/* system clock support */ /* * Copyright (c) 1997-2015 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #ifdef CONFIG_SYS_CLOCK_EXISTS #ifdef _NON_OPTIMIZED_TICKS_PER_SEC #warning "non-optimized system clock frequency chosen: performance may suffer" #endif #endif #ifdef CONFIG_SYS_CLOCK_EXISTS int sys_clock_us_per_tick = 1000000 / sys_clock_ticks_per_sec; int sys_clock_hw_cycles_per_tick = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / sys_clock_ticks_per_sec; #if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME) int sys_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; #endif #else /* don't initialize to avoid division-by-zero error */ int sys_clock_us_per_tick; int sys_clock_hw_cycles_per_tick; #if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME) int sys_clock_hw_cycles_per_sec; #endif #endif /* updated by timer driver for tickless, stays at 1 for non-tickless */ int32_t _sys_idle_elapsed_ticks = 1; int64_t _sys_clock_tick_count; /** * * @brief Return the lower part of the current system tick count * * @return the current system tick count * */ uint32_t _tick_get_32(void) { return (uint32_t)_sys_clock_tick_count; } FUNC_ALIAS(_tick_get_32, sys_tick_get_32, uint32_t); uint32_t k_uptime_get_32(void) { return __ticks_to_ms(_tick_get_32()); } /** * * @brief Return the current system tick count * * @return the current system tick count * */ int64_t _tick_get(void) { int64_t tmp_sys_clock_tick_count; /* * Lock the interrupts when reading _sys_clock_tick_count 64-bit * variable. Some architectures (x86) do not handle 64-bit atomically, * so we have to lock the timer interrupt that causes change of * _sys_clock_tick_count */ unsigned int imask = irq_lock(); tmp_sys_clock_tick_count = _sys_clock_tick_count; irq_unlock(imask); return tmp_sys_clock_tick_count; } FUNC_ALIAS(_tick_get, sys_tick_get, int64_t); int64_t k_uptime_get(void) { return __ticks_to_ms(_tick_get()); } /** * * @brief Return number of ticks since a reference time * * This function is meant to be used in contained fragments of code. The first * call to it in a particular code fragment fills in a reference time variable * which then gets passed and updated every time the function is called. From * the second call on, the delta between the value passed to it and the current * tick count is the return value. Since the first call is meant to only fill in * the reference time, its return value should be discarded. * * Since a code fragment that wants to use sys_tick_delta() passes in its * own reference time variable, multiple code fragments can make use of this * function concurrently. * * e.g. * uint64_t reftime; * (void) sys_tick_delta(&reftime); /# prime it #/ * [do stuff] * x = sys_tick_delta(&reftime); /# how long since priming #/ * [do more stuff] * y = sys_tick_delta(&reftime); /# how long since [do stuff] #/ * * @return tick count since reference time; undefined for first invocation * * NOTE: We use inline function for both 64-bit and 32-bit functions. * Compiler optimizes out 64-bit result handling in 32-bit version. */ static ALWAYS_INLINE int64_t _nano_tick_delta(int64_t *reftime) { int64_t delta; int64_t saved; /* * Lock the interrupts when reading _sys_clock_tick_count 64-bit * variable. Some architectures (x86) do not handle 64-bit atomically, * so we have to lock the timer interrupt that causes change of * _sys_clock_tick_count */ unsigned int imask = irq_lock(); saved = _sys_clock_tick_count; irq_unlock(imask); delta = saved - (*reftime); *reftime = saved; return delta; } /** * * @brief Return number of ticks since a reference time * * @return tick count since reference time; undefined for first invocation */ int64_t sys_tick_delta(int64_t *reftime) { return _nano_tick_delta(reftime); } uint32_t sys_tick_delta_32(int64_t *reftime) { return (uint32_t)_nano_tick_delta(reftime); } int64_t