aboutsummaryrefslogtreecommitdiff
path: root/fs/btrfs
diff options
context:
space:
mode:
authorChris Mason <chris.mason@fusionio.com>2013-02-20 14:06:05 -0500
committerChris Mason <chris.mason@fusionio.com>2013-02-20 14:06:05 -0500
commite942f883bc6651d50be139477baf6fb0eed3d5bb (patch)
treee1d19783e9c8b42198a69c17c9719fb90f302847 /fs/btrfs
parentb2c6b3e0611c58fbeb6b9c0892b6249f7bdfaf6b (diff)
parent0e4e02636611dbf89a2f36320a32054f9936d6cb (diff)
Merge branch 'raid56-experimental' into for-linus-3.9
Signed-off-by: Chris Mason <chris.mason@fusionio.com> Conflicts: fs/btrfs/ctree.h fs/btrfs/extent-tree.c fs/btrfs/inode.c fs/btrfs/volumes.c
Diffstat (limited to 'fs/btrfs')
-rw-r--r--fs/btrfs/Kconfig3
-rw-r--r--fs/btrfs/Makefile2
-rw-r--r--fs/btrfs/compression.c4
-rw-r--r--fs/btrfs/ctree.h44
-rw-r--r--fs/btrfs/delayed-ref.h9
-rw-r--r--fs/btrfs/disk-io.c62
-rw-r--r--fs/btrfs/disk-io.h7
-rw-r--r--fs/btrfs/extent-tree.c156
-rw-r--r--fs/btrfs/extent_io.c40
-rw-r--r--fs/btrfs/extent_io.h2
-rw-r--r--fs/btrfs/free-space-cache.c50
-rw-r--r--fs/btrfs/inode.c18
-rw-r--r--fs/btrfs/raid56.c2080
-rw-r--r--fs/btrfs/raid56.h51
-rw-r--r--fs/btrfs/scrub.c8
-rw-r--r--fs/btrfs/transaction.c9
-rw-r--r--fs/btrfs/volumes.c380
-rw-r--r--fs/btrfs/volumes.h9
18 files changed, 2814 insertions, 120 deletions
diff --git a/fs/btrfs/Kconfig b/fs/btrfs/Kconfig
index d33f01c08b6..5f583c8a36d 100644
--- a/fs/btrfs/Kconfig
+++ b/fs/btrfs/Kconfig
@@ -6,6 +6,9 @@ config BTRFS_FS
select ZLIB_DEFLATE
select LZO_COMPRESS
select LZO_DECOMPRESS
+ select RAID6_PQ
+ select XOR_BLOCKS
+
help
Btrfs is a new filesystem with extents, writable snapshotting,
support for multiple devices and many more features.
diff --git a/fs/btrfs/Makefile b/fs/btrfs/Makefile
index 7df3e0f0ee5..3932224f99e 100644
--- a/fs/btrfs/Makefile
+++ b/fs/btrfs/Makefile
@@ -8,7 +8,7 @@ btrfs-y += super.o ctree.o extent-tree.o print-tree.o root-tree.o dir-item.o \
extent_io.o volumes.o async-thread.o ioctl.o locking.o orphan.o \
export.o tree-log.o free-space-cache.o zlib.o lzo.o \
compression.o delayed-ref.o relocation.o delayed-inode.o scrub.o \
- reada.o backref.o ulist.o qgroup.o send.o dev-replace.o
+ reada.o backref.o ulist.o qgroup.o send.o dev-replace.o raid56.o
btrfs-$(CONFIG_BTRFS_FS_POSIX_ACL) += acl.o
btrfs-$(CONFIG_BTRFS_FS_CHECK_INTEGRITY) += check-integrity.o
diff --git a/fs/btrfs/compression.c b/fs/btrfs/compression.c
index 94ab2f80e7e..15b94089abc 100644
--- a/fs/btrfs/compression.c
+++ b/fs/btrfs/compression.c
@@ -372,7 +372,7 @@ int btrfs_submit_compressed_write(struct inode *inode, u64 start,
page = compressed_pages[pg_index];
page->mapping = inode->i_mapping;
if (bio->bi_size)
- ret = io_tree->ops->merge_bio_hook(page, 0,
+ ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
PAGE_CACHE_SIZE,
bio, 0);
else
@@ -655,7 +655,7 @@ int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
page->index = em_start >> PAGE_CACHE_SHIFT;
if (comp_bio->bi_size)
- ret = tree->ops->merge_bio_hook(page, 0,
+ ret = tree->ops->merge_bio_hook(READ, page, 0,
PAGE_CACHE_SIZE,
comp_bio, 0);
else
diff --git a/fs/btrfs/ctree.h b/fs/btrfs/ctree.h
index 1679051f4d3..3dcedfe4f75 100644
--- a/fs/btrfs/ctree.h
+++ b/fs/btrfs/ctree.h
@@ -506,6 +506,7 @@ struct btrfs_super_block {
#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5)
#define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6)
+#define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7)
#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
#define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL
@@ -515,6 +516,7 @@ struct btrfs_super_block {
BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
+ BTRFS_FEATURE_INCOMPAT_RAID56 | \
BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
/*
@@ -956,6 +958,8 @@ struct btrfs_dev_replace_item {
#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
+#define BTRFS_BLOCK_GROUP_RAID5 (1 << 7)
+#define BTRFS_BLOCK_GROUP_RAID6 (1 << 8)
#define BTRFS_BLOCK_GROUP_RESERVED BTRFS_AVAIL_ALLOC_BIT_SINGLE
enum btrfs_raid_types {
@@ -964,6 +968,8 @@ enum btrfs_raid_types {
BTRFS_RAID_DUP,
BTRFS_RAID_RAID0,
BTRFS_RAID_SINGLE,
+ BTRFS_RAID_RAID5,
+ BTRFS_RAID_RAID6,
BTRFS_NR_RAID_TYPES
};
@@ -973,6 +979,8 @@ enum btrfs_raid_types {
#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
BTRFS_BLOCK_GROUP_RAID1 | \
+ BTRFS_BLOCK_GROUP_RAID5 | \
+ BTRFS_BLOCK_GROUP_RAID6 | \
BTRFS_BLOCK_GROUP_DUP | \
BTRFS_BLOCK_GROUP_RAID10)
/*
@@ -1197,6 +1205,10 @@ struct btrfs_block_group_cache {
u64 flags;
u64 sectorsize;
u64 cache_generation;
+
+ /* for raid56, this is a full stripe, without parity */
+ unsigned long full_stripe_len;
+
unsigned int ro:1;
unsigned int dirty:1;
unsigned int iref:1;
@@ -1242,6 +1254,23 @@ enum btrfs_orphan_cleanup_state {
ORPHAN_CLEANUP_DONE = 2,
};
+/* used by the raid56 code to lock stripes for read/modify/write */
+struct btrfs_stripe_hash {
+ struct list_head hash_list;
+ wait_queue_head_t wait;
+ spinlock_t lock;
+};
+
+/* used by the raid56 code to lock stripes for read/modify/write */
+struct btrfs_stripe_hash_table {
+ struct list_head stripe_cache;
+ spinlock_t cache_lock;
+ int cache_size;
+ struct btrfs_stripe_hash table[];
+};
+
+#define BTRFS_STRIPE_HASH_TABLE_BITS 11
+
/* fs_info */
struct reloc_control;
struct btrfs_device;
@@ -1341,6 +1370,13 @@ struct btrfs_fs_info {
struct mutex cleaner_mutex;
struct mutex chunk_mutex;
struct mutex volume_mutex;
+
+ /* this is used during read/modify/write to make sure
+ * no two ios are trying to mod the same stripe at the same
+ * time
+ */
+ struct btrfs_stripe_hash_table *stripe_hash_table;
+
/*
* this protects the ordered operations list only while we are
* processing all of the entries on it. This way we make
@@ -1423,6 +1459,8 @@ struct btrfs_fs_info {
struct btrfs_workers flush_workers;
struct btrfs_workers endio_workers;
struct btrfs_workers endio_meta_workers;
+ struct btrfs_workers endio_raid56_workers;
+ struct btrfs_workers rmw_workers;
struct btrfs_workers endio_meta_write_workers;
struct btrfs_workers endio_write_workers;
struct btrfs_workers endio_freespace_worker;
@@ -3490,9 +3528,9 @@ int btrfs_writepages(struct address_space *mapping,
struct writeback_control *wbc);
int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
struct btrfs_root *new_root, u64 new_dirid);
-int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
