failed to initialize GPIO driver: %s", CONFIG_BLUETOOTH_SPI_CHIP_SELECT_DEV_NAME); return -EIO; } irq_dev = device_get_binding(CONFIG_BLUETOOTH_SPI_IRQ_DEV_NAME); if (!irq_dev) { BT_ERR("Failed to initialize GPIO driver: %s", CONFIG_BLUETOOTH_SPI_IRQ_DEV_NAME); return -EIO; } rst_dev = device_get_binding(CONFIG_BLUETOOTH_SPI_RESET_DEV_NAME); if (!rst_dev) { BT_ERR("Failed to initialize GPIO driver: %s", CONFIG_BLUETOOTH_SPI_RESET_DEV_NAME); return -EIO; } bt_hci_driver_register(&drv); return 0; } SYS_INIT(_bt_spi_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);