/* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Kernel thread support * * This module provides general purpose thread support. */ #include #include #include #include #include #include #include #include #include extern struct _static_thread_data _static_thread_data_list_start[]; extern struct _static_thread_data _static_thread_data_list_end[]; #define _FOREACH_STATIC_THREAD(thread_data) \ for (struct _static_thread_data *thread_data = \ _static_thread_data_list_start; \ thread_data < _static_thread_data_list_end; \ thread_data++) #ifdef CONFIG_FP_SHARING static inline void _task_group_adjust(struct _static_thread_data *thread_data) { /* * set thread options corresponding to legacy FPU and SSE task groups * so thread spawns properly; EXE and SYS task groups need no adjustment */ if (thread_data->init_groups & K_TASK_GROUP_FPU) { thread_data->init_options |= K_FP_REGS; } #ifdef CONFIG_SSE if (thread_data->init_groups & K_TASK_GROUP_SSE) { thread_data->init_options |= K_SSE_REGS; } #endif /* CONFIG_SSE */ } #else #define _task_group_adjust(thread_data) do { } while (0) #endif /* CONFIG_FP_SHARING */ /* Legacy API */ #if defined(CONFIG_LEGACY_KERNEL) int sys_execution_context_type_get(void) { if (k_is_in_isr()) return NANO_CTX_ISR; if (_current->base.prio < 0) return NANO_CTX_FIBER; return NANO_CTX_TASK; } #endif int k_is_in_isr(void) { return _is_in_isr(); } /* * This function tags the current thread as essential to system operation. * Exceptions raised by this thread will be treated as a fatal system error. */ void _thread_essential_set(void) { _current->base.user_options |= K_ESSENTIAL; } /* * This function tags the current thread as not essential to system operation. * Exceptions raised by this thread may be recoverable. * (This is the default tag for a thread.) */ void _thread_essential_clear(void) { _current->base.user_options &= ~K_ESSENTIAL; } /* * This routine indicates if the current thread is an essential system thread. * * Returns non-zero if current thread is essential, zero if it is not. */ int _is_thread_essential(void) { return _current->base.user_options & K_ESSENTIAL; } void k_busy_wait(uint32_t usec_to_wait) { /* use 64-bit math to prevent overflow when multiplying */ uint32_t cycles_to_wait = (uint32_t)( (uint64_t)usec_to_wait * (uint64_t)sys_clock_hw_cycles_per_sec / (uint64_t)USEC_PER_SEC ); uint32_t start_cycles = k_cycle_get_32(); for (;;) { uint32_t current_cycles = k_cycle_get_32(); /* this handles the rollover on an unsigned 32-bit value */ if ((current_cycles - start_cycles) >= cycles_to_wait) { break; } } } #ifdef CONFIG_THREAD_CUSTOM_DATA void k_thread_custom_data_set(void *value) { _current->custom_data = value; } void *k_thread_custom_data_get(void) { return _current->custom_data; } #endif /* CONFIG_THREAD_CUSTOM_DATA */ #if defined(CONFIG_THREAD_MONITOR) /* * Remove a thread from the kernel's list of active threads. */ void _thread_monitor_exit(struct k_thread *thread) { unsigned int key = irq_lock(); if (thread == _kernel.threads) { _kernel.threads = _kernel.threads->next_thread; } else { struct k_thread *prev_thread; prev_thread = _kernel.threads; while (thread != prev_thread->next_thread) { prev_thread = prev_thread->next_thread; } prev_thread->next_thread = thread->next_thread; } irq_unlock(key); } #endif /* CONFIG_THREAD_MONITOR */ /* * Common thread entry point function (used by all threads) * * This routine invokes the actual thread entry point function and passes * it three arguments. It also handles graceful termination of the thread * if the entry point function ever returns. * * This routine does not return, and is marked as such so the compiler won't * generate preamble code that is only used by functions that actually return. */ FUNC_NORETURN void _thread_entry(void (*entry)(void *, void *, void *), void *p1, void *p2, void *p3) { entry(p1, p2, p3); #ifdef CONFIG_MULTITHREADING if (_is_thread_essential()) { _NanoFatalErrorHandler(_NANO_ERR_INVALID_TASK_EXIT, &_default_esf); } k_thread_abort(_current); #else for (;;) { k_cpu_idle(); } #endif /* * Compiler can't tell that k_thread_abort() won't return and issues a * warning unless we tell it that control never gets this far. */ CODE_UNREACHABLE; } #ifdef CONFIG_MULTITHREADING static void start_thread(struct k_thread *thread) { int key = irq_lock(); /* protect kernel queues */ _mark_thread_as_started(thread); if (_is_thread_ready(thread)) { _add_thread_to_ready_q(thread); if (_must_switch_threads()) { _Swap(key); return; } } irq_unlock(key); } #endif #ifdef CONFIG_MULTITHREADING static void schedule_new_thread(struct k_thread *thread, int32_t delay) { #ifdef CONFIG_SYS_CLOCK_EXISTS if (delay == 0) { start_thread(thread); } else { int32_t ticks = _TICK_ALIGN + _ms_to_ticks(delay); int key = irq_lock(); _add_thread_timeout(thread, NULL, ticks); irq_unlock(key); } #else ARG_UNUSED(delay); start_thread(thread); #endif } #endif #ifdef CONFIG_MULTITHREADING k_tid_t k_thread_spawn(char *stack, size_t stack_size, void (*entry)(void *, void *, void*), void *p1, void *p2, void *p3, int prio, uint32_t options, int32_t delay) { __ASSERT(!