- size_t size, struct bio *bio, unsigned long bio_flags);
-
+int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
+ size_t size, struct bio *bio,
+ unsigned long bio_flags);
int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
int btrfs_readpage(struct file *file, struct page *page);
void btrfs_evict_inode(struct inode *inode);
diff --git a/fs/btrfs/delayed-ref.h b/fs/btrfs/delayed-ref.h
index 7939149f8f2..f75fcaf79ae 100644
--- a/fs/btrfs/delayed-ref.h
+++ b/fs/btrfs/delayed-ref.h
@@ -132,6 +132,15 @@ struct btrfs_delayed_ref_root {
unsigned long num_heads_ready;
/*
+ * bumped when someone is making progress on the delayed
+ * refs, so that other procs know they are just adding to
+ * contention intead of helping
+ */
+ atomic_t procs_running_refs;
+ atomic_t ref_seq;
+ wait_queue_head_t wait;
+
+ /*
* set when the tree is flushing before a transaction commit,
* used by the throttling code to decide if new updates need
* to be run right away
diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c
index 779b401cd95..eb7c1430852 100644
--- a/fs/btrfs/disk-io.c
+++ b/fs/btrfs/disk-io.c
@@ -46,6 +46,7 @@
#include "check-integrity.h"
#include "rcu-string.h"
#include "dev-replace.h"
+#include "raid56.h"
#ifdef CONFIG_X86
#include <asm/cpufeature.h>
@@ -640,8 +641,15 @@ err:
btree_readahead_hook(root, eb, eb->start, ret);
}
- if (ret)
+ if (ret) {
+ /*
+ * our io error hook is going to dec the io pages
+ * again, we have to make sure it has something
+ * to decrement
+ */
+ atomic_inc(&eb->io_pages);
clear_extent_buffer_uptodate(eb);
+ }
free_extent_buffer(eb);
out:
return ret;
@@ -655,6 +663,7 @@ static int btree_io_failed_hook(struct page *page, int failed_mirror)
eb = (struct extent_buffer *)page->private;
set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
eb->read_mirror = failed_mirror;
+ atomic_dec(&eb->io_pages);
if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
btree_readahead_hook(root, eb, eb->start, -EIO);
return -EIO; /* we fixed nothing */
@@ -671,17 +680,23 @@ static void end_workqueue_bio(struct bio *bio, int err)
end_io_wq->work.flags = 0;
if (bio->bi_rw & REQ_WRITE) {
- if (end_io_wq->metadata == 1)
+ if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
btrfs_queue_worker(&fs_info->endio_meta_write_workers,
&end_io_wq->work);
- else if (end_io_wq->metadata == 2)
+ else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
btrfs_queue_worker(&fs_info->endio_freespace_worker,
&end_io_wq->work);
+ else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
+ btrfs_queue_worker(&fs_info->endio_raid56_workers,
+ &end_io_wq->work);
else
btrfs_queue_worker(&fs_info->endio_write_workers,
&end_io_wq->work);
} else {
- if (end_io_wq->metadata)
+ if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
+ btrfs_queue_worker(&fs_info->endio_raid56_workers,
+ &end_io_wq->work);
+ else if (end_io_wq->metadata)
btrfs_queue_worker(&fs_info->endio_meta_workers,
&end_io_wq->work);
else
@@ -696,6 +711,7 @@ static void end_workqueue_bio(struct bio *bio, int err)
* 0 - if data
* 1 - if normal metadta
* 2 - if writing to the free space cache area
+ * 3 - raid parity work
*/
int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
int metadata)
@@ -2179,6 +2195,12 @@ int open_ctree(struct super_block *sb,
init_waitqueue_head(&fs_info->transaction_blocked_wait);
init_waitqueue_head(&fs_info->async_submit_wait);
+ ret = btrfs_alloc_stripe_hash_table(fs_info);
+ if (ret) {
+ err = -ENOMEM;
+ goto fail_alloc;
+ }
+
__setup_root(4096, 4096, 4096, 4096, tree_root,
fs_info, BTRFS_ROOT_TREE_OBJECTID);
@@ -2349,6 +2371,12 @@ int open_ctree(struct super_block *sb,
btrfs_init_workers(&fs_info->endio_meta_write_workers,
"endio-meta-write", fs_info->thread_pool_size,
&fs_info->generic_worker);
+ btrfs_init_workers(&fs_info->endio_raid56_workers,
+ "endio-raid56", fs_info->thread_pool_size,
+ &fs_info->generic_worker);
+ btrfs_init_workers(&fs_info->rmw_workers,
+ "rmw", fs_info->thread_pool_size,
+ &fs_info->generic_worker);
btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
fs_info->thread_pool_size,
&fs_info->generic_worker);
@@ -2367,6 +2395,8 @@ int open_ctree(struct super_block *sb,
*/
fs_info->endio_workers.idle_thresh = 4;
fs_info->endio_meta_workers.idle_thresh = 4;
+ fs_info->endio_raid56_workers.idle_thresh = 4;
+ fs_info->rmw_workers.idle_thresh = 2;
fs_info->endio_write_workers.idle_thresh = 2;
fs_info->endio_meta_write_workers.idle_thresh = 2;
@@ -2383,6 +2413,8 @@ int open_ctree(struct super_block *sb,
ret |= btrfs_start_workers(&fs_info->fixup_workers);
ret |= btrfs_start_workers(&fs_info->endio_workers);
ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
+ ret |= btrfs_start_workers(&fs_info->rmw_workers);
+ ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
ret |= btrfs_start_workers(&fs_info->endio_write_workers);
ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
@@ -2726,6 +2758,8 @@ fail_sb_buffer:
btrfs_stop_workers(&fs_info->workers);
btrfs_stop_workers(&fs_info->endio_workers);
btrfs_stop_workers(&fs_info->endio_meta_workers);
+ btrfs_stop_workers(&fs_info->endio_raid56_workers);
+ btrfs_stop_workers(&fs_info->rmw_workers);
btrfs_stop_workers(&fs_info->endio_meta_write_workers);
btrfs_stop_workers(&fs_info->endio_write_workers);
btrfs_stop_workers(&fs_info->endio_freespace_worker);
@@ -2747,6 +2781,7 @@ fail_bdi:
fail_srcu:
cleanup_srcu_struct(&fs_info->subvol_srcu);
fail:
+ btrfs_free_stripe_hash_table(fs_info);
btrfs_close_devices(fs_info->fs_devices);
return err;
@@ -3094,11 +3129,16 @@ int btrfs_calc_num_tolerated_disk_barrier_failures(
((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
== 0)))
num_tolerated_disk_barrier_failures = 0;
- else if (num_tolerated_disk_barrier_failures > 1
- &&
- (flags & (BTRFS_BLOCK_GROUP_RAID1 |
- BTRFS_BLOCK_GROUP_RAID10)))
- num_tolerated_disk_barrier_failures = 1;
+ else if (num_tolerated_disk_barrier_failures > 1) {
+ if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID10)) {
+ num_tolerated_disk_barrier_failures = 1;
+ } else if (flags &
+ BTRFS_BLOCK_GROUP_RAID5) {
+ num_tolerated_disk_barrier_failures = 2;
+ }
+ }
}
}
up_read(&sinfo->groups_sem);
@@ -3402,6 +3442,8 @@ int close_ctree(struct btrfs_root *root)
btrfs_stop_workers(&fs_info->workers);
btrfs_stop_workers(&fs_info->endio_workers);
btrfs_stop_workers(&fs_info->endio_meta_workers);