k_uptime_delta(int64_t *reftime) { int64_t uptime, delta; uptime = k_uptime_get(); delta = uptime - *reftime; *reftime = uptime; return delta; } uint32_t k_uptime_delta_32(int64_t *reftime) { return (uint32_t)k_uptime_delta(reftime); } /* handle the expired timeouts in the nano timeout queue */ #ifdef CONFIG_SYS_CLOCK_EXISTS #include /* * Handle timeouts by dequeuing the expired ones from _timeout_q and queue * them on a local one, then doing the real handling from that queue. This * allows going through the second queue without needing to have the * interrupts locked since it is a local queue. Each expired timeout is marked * as _EXPIRED so that an ISR preempting us and releasing an object on which * a thread was timing out and expiredwill not give the object to that thread. * * Always called from interrupt level, and always only from the system clock * interrupt. */ volatile int _handling_timeouts; static inline void handle_timeouts(int32_t ticks) { sys_dlist_t expired; unsigned int key; /* init before locking interrupts */ sys_dlist_init(&expired); key = irq_lock(); struct _timeout *head = (struct _timeout *)sys_dlist_peek_head(&_timeout_q); K_DEBUG("head: %p, delta: %d\n", head, head ? head->delta_ticks_from_prev : -2112); if (!head) { irq_unlock(key); return; } head->delta_ticks_from_prev -= ticks; /* * Dequeue all expired timeouts from _timeout_q, relieving irq lock * pressure between each of them, allowing handling of higher priority * interrupts. We know that no new timeout will be prepended in front * of a timeout which delta is 0, since timeouts of 0 ticks are * prohibited. */ sys_dnode_t *next = &head->node; struct _timeout *timeout = (struct _timeout *)next; _handling_timeouts = 1; while (timeout && timeout->delta_ticks_from_prev == 0) { sys_dlist_remove(next); sys_dlist_append(&expired, next); timeout->delta_ticks_from_prev = _EXPIRED; irq_unlock(key); key = irq_lock(); next = sys_dlist_peek_head(&_timeout_q); timeout = (struct _timeout *)next; } irq_unlock(key); _handle_expired_timeouts(&expired); _handling_timeouts = 0; } #else #define handle_timeouts(ticks) do { } while ((0)) #endif #ifdef CONFIG_TIMESLICING int32_t _time_slice_elapsed; int32_t _time_slice_duration = CONFIG_TIMESLICE_SIZE; int _time_slice_prio_ceiling = CONFIG_TIMESLICE_PRIORITY; /* * Always called from interrupt level, and always only from the system clock * interrupt, thus: * - _current does not have to be protected, since it only changes at thread * level or when exiting a non-nested interrupt * - _time_slice_elapsed does not have to be protected, since it can only change * in this function and at thread level * - _time_slice_duration does not have to be protected, since it can only * change at thread level */ static void handle_time_slicing(int32_t ticks) { if (_time_slice_duration == 0) { return; } if (_is_prio_higher(_current->base.prio, _time_slice_prio_ceiling)) { return; } _time_slice_elapsed += __ticks_to_ms(ticks); if (_time_slice_elapsed >= _time_slice_duration) { unsigned int key; _time_slice_elapsed = 0; key = irq_lock(); _move_thread_to_end_of_prio_q(_current); irq_unlock(key); } } #else #define handle_time_slicing(ticks) do { } while (0) #endif /** * * @brief Announce a tick to the kernel * * This function is only to be called by the system clock timer driver when a * tick is to be announced to the kernel. It takes care of dequeuing the * timers that have expired and wake up the threads pending on them. * * @return N/A */ void _nano_sys_clock_tick_announce(int32_t ticks) { unsigned int key; K_DEBUG("ticks: %d\n", ticks); /* 64-bit value, ensure atomic access with irq lock */ key = irq_lock(); _sys_clock_tick_count += ticks; irq_unlock(key); handle_timeouts(ticks); /* time slicing is basically handled like just yet another timeout */ handle_time_slicing(ticks); }