_is_in_isr(), ""); struct k_thread *new_thread = (struct k_thread *)stack; _new_thread(stack, stack_size, entry, p1, p2, p3, prio, options); schedule_new_thread(new_thread, delay); return new_thread; } #endif int k_thread_cancel(k_tid_t tid) { struct k_thread *thread = tid; int key = irq_lock(); if (_has_thread_started(thread) || !_is_thread_timeout_active(thread)) { irq_unlock(key); return -EINVAL; } _abort_thread_timeout(thread); _thread_monitor_exit(thread); irq_unlock(key); return 0; } static inline int is_in_any_group(struct _static_thread_data *thread_data, uint32_t groups) { return !!(thread_data->init_groups & groups); } void _k_thread_group_op(uint32_t groups, void (*func)(struct k_thread *)) { unsigned int key; __ASSERT(!_is_in_isr(), ""); _sched_lock(); /* Invoke func() on each static thread in the specified group set. */ _FOREACH_STATIC_THREAD(thread_data) { if (is_in_any_group(thread_data, groups)) { key = irq_lock(); func(thread_data->thread); irq_unlock(key); } } /* * If the current thread is still in a ready state, then let the * "unlock scheduler" code determine if any rescheduling is needed. */ if (_is_thread_ready(_current)) { k_sched_unlock(); return; } /* The current thread is no longer in a ready state--reschedule. */ key = irq_lock(); _sched_unlock_no_reschedule(); _Swap(key); } void _k_thread_single_start(struct k_thread *thread) { _mark_thread_as_started(thread); if (_is_thread_ready(thread)) { _add_thread_to_ready_q(thread); } } void _k_thread_single_suspend(struct k_thread *thread) { if (_is_thread_ready(thread)) { _remove_thread_from_ready_q(thread); } _mark_thread_as_suspended(thread); } void k_thread_suspend(struct k_thread *thread) { unsigned int key = irq_lock(); _k_thread_single_suspend(thread); if (thread == _current) { _Swap(key); } else { irq_unlock(key); } } void _k_thread_single_resume(struct k_thread *thread) { _mark_thread_as_not_suspended(thread); if (_is_thread_ready(thread)) { _add_thread_to_ready_q(thread); } } void k_thread_resume(struct k_thread *thread) { unsigned int key = irq_lock(); _k_thread_single_resume(thread); _reschedule_threads(key); } void _k_thread_single_abort(struct k_thread *thread) { if (thread->fn_abort != NULL) { thread->fn_abort(); } if (_is_thread_ready(thread)) { _remove_thread_from_ready_q(thread); } else { if (_is_thread_pending(thread)) { _unpend_thread(thread); } if (_is_thread_timeout_active(thread)) { _abort_thread_timeout(thread); } } _mark_thread_as_dead(thread); } #ifdef CONFIG_MULTITHREADING void _init_static_threads(void) { unsigned int key; _FOREACH_STATIC_THREAD(thread_data) { _task_group_adjust(thread_data); _new_thread( thread_data->init_stack, thread_data->init_stack_size, thread_data->init_entry, thread_data->init_p1, thread_data->init_p2, thread_data->init_p3, thread_data->init_prio, thread_data->init_options); thread_data->thread->init_data = thread_data; } _sched_lock(); #if defined(CONFIG_LEGACY_KERNEL) /* Start all (legacy) threads that are part of the EXE task group */ _k_thread_group_op(K_TASK_GROUP_EXE, _k_thread_single_start); #endif /* * Non-legacy static threads may be started immediately or after a * previously specified delay. Even though the scheduler is locked, * ticks can still be delivered and processed. Lock interrupts so * that the countdown until execution begins from the same tick. * * Note that static threads defined using the legacy API have a * delay of K_FOREVER. */ key = irq_lock(); _FOREACH_STATIC_THREAD(thread_data) { if (thread_data->init_delay != K_FOREVER) { schedule_new_thread(thread_data->thread, thread_data->init_delay); } } irq_unlock(key); k_sched_unlock(); } #endif void _init_thread_base(struct _thread_base *thread_base, int priority, uint32_t initial_state, unsigned int options) { /* k_q_node is initialized upon first insertion in a list */ thread_base->user_options = (uint8_t)options; thread_base->thread_state = (uint8_t)initial_state; thread_base->prio = priority; thread_base->sched_locked = 0; /* swap_data does not need to be initialized */ _init_thread_timeout(thread_base); } uint32_t _k_thread_group_mask_get(struct k_thread *thread) { struct _static_thread_data *thread_data = thread->init_data; return thread_data->init_groups; } void _k_thread_group_join(uint32_t groups, struct k_thread *thread) { struct _static_thread_data *thread_data = thread->init_data; thread_data->init_groups |= groups; } void _k_thread_group_leave(uint32_t groups, struct k_thread *thread) { struct _static_thread_data *thread_data = thread->init_data; thread_data->init_groups &= groups; } /* legacy API */ #if defined(CONFIG_LEGACY_KERNEL) void task_start(ktask_t task) { int key = irq_lock(); _k_thread_single_start(task); _reschedule_threads(key); } #endif