+ btrfs_stop_workers(&fs_info->endio_raid56_workers);
+ btrfs_stop_workers(&fs_info->rmw_workers);
btrfs_stop_workers(&fs_info->endio_meta_write_workers);
btrfs_stop_workers(&fs_info->endio_write_workers);
btrfs_stop_workers(&fs_info->endio_freespace_worker);
@@ -3424,6 +3466,8 @@ int close_ctree(struct btrfs_root *root)
bdi_destroy(&fs_info->bdi);
cleanup_srcu_struct(&fs_info->subvol_srcu);
+ btrfs_free_stripe_hash_table(fs_info);
+
return 0;
}
diff --git a/fs/btrfs/disk-io.h b/fs/btrfs/disk-io.h
index 305c33efb0e..034d7dc552b 100644
--- a/fs/btrfs/disk-io.h
+++ b/fs/btrfs/disk-io.h
@@ -25,6 +25,13 @@
#define BTRFS_SUPER_MIRROR_MAX 3
#define BTRFS_SUPER_MIRROR_SHIFT 12
+enum {
+ BTRFS_WQ_ENDIO_DATA = 0,
+ BTRFS_WQ_ENDIO_METADATA = 1,
+ BTRFS_WQ_ENDIO_FREE_SPACE = 2,
+ BTRFS_WQ_ENDIO_RAID56 = 3,
+};
+
static inline u64 btrfs_sb_offset(int mirror)
{
u64 start = 16 * 1024;
diff --git a/fs/btrfs/extent-tree.c b/fs/btrfs/extent-tree.c
index 5cd44e23959..b3ecca447dd 100644
--- a/fs/btrfs/extent-tree.c
+++ b/fs/btrfs/extent-tree.c
@@ -31,6 +31,7 @@
#include "print-tree.h"
#include "transaction.h"
#include "volumes.h"
+#include "raid56.h"
#include "locking.h"
#include "free-space-cache.h"
#include "math.h"
@@ -1852,6 +1853,8 @@ static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
*actual_bytes = discarded_bytes;
+ if (ret == -EOPNOTSUPP)
+ ret = 0;
return ret;
}
@@ -2440,6 +2443,16 @@ int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
return ret;
}
+static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
+ int count)
+{
+ int val = atomic_read(&delayed_refs->ref_seq);
+
+ if (val < seq || val >= seq + count)
+ return 1;
+ return 0;
+}
+
/*
* this starts processing the delayed reference count updates and
* extent insertions we have queued up so far. count can be
@@ -2474,6 +2487,44 @@ int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
delayed_refs = &trans->transaction->delayed_refs;
INIT_LIST_HEAD(&cluster);
+ if (count == 0) {
+ count = delayed_refs->num_entries * 2;
+ run_most = 1;
+ }
+
+ if (!run_all && !run_most) {
+ int old;
+ int seq = atomic_read(&delayed_refs->ref_seq);
+
+progress:
+ old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
+ if (old) {
+ DEFINE_WAIT(__wait);
+ if (delayed_refs->num_entries < 16348)
+ return 0;
+
+ prepare_to_wait(&delayed_refs->wait, &__wait,
+ TASK_UNINTERRUPTIBLE);
+
+ old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
+ if (old) {
+ schedule();
+ finish_wait(&delayed_refs->wait, &__wait);
+
+ if (!refs_newer(delayed_refs, seq, 256))
+ goto progress;
+ else
+ return 0;
+ } else {
+ finish_wait(&delayed_refs->wait, &__wait);
+ goto again;
+ }
+ }
+
+ } else {
+ atomic_inc(&delayed_refs->procs_running_refs);
+ }
+
again:
loops = 0;
spin_lock(&delayed_refs->lock);
@@ -2482,10 +2533,6 @@ again:
delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
#endif
- if (count == 0) {
- count = delayed_refs->num_entries * 2;
- run_most = 1;
- }
while (1) {
if (!(run_all || run_most) &&
delayed_refs->num_heads_ready < 64)
@@ -2508,9 +2555,12 @@ again:
btrfs_release_ref_cluster(&cluster);
spin_unlock(&delayed_refs->lock);
btrfs_abort_transaction(trans, root, ret);
+ atomic_dec(&delayed_refs->procs_running_refs);
return ret;
}
+ atomic_add(ret, &delayed_refs->ref_seq);
+
count -= min_t(unsigned long, ret, count);
if (count == 0)
@@ -2579,6 +2629,11 @@ again:
goto again;
}
out:
+ atomic_dec(&delayed_refs->procs_running_refs);
+ smp_mb();
+ if (waitqueue_active(&delayed_refs->wait))
+ wake_up(&delayed_refs->wait);
+
spin_unlock(&delayed_refs->lock);
assert_qgroups_uptodate(trans);
return 0;
@@ -3284,6 +3339,7 @@ u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
u64 num_devices = root->fs_info->fs_devices->rw_devices +
root->fs_info->fs_devices->missing_devices;
u64 target;
+ u64 tmp;
/*
* see if restripe for this chunk_type is in progress, if so
@@ -3300,30 +3356,32 @@ u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
}
spin_unlock(&root->fs_info->balance_lock);
+ /* First, mask out the RAID levels which aren't possible */
if (num_devices == 1)
- flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
+ flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID5);
+ if (num_devices < 3)
+ flags &= ~BTRFS_BLOCK_GROUP_RAID6;
if (num_devices < 4)
flags &= ~BTRFS_BLOCK_GROUP_RAID10;
- if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
- (flags & (BTRFS_BLOCK_GROUP_RAID1 |
- BTRFS_BLOCK_GROUP_RAID10))) {
- flags &= ~BTRFS_BLOCK_GROUP_DUP;
- }
+ tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
+ flags &= ~tmp;
- if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
- (flags & BTRFS_BLOCK_GROUP_RAID10)) {
- flags &= ~BTRFS_BLOCK_GROUP_RAID1;
- }
-
- if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
- ((flags & BTRFS_BLOCK_GROUP_RAID1) |
- (flags & BTRFS_BLOCK_GROUP_RAID10) |
- (flags & BTRFS_BLOCK_GROUP_DUP))) {
- flags &= ~BTRFS_BLOCK_GROUP_RAID0;
- }
+ if (tmp & BTRFS_BLOCK_GROUP_RAID6)
+ tmp = BTRFS_BLOCK_GROUP_RAID6;
+ else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
+ tmp = BTRFS_BLOCK_GROUP_RAID5;
+ else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
+ tmp = BTRFS_BLOCK_GROUP_RAID10;
+ else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
+ tmp = BTRFS_BLOCK_GROUP_RAID1;
+ else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
+ tmp = BTRFS_BLOCK_GROUP_RAID0;
- return extended_to_chunk(flags);
+ return extended_to_chunk(flags | tmp);
}
static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
@@ -3347,6 +3405,7 @@ static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
{
u64 flags;
+ u64 ret;
if (data)
flags = BTRFS_BLOCK_GROUP_DATA;
@@ -3355,7 +3414,8 @@ u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
else
flags = BTRFS_BLOCK_GROUP_METADATA;
- return get_alloc_profile(root, flags);
+ ret = get_alloc_profile(root, flags);
+ return ret;
}
/*
@@ -3530,8 +3590,10 @@ static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
{
u64 num_dev;
- if (type & BTRFS_BLOCK_GROUP_RAID10 ||
- type & BTRFS_BLOCK_GROUP_RAID0)
+ if (type & (BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6))
num_dev = root->fs_info->fs_devices->rw_devices;
else if (type & BTRFS_BLOCK_GROUP_RAID1)
num_dev = 2;
@@ -3706,7 +3768,9 @@ static int can_overcommit(struct btrfs_root *root,
/*
* If we have dup, raid1 or raid10 then only half of the free
- * space is actually useable.
+ * space is actually useable. For raid56, the space info used
+ * doesn't include the parity drive, so we don't have to
+ * change the math
*/
if (profile & (BTRFS_BLOCK_GROUP_DUP |
BTRFS_BLOCK_GROUP_RAID1 |
@@ -5539,10 +5603,14 @@ int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
return ret;
}
-static u64 stripe_align(struct btrfs_root *root, u64 val)
+static u64 stripe_align(struct btrfs_root *root,
+ struct btrfs_block_group_cache *cache,
+ u64 val, u64 num_bytes)
{
- u64 mask = ((u64)root->stripesize - 1);
- u64 ret = (val + mask) & ~mask;
+ u64 mask;
+ u64 ret;
+ mask = ((u64)root->stripesize - 1);
+ ret = (val + mask) & ~mask;
return ret;
}
@@ -5599,8 +5667,12 @@ int __get_raid_index(u64 flags)
return BTRFS_RAID_DUP;
else if (flags & BTRFS_BLOCK_GROUP_RAID0)
return BTRFS_RAID_RAID0;
- else
- return BTRFS_RAID_SINGLE;
+ else if (flags & BTRFS_BLOCK_GROUP_RAID5)
+ return BTRFS_RAID_RAID5;
+ else if (flags & BTRFS_BLOCK_GROUP_RAID6)
+ return BTRFS_RAID_RAID6;
+
+ return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
}
static int get_block_group_index(struct btrfs_block_group_cache *cache)
@@ -5743,6 +5815,8 @@ search:
if (!block_group_bits(block_group, data)) {
u64 extra = BTRFS_BLOCK_GROUP_DUP |
BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6 |
BTRFS_BLOCK_GROUP_RAID10;
/*
@@ -5771,6 +5845,7 @@ have_block_group:
* lets look there
*/
if (last_ptr) {
+ unsigned long aligned_cluster;
/*
* the refill lock keeps out other
* people trying to start a new cluster
@@ -5837,11 +5912,15 @@ refill_cluster:
goto unclustered_alloc;
}
+ aligned_cluster = max_t(unsigned long,
+ empty_cluster + empty_size,
+ block_group->full_stripe_len);
+
/* allocate a cluster in this block group */
ret = btrfs_find_space_cluster(trans, root,
block_group, last_ptr,
search_start, num_bytes,
- empty_cluster + empty_size);
+ aligned_cluster);
if (ret == 0) {
/*
* now pull our allocation out of this
@@ -5912,7 +5991,8 @@ unclustered_alloc:
goto loop;
}
checks:
- search_start = stripe_align(root, offset);
+ search_start = stripe_align(root, used_block_group,
+ offset, num_bytes);
/* move on to the next group */
if (search_start + num_bytes >
@@ -7284,6 +7364,7 @@ static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
root->fs_info->fs_devices->missing_devices;
stripped = BTRFS_BLOCK_GROUP_RAID0 |
+ BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
if (num_devices == 1) {
@@ -7837,7 +7918,9 @@ int btrfs_read_block_groups(struct btrfs_root *root)
btrfs_release_path(path);
cache->flags = btrfs_block_group_flags(&cache->item);
cache->sectorsize = root->sectorsize;
-
+ cache->full_stripe_len = btrfs_full_stripe_len(root,
+ &root->fs_info->mapping_tree,
+ found_key.objectid);
btrfs_init_free_space_ctl(cache);
/*
@@ -7891,6 +7974,8 @@ int btrfs_read_block_groups(struct btrfs_root *root)
if (!(get_alloc_profile(root, space_info->flags) &
(BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_RAID1 |
+ BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6 |
BTRFS_BLOCK_GROUP_DUP)))
continue;
/*
@@ -7966,6 +8051,9 @@ int btrfs_make_block_group(struct btrfs_trans_handle *trans,
cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
cache->sectorsize = root->sectorsize;
cache->fs_info = root->fs_info;
+ cache->full_stripe_len = btrfs_full_stripe_len(root,
+ &root->fs_info->mapping_tree,
+ chunk_offset);
atomic_set(&cache->count, 1);
spin_lock_init(&cache->lock);
diff --git a/fs/btrfs/extent_io.c b/fs/btrfs/extent_io.c
index 5c00d6aeae7..66f999b97cb 100644
--- a/fs/btrfs/extent_io.c
+++ b/fs/btrfs/extent_io.c
@@ -1895,13 +1895,11 @@ static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
if (ret)
err = ret;
- if (did_repair) {
- ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
- rec->start + rec->len - 1,
- EXTENT_DAMAGED, GFP_NOFS);
- if (ret && !err)
- err = ret;
- }
+ ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
+ rec->start + rec->len - 1,
+ EXTENT_DAMAGED, GFP_NOFS);
+ if (ret && !err)
+ err = ret;
kfree(rec);
return err;
@@ -1932,10 +1930,15 @@ int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
u64 map_length = 0;
u64 sector;
struct btrfs_bio *bbio = NULL;
+ struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
int ret;
BUG_ON(!mirror_num);
+ /* we can't repair anything in raid56 yet */
+ if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
+ return 0;
+
bio = bio_alloc(GFP_NOFS, 1);
if (!bio)
return -EIO;
@@ -2052,6 +2055,7 @@ static int clean_io_failure(u64 start, struct page *page)
failrec->failed_mirror);
did_repair = !ret;
}
+ ret = 0;
}
out:
@@ -2487,13 +2491,13 @@ static int __must_check submit_one_bio(int rw, struct bio *bio,
return ret;
}
-static int merge_bio(struct extent_io_tree *tree, struct page *page,
+static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
unsigned long offset, size_t size, struct bio *bio,
unsigned long bio_flags)
{
int ret = 0;
if (tree->ops && tree->ops->merge_bio_hook)
- ret = tree->ops->merge_bio_hook(page, offset, size, bio,
+ ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
bio_flags);
BUG_ON(ret < 0);
return ret;
@@ -2528,7 +2532,7 @@ static int submit_extent_page(int rw, struct extent_io_tree *tree,
sector;
if (prev_bio_flags != bio_flags || !contig ||
- merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
+ merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
bio_add_page(bio, page, page_size, offset) < page_size) {
ret = submit_one_bio(rw, bio, mirror_num,
prev_bio_flags);
@@ -4162,6 +4166,7 @@ static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
static void check_buffer_tree_ref(struct extent_buffer *eb)
{
+ int refs;
/* the ref bit is tricky. We have to make sure it is set
* if we have the buffer dirty. Otherwise the
* code to free a buffer can end up dropping a dirty
@@ -4182,6 +4187,10 @@ static void check_buffer_tree_ref(struct extent_buffer *eb)
* So bump the ref count first, then set the bit. If someone
* beat us to it, drop the ref we added.
*/
+ refs = atomic_read(&eb->refs);
+ if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
+ return;
+
spin_lock(&eb->refs_lock);
if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
atomic_inc(&eb->refs);
@@ -4383,9 +4392,20 @@ static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
void free_extent_buffer(struct extent_buffer *eb)
{
+ int refs;
+ int old;
if (!eb)
return;
+ while (1) {
+ refs = atomic_read(&eb->refs);
+ if (refs <= 3)
+ break;
+ old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
+ if (old == refs)
+ return;
+ }
+
spin_lock(&eb->refs_lock);
if (atomic_read(&eb->refs) == 2 &&
test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
diff --git a/fs/btrfs/extent_io.h b/fs/btrfs/extent_io.h
index ff182322d11..dc81868d975 100644
--- a/fs/btrfs/extent_io.h
+++ b/fs/btrfs/extent_io.h
@@ -72,7 +72,7 @@ struct extent_io_ops {
int (*writepage_start_hook)(struct page *page, u64 start, u64 end);
int (*writepage_io_hook)(struct page *page, u64 start, u64 end);
extent_submit_bio_hook_t *submit_bio_hook;
- int (*merge_bio_hook)(struct page *page, unsigned long offset,
+ int (*merge_bio_hook)(int rw, struct page *page, unsigned long offset,
size_t size, struct bio *bio,
unsigned long bio_flags);
int (*readpage_io_failed_hook)(struct page *page, int failed_mirror);
diff --git a/fs/btrfs/free-space-cache.c b/fs/btrfs/free-space-cache.c
index c8090f18c21..1f84fc09c1a 100644
--- a/fs/btrfs/free-space-cache.c
+++ b/fs/btrfs/free-space-cache.c
@@ -1465,10 +1465,14 @@ static int search_bitmap(struct btrfs_free_space_ctl *ctl,
}
static struct btrfs_free_space *
-find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
+find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
+ unsigned long align)
{
struct btrfs_free_space *entry;
struct rb_node *node;
+ u64 ctl_off;
+ u64 tmp;
+ u64 align_off;
int ret;
if (!ctl->free_space_offset.rb_node)
@@ -1483,15 +1487,34 @@ find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
if (entry->bytes < *bytes)
continue;
+ /* make sure the space returned is big enough
+ * to match our requested alignment
+ */
+ if (*bytes >= align) {
+ ctl_off = entry->offset - ctl->start;
+ tmp = ctl_off + align - 1;;
+ do_div(tmp, align);
+ tmp = tmp * align + ctl->start;
+ align_off = tmp - entry->offset;
+ } else {
+ align_off = 0;
+ tmp = entry->offset;
+ }
+
+ if (entry->bytes < *bytes + align_off)
+ continue;
+
if (entry->bitmap) {
- ret = search_bitmap(ctl, entry, offset, bytes);
- if (!ret)
+ ret = search_bitmap(ctl, entry, &tmp, bytes);
+ if (!ret) {
+ *offset = tmp;
return entry;
+ }
continue;
}
- *offset = entry->offset;
- *bytes = entry->bytes;
+ *offset = tmp;
+ *bytes = entry->bytes - align_off;
return entry;
}
@@ -2101,9 +2124,12 @@ u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
struct btrfs_free_space *entry = NULL;
u64 bytes_search = bytes + empty_size;
u64 ret = 0;
+ u64 align_gap = 0;
+ u64 align_gap_len = 0;
spin_lock(&ctl->tree_lock);
- entry = find_free_space(ctl, &offset, &bytes_search);
+ entry = find_free_space(ctl, &offset, &bytes_search,
+ block_group->full_stripe_len);
if (!entry)
goto out;
@@ -2113,9 +2139,15 @@ u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
if (!entry->bytes)
free_bitmap(ctl, entry);
} else {
+
unlink_free_space(ctl, entry);
- entry->offset += bytes;
- entry->bytes -= bytes;
+ align_gap_len = offset - entry->offset;
+ align_gap = entry->offset;
+
+ entry->offset = offset + bytes;
+ WARN_ON(entry->bytes < bytes + align_gap_len);
+
+ entry->bytes -= bytes + align_gap_len;
if (!entry->bytes)
kmem_cache_free(btrfs_free_space_cachep, entry);
else
@@ -2125,6 +2157,8 @@ u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
out:
spin_unlock(&ctl->tree_lock);
+ if (align_gap_len)
+ __btrfs_add_free_space(ctl, align_gap, align_gap_len);
return ret;
}
diff --git a/fs/btrfs/inode.c b/fs/btrfs/inode.c
index 1aa98be54ce..4e6a11c2cfd 100644
--- a/fs/btrfs/inode.c
+++ b/fs/btrfs/inode.c
@@ -40,6 +40,7 @@
#include <linux/ratelimit.h>
#include <linux/mount.h>
#include <linux/btrfs.h>
+#include <linux/blkdev.h>
#include "compat.h"
#include "ctree.h"
#include "disk-io.h"
@@ -1605,7 +1606,7 @@ static void btrfs_clear_bit_hook(struct inode *inode,
* extent_io.c merge_bio_hook, this must check the chunk tree to make sure
* we don't create bios that span stripes or chunks
*/
-int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
+int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
size_t size, struct bio *bio,
unsigned long bio_flags)
{
@@ -1620,7 +1621,7 @@ int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
length = bio->bi_size;
map_length = length;
- ret = btrfs_map_block(root->fs_info, READ, logical,
+ ret = btrfs_map_block(root->fs_info, rw, logical,
&map_length, NULL, 0);
/* Will always return 0 with map_multi == NULL */
BUG_ON(ret < 0);
@@ -6464,19 +6465,24 @@ static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
int async_submit = 0;
map_length = orig_bio->bi_size;
- ret = btrfs_map_block(root->fs_info, READ, start_sector << 9,
+ ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
&map_length, NULL, 0);
if (ret) {
bio_put(orig_bio);
return -EIO;
}
-
if (map_length >= orig_bio->bi_size) {
bio = orig_bio;
goto submit;
}
- async_submit = 1;
+ /* async crcs make it difficult to collect full stripe writes. */
+ if (btrfs_get_alloc_profile(root, 1) &
+ (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
+ async_submit = 0;
+ else
+ async_submit = 1;
+
bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
if (!bio)
return -ENOMEM;
@@ -6518,7 +6524,7 @@ static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
bio->bi_end_io = btrfs_end_dio_bio;
map_length = orig_bio->bi_size;
- ret = btrfs_map_block(root->fs_info, READ,
+ ret = btrfs_map_block(root->fs_info, rw,
start_sector << 9,
&map_length, NULL, 0);
if (ret) {
diff --git a/fs/btrfs/raid56.c b/fs/btrfs/raid56.c
new file mode 100644
index 00000000000..e34e568534d
--- /dev/null
+++ b/fs/btrfs/raid56.c
@@ -0,0 +1,2080 @@
+/*
+ * Copyright (C) 2012 Fusion-io All rights reserved.
+ * Copyright (C) 2012 Intel Corp. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+#include <linux/sched.h>
+#include <linux/wait.h>
+#include <linux/bio.h>
+#include <linux/slab.h>
+#include <linux/buffer_head.h>
+#include <linux/blkdev.h>
+#include <linux/random.h>
+#include <linux/iocontext.h>
+#include <linux/capability.h>
+#include <linux/ratelimit.h>
+#include <linux/kthread.h>
+#include <linux/raid/pq.h>
+#include <linux/hash.h>
+#include <linux/list_sort.h>
+#include <linux/raid/xor.h>
+#include <asm/div64.h>
+#include "compat.h"
+#include "ctree.h"
+#include "extent_map.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "print-tree.h"
+#include "volumes.h"
+#include "raid56.h"
+#include "async-thread.h"
+#include "check-integrity.h"
+#include "rcu-string.h"
+
+/* set when additional merges to this rbio are not allowed */
+#define RBIO_RMW_LOCKED_BIT 1
+
+/*
+ * set when this rbio is sitting in the hash, but it is just a cache
+ * of past RMW
+ */
+#define RBIO_CACHE_BIT 2
+
+/*
+ * set when it is safe to trust the stripe_pages for caching
+ */
+#define RBIO_CACHE_READY_BIT 3
+
+
+#define RBIO_CACHE_SIZE 1024
+
+struct btrfs_raid_bio {
+ struct btrfs_fs_info *fs_info;
+ struct btrfs_bio *bbio;
+
+ /*
+ * logical block numbers for the start of each stripe
+ * The last one or two are p/q. These are sorted,
+ * so raid_map[0] is the start of our full stripe
+ */
+ u64 *raid_map;
+
+ /* while we're doing rmw on a stripe
+ * we put it into a hash table so we can
+ * lock the stripe and merge more rbios
+ * into it.
+ */
+ struct list_head hash_list;
+
+ /*
+ * LRU list for the stripe cache
+ */
+ struct list_head stripe_cache;
+
+ /*
+ * for scheduling work in the helper threads
+ */
+ struct btrfs_work work;
+
+ /*
+ * bio list and bio_list_lock are used
+ * to add more bios into the stripe
+ * in hopes of avoiding the full rmw
+ */
+ struct bio_list bio_list;
+ spinlock_t bio_list_lock;
+
+ /* also protected by the bio_list_lock, the
+ * plug list is used by the plugging code
+ * to collect partial bios while plugged. The
+ * stripe locking code also uses it to hand off
+ * the stripe lock to the next pending IO
+ */
+ struct list_head plug_list;
+
+ /*
+ * flags that tell us if it is safe to
+ * merge with this bio
+ */
+ unsigned long flags;
+
+ /* size of each individual stripe on disk */
+ int stripe_len;
+
+ /* number of data stripes (no p/q) */
+ int nr_data;
+
+ /*
+ * set if we're doing a parity rebuild
+ * for a read from higher up, which is handled
+ * differently from a parity rebuild as part of
+ * rmw
+ */
+ int read_rebuild;
+
+ /* first bad stripe */
+ int faila;
+
+ /* second bad stripe (for raid6 use) */
+ int failb;
+
+ /*
+ * number of pages needed to represent the full
+ * stripe
+ */
+ int nr_pages;
+
+ /*
+ * size of all the bios in the bio_list. This
+ * helps us decide if the rbio maps to a full
+ * stripe or not
+ */
+ int bio_list_bytes;
+
+ atomic_t refs;
+
+ /*
+ * these are two arrays of pointers. We allocate the
+ * rbio big enough to hold them both and setup their
+ * locations when the rbio is allocated
+ */
+
+ /* pointers to pages that we allocated for
+ * reading/writing stripes directly from the disk (including P/Q)
+ */
+ struct page **stripe_pages;
+
+ /*
+ * pointers to the pages in the bio_list. Stored
+ * here for faster lookup
+ */
+ struct page **bio_pages;
+};
+
+static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
+static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
+static void rmw_work(struct btrfs_work *work);
+static void read_rebuild_work(struct btrfs_work *work);
+static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
+static void async_read_rebuild(struct btrfs_raid_bio *rbio);
+static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
+static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
+static void __free_raid_bio(struct btrfs_raid_bio *rbio);
+static void index_rbio_pages(struct btrfs_raid_bio *rbio);
+static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
+
+/*
+ * the stripe hash table is used for locking, and to collect
+ * bios in hopes of making a full stripe
+ */
+int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
+{
+ struct btrfs_stripe_hash_table *table;
+ struct btrfs_stripe_hash_table *x;
+ struct btrfs_stripe_hash *cur;
+ struct btrfs_stripe_hash *h;
+ int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
+ int i;
+
+ if (info->stripe_hash_table)
+ return 0;
+
+ table = kzalloc(sizeof(*table) + sizeof(*h) * num_entries, GFP_NOFS);
+ if (!table)
+ return -ENOMEM;
+
+ spin_lock_init(&table->cache_lock);
+ INIT_LIST_HEAD(&table->stripe_cache);
+
+ h = table->table;
+
+ for (i = 0; i < num_entries; i++) {
+ cur = h + i;
+ INIT_LIST_HEAD(&cur->hash_list);
+ spin_lock_init(&cur->lock);
+ init_waitqueue_head(&cur->wait);
+ }
+
+ x = cmpxchg(&info->stripe_hash_table, NULL, table);
+ if (x)
+ kfree(x);
+ return 0;
+}
+
+/*
+ * caching an rbio means to copy anything from the
+ * bio_pages array into the stripe_pages array. We
+ * use the page uptodate bit in the stripe cache array
+ * to indicate if it has valid data
+ *
+ * once the caching is done, we set the cache ready
+ * bit.
+ */
+static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
+{
+ int i;
+ char *s;
+ char *d;
+ int ret;
+
+ ret = alloc_rbio_pages(rbio);
+ if (ret)
+ return;
+
+ for (i = 0; i < rbio->nr_pages; i++) {
+ if (!rbio->bio_pages[i])
+ continue;
+
+ s = kmap(rbio->bio_pages[i]);
+ d = kmap(rbio->stripe_pages[i]);
+
+ memcpy(d, s, PAGE_CACHE_SIZE);
+
+ kunmap(rbio->bio_pages[i]);
+ kunmap(rbio->stripe_pages[i]);
+ SetPageUptodate(rbio->stripe_pages[i]);
+ }
+ set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
+}
+
+/*
+ * we hash on the first logical address of the stripe
+ */
+static int rbio_bucket(struct btrfs_raid_bio *rbio)
+{
+ u64 num = rbio->raid_map[0];
+
+ /*
+ * we shift down quite a bit. We're using byte
+ * addressing, and most of the lower bits are zeros.
+ * This tends to upset hash_64, and it consistently
+ * returns just one or two different values.
+ *
+ * shifting off the lower bits fixes things.
+ */
+ return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
+}
+
+/*
+ * stealing an rbio means taking all the uptodate pages from the stripe
+ * array in the source rbio and putting them into the destination rbio
+ */
+static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
+{
+ int i;
+ struct page *s;
+ struct page *d;
+
+ if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
+ return;
+
+ for (i = 0; i < dest->nr_pages; i++) {
+ s = src->stripe_pages[i];
+ if (!s || !PageUptodate(s)) {
+ continue;
+ }
+
+ d = dest->stripe_pages[i];
+ if (d)
+ __free_page(d);
+
+ dest->stripe_pages[i] = s;
+ src->stripe_pages[i] = NULL;
+ }
+}
+
+/*
+ * merging means we take the bio_list from the victim and
+ * splice it into the destination. The victim should
+ * be discarded afterwards.
+ *
+ * must be called with dest->rbio_list_lock held
+ */
+static void merge_rbio(struct btrfs_raid_bio *dest,
+ struct btrfs_raid_bio *victim)
+{
+ bio_list_merge(&dest->bio_list, &victim->bio_list);
+ dest->bio_list_bytes += victim->bio_list_bytes;
+ bio_list_init(&victim->bio_list);
+}
+
+/*
+ * used to prune items that are in the cache. The caller
+ * must hold the hash table lock.
+ */
+static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
+{
+ int bucket = rbio_bucket(rbio);
+ struct btrfs_stripe_hash_table *table;
+ struct btrfs_stripe_hash *h;
+ int freeit = 0;
+
+ /*
+ * check the bit again under the hash table lock.
+ */
+ if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
+ return;
+
+ table = rbio->fs_info->stripe_hash_table;
+ h = table->table + bucket;
+
+ /* hold the lock for the bucket because we may be
+ * removing it from the hash table
+ */
+ spin_lock(&h->lock);
+
+ /*
+ * hold the lock for the bio list because we need
+ * to make sure the bio list is empty
+ */
+ spin_lock(&rbio->bio_list_lock);
+
+ if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
+ list_del_init(&rbio->stripe_cache);
+ table->cache_size -= 1;
+ freeit = 1;
+
+ /* if the bio list isn't empty, this rbio is
+ * still involved in an IO. We take it out
+ * of the cache list, and drop the ref that
+ * was held for the list.
+ *
+ * If the bio_list was empty, we also remove
+ * the rbio from the hash_table, and drop
+ * the corresponding ref
+ */
+ if (bio_list_empty(&rbio->bio_list)) {
+ if (!list_empty(&rbio->hash_list)) {
+ list_del_init(&rbio->hash_list);
+ atomic_dec(&rbio->refs);
+ BUG_ON(!list_empty(&rbio->plug_list));
+ }
+ }
+ }
+
+ spin_unlock(&rbio->bio_list_lock);
+ spin_unlock(&h->lock);
+
+ if (freeit)
+ __free_raid_bio(rbio);
+}
+
+/*
+ * prune a given rbio from the cache
+ */
+static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
+{
+ struct btrfs_stripe_hash_table *table;
+ unsigned long flags;
+
+ if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
+ return;
+
+ table = rbio->fs_info->stripe_hash_table;
+
+ spin_lock_irqsave(&table->cache_lock, flags);
+ __remove_rbio_from_cache(rbio);
+ spin_unlock_irqrestore(&table->cache_lock, flags);
+}
+
+/*
+ * remove everything in the cache
+ */
+void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
+{
+ struct btrfs_stripe_hash_table *table;
+ unsigned long flags;
+ struct btrfs_raid_bio *rbio;
+
+ table = info->stripe_hash_table;
+
+ spin_lock_irqsave(&table->cache_lock, flags);
+ while (!list_empty(&table->stripe_cache)) {
+ rbio = list_entry(table->stripe_cache.next,
+ struct btrfs_raid_bio,
+ stripe_cache);
+ __remove_rbio_from_cache(rbio);
+ }
+ spin_unlock_irqrestore(&table->cache_lock, flags);
+}
+
+/*
+ * remove all cached entries and free the hash table
+ * used by unmount
+ */
+void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
+{
+ if (!info->stripe_hash_table)
+ return;
+ btrfs_clear_rbio_cache(info);
+ kfree(info->stripe_hash_table);
+ info->stripe_hash_table = NULL;
+}
+
+/*
+ * insert an rbio into the stripe cache. It
+ * must have already been prepared by calling
+ * cache_rbio_pages
+ *
+ * If this rbio was already cached, it gets
+ * moved to the front of the lru.
+ *
+ * If the size of the rbio cache is too big, we
+ * prune an item.
+ */
+static void cache_rbio(struct btrfs_raid_bio *rbio)
+{
+ struct btrfs_stripe_hash_table *table;
+ unsigned long flags;
+
+ if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
+ return;
+
+ table = rbio->fs_info->stripe_hash_table;
+
+ spin_lock_irqsave(&table->cache_lock, flags);
+ spin_lock(&rbio->bio_list_lock);
+
+ /* bump our ref if we were not in the list before */
+ if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
+ atomic_inc(&rbio->refs);
+
+ if (!list_empty(&rbio->stripe_cache)){
+ list_move(&rbio->stripe_cache, &table->stripe_cache);
+ } else {
+ list_add(&rbio->stripe_cache, &table->stripe_cache);
+ table->cache_size += 1;
+ }
+
+ spin_unlock(&rbio->bio_list_lock);
+
+ if (table->cache_size > RBIO_CACHE_SIZE) {
+ struct btrfs_raid_bio *found;
+
+ found = list_entry(table->stripe_cache.prev,
+ struct btrfs_raid_bio,
+ stripe_cache);
+
+ if (found != rbio)
+ __remove_rbio_from_cache(found);
+ }
+
+ spin_unlock_irqrestore(&table->cache_lock, flags);
+ return;
+}
+
+/*
+ * helper function to run the xor_blocks api. It is only
+ * able to do MAX_XOR_BLOCKS at a time, so we need to
+ * loop through.
+ */
+static void run_xor(void **pages, int src_cnt, ssize_t len)
+{
+ int src_off = 0;
+ int xor_src_cnt = 0;
+ void *dest = pages[src_cnt];
+
+ while(src_cnt > 0) {
+ xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
+ xor_blocks(xor_src_cnt, len, dest, pages + src_off);
+
+ src_cnt -= xor_src_cnt;
+ src_off += xor_src_cnt;
+ }
+}
+
+/*
+ * returns true if the bio list inside this rbio
+ * covers an entire stripe (no rmw required).
+ * Must be called with the bio list lock held, or
+ * at a time when you know it is impossible to add
+ * new bios into the list
+ */
+static int __rbio_is_full(struct btrfs_raid_bio *rbio)
+{
+ unsigned long size = rbio->bio_list_bytes;
+ int ret = 1;
+
+ if (size != rbio->nr_data * rbio->stripe_len)
+ ret = 0;
+
+ BUG_ON(size > rbio->nr_data * rbio->stripe_len);
+ return ret;
+}
+
+static int rbio_is_full(struct btrfs_raid_bio *rbio)
+{
+ unsigned long flags;
+ int ret;
+
+ spin_lock_irqsave(&rbio->bio_list_lock, flags);
+ ret = __rbio_is_full(rbio);
+ spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
+ return ret;
+}
+
+/*
+ * returns 1 if it is safe to merge two rbios together.
+ * The merging is safe if the two rbios correspond to
+ * the same stripe and if they are both going in the same
+ * direction (read vs write), and if neither one is
+ * locked for final IO
+ *
+ * The caller is responsible for locking such that
+ * rmw_locked is safe to test
+ */
+static int rbio_can_merge(struct btrfs_raid_bio *last,
+ struct btrfs_raid_bio *cur)
+{
+ if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
+ test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
+ return 0;
+
+ /*
+ * we can't merge with cached rbios, since the
+ * idea is that when we merge the destination
+ * rbio is going to run our IO for us. We can
+ * steal from cached rbio's though, other functions
+ * handle that.
+ */
+ if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
+ test_bit(RBIO_CACHE_BIT, &cur->flags))
+ return 0;
+
+ if (last->raid_map[0] !=
+ cur->raid_map[0])
+ return 0;
+
+ /* reads can't merge with writes */
+ if (last->read_rebuild !=
+ cur->read_rebuild) {
+ return 0;
+ }
+
+ return 1;
+}
+
+/*
+ * helper to index into the pstripe
+ */
+static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
+{
+ index += (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
+ return rbio->stripe_pages[index];
+}
+
+/*
+ * helper to index into the qstripe, returns null
+ * if there is no qstripe
+ */
+static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
+{
+ if (rbio->nr_data + 1 == rbio->bbio->num_stripes)
+ return NULL;
+
+ index += ((rbio->nr_data + 1) * rbio->stripe_len) >>
+ PAGE_CACHE_SHIFT;
+ return rbio->stripe_pages[index];
+}
+
+/*
+ * The first stripe in the table for a logical address
+ * has the lock. rbios are added in one of three ways:
+ *
+ * 1) Nobody has the stripe locked yet. The rbio is given
+ * the lock and 0 is returned. The caller must start the IO
+ * themselves.
+ *
+ * 2) Someone has the stripe locked, but we're able to merge
+ * with the lock owner. The rbio is freed and the IO will
+ * start automatically along with the existing rbio. 1 is returned.
+ *
+ * 3) Someone has the stripe locked, but we're not able to merge.
+ * The rbio is added to the lock owner's plug list, or merged into
+ * an rbio already on the plug list. When the lock owner unlocks,
+ * the next rbio on the list is run and the IO is started automatically.
+ * 1 is returned
+ *
+ * If we return 0, the caller still owns the rbio and must continue with
+ * IO submission. If we return 1, the caller must assume the rbio has
+ * already been freed.
+ */
+static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
+{
+ int bucket = rbio_bucket(rbio);
+ struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
+ struct btrfs_raid_bio *cur;
+ struct btrfs_raid_bio *pending;
+ unsigned long flags;
+ DEFINE_WAIT(wait);
+ struct btrfs_raid_bio *freeit = NULL;
+ struct btrfs_raid_bio *cache_drop = NULL;
+ int ret = 0;
+ int walk = 0;
+
+ spin_lock_irqsave(&h->lock, flags);
+ list_for_each_entry(cur, &h->hash_list, hash_list) {
+ walk++;
+ if (cur->raid_map[0] == rbio->raid_map[0]) {
+ spin_lock(&cur->bio_list_lock);
+
+ /* can we steal this cached rbio's pages? */
+ if (bio_list_empty(&cur->bio_list) &&
+ list_empty(&cur->plug_list) &&
+ test_bit(RBIO_CACHE_BIT, &cur->flags) &&
+ !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
+ list_del_init(&cur->hash_list);
+ atomic_dec(&cur->refs);
+
+ steal_rbio(cur, rbio);
+ cache_drop = cur;
+ spin_unlock(&cur->bio_list_lock);
+
+ goto lockit;
+ }
+
+ /* can we merge into the lock owner? */
+ if (rbio_can_merge(cur, rbio)) {
+ merge_rbio(cur, rbio);
+ spin_unlock(&cur->bio_list_lock);
+ freeit = rbio;
+ ret = 1;
+ goto out;
+ }
+
+
+ /*
+ * we couldn't merge with the running
+ * rbio, see if we can merge with the
+ * pending ones. We don't have to
+ * check for rmw_locked because there
+ * is no way they are inside finish_rmw
+ * right now
+ */
+ list_for_each_entry(pending, &cur->plug_list,
+ plug_list) {
+ if (rbio_can_merge(pending, rbio)) {
+ merge_rbio(pending, rbio);
+ spin_unlock(&cur->bio_list_lock);
+ freeit = rbio;
+ ret = 1;
+ goto out;
+ }
+ }
+
+ /* no merging, put us on the tail of the plug list,
+ * our rbio will be started with the currently
+ * running rbio unlocks
+ */
+ list_add_tail(&rbio->plug_list, &cur->plug_list);
+ spin_unlock(&cur->bio_list_lock);
+ ret = 1;
+ goto out;
+ }
+ }
+lockit:
+ atomic_inc(&rbio->refs);
+ list_add(&rbio->hash_list, &h->hash_list);
+out:
+ spin_unlock_irqrestore(&h->lock, flags);
+ if (cache_drop)
+ remove_rbio_from_cache(cache_drop);
+ if (freeit)
+ __free_raid_bio(freeit);
+ return ret;
+}
+
+/*
+ * called as rmw or parity rebuild is completed. If the plug list has more
+ * rbios waiting for this stripe, the next one on the list will be started
+ */
+static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
+{
+ int bucket;
+ struct btrfs_stripe_hash *h;
+ unsigned long flags;
+ int keep_cache = 0;
+
+ bucket = rbio_bucket(rbio);
+ h = rbio->fs_info->stripe_hash_table->table + bucket;
+
+ if (list_empty(&rbio->plug_list))
+ cache_rbio(rbio);
+
+ spin_lock_irqsave(&h->lock, flags);
+ spin_lock(&rbio->bio_list_lock);
+
+ if (!list_empty(&rbio->hash_list)) {
+ /*
+ * if we're still cached and there is no other IO
+ * to perform, just leave this rbio here for others
+ * to steal from later
+ */
+ if (list_empty(&rbio->plug_list) &&
+ test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
+ keep_cache = 1;
+ clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
+ BUG_ON(!bio_list_empty(&rbio->bio_list));
+ goto done;
+ }
+
+ list_del_init(&rbio->hash_list);
+ atomic_dec(&rbio->refs);
+
+ /*
+ * we use the plug list to hold all the rbios
+ * waiting for the chance to lock this stripe.
+ * hand the lock over to one of them.
+ */
+ if (!list_empty(&rbio->plug_list)) {
+ struct btrfs_raid_bio *next;
+ struct list_head *head = rbio->plug_list.next;
+
+ next = list_entry(head, struct btrfs_raid_bio,
+ plug_list);
+
+ list_del_init(&rbio->plug_list);
+
+ list_add(&next->hash_list, &h->hash_list);
+ atomic_inc(&next->refs);
+ spin_unlock(&rbio->bio_list_lock);
+ spin_unlock_irqrestore(&h->lock, flags);
+
+ if (next->read_rebuild)
+ async_read_rebuild(next);
+ else {
+ steal_rbio(rbio, next);
+ async_rmw_stripe(next);
+ }
+
+ goto done_nolock;
+ } else if (waitqueue_active(&h->wait)) {
+ spin_unlock(&rbio->bio_list_lock);
+ spin_unlock_irqrestore(&h->lock, flags);
+ wake_up(&h->wait);
+ goto done_nolock;
+ }
+ }
+done:
+ spin_unlock(&rbio->bio_list_lock);
+ spin_unlock_irqrestore(&h->lock, flags);
+
+done_nolock:
+ if (!keep_cache)
+ remove_rbio_from_cache(rbio);
+}
+
+static void __free_raid_bio(struct btrfs_raid_bio *rbio)
+{
+ int i;
+
+ WARN_ON(atomic_read(&rbio->refs) < 0);
+ if (!atomic_dec_and_test(&rbio->refs))
+ return;
+
+ WARN_ON(!list_empty(&rbio->stripe_cache));
+ WARN_ON(!list_empty(&rbio->hash_list));
+ WARN_ON(!bio_list_empty(&rbio->bio_list));
+
+ for (i = 0; i < rbio->nr_pages; i++) {
+ if (rbio->stripe_pages[i]) {
+ __free_page(rbio->stripe_pages[i]);
+ rbio->stripe_pages[i] = NULL;
+ }
+ }
+ kfree(rbio->raid_map);
+ kfree(rbio->bbio);
+ kfree(rbio);
+}
+
+static void free_raid_bio(struct btrfs_raid_bio *rbio)
+{
+ unlock_stripe(rbio);
+ __free_raid_bio(rbio);
+}
+
+/*
+ * this frees the rbio and runs through all the bios in the
+ * bio_list and calls end_io on them
+ */
+static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err, int uptodate)
+{
+ struct bio *cur = bio_list_get(&rbio->bio_list);
+ struct bio *next;
+ free_raid_bio(rbio);
+
+ while (cur) {
+ next = cur->bi_next;
+ cur->bi_next = NULL;
+ if (uptodate)
+ set_bit(BIO_UPTODATE, &cur->bi_flags);
+ bio_endio(cur, err);
+ cur = next;
+ }
+}
+
+/*
+ * end io function used by finish_rmw. When we finally
+ * get here, we've written a full stripe
+ */
+static void raid_write_end_io(struct bio *bio, int err)
+{
+ struct btrfs_raid_bio *rbio = bio->bi_private;
+
+ if (err)
+ fail_bio_stripe(rbio, bio);
+
+ bio_put(bio);
+
+ if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
+ return;
+
+ err = 0;
+
+ /* OK, we have read all the stripes we need to. */
+ if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
+ err = -EIO;
+
+ rbio_orig_end_io(rbio, err, 0);
+ return;
+}
+
+/*
+ * the read/modify/write code wants to use the original bio for
+ * any pages it included, and then use the rbio for everything
+ * else. This function decides if a given index (stripe number)
+ * and page number in that stripe fall inside the original bio
+ * or the rbio.
+ *
+ * if you set bio_list_only, you'll get a NULL back for any ranges
+ * that are outside the bio_list
+ *
+ * This doesn't take any refs on anything, you get a bare page pointer
+ * and the caller must bump refs as required.
+ *
+ * You must call index_rbio_pages once before you can trust
+ * the answers from this function.
+ */
+static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
+ int index, int pagenr, int bio_list_only)
+{
+ int chunk_page;
+ struct page *p = NULL;
+
+ chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
+
+ spin_lock_irq(&rbio->bio_list_lock);
+ p = rbio->bio_pages[chunk_page];
+ spin_unlock_irq(&rbio->bio_list_lock);
+
+ if (p || bio_list_only)
+ return p;
+
+ return rbio->stripe_pages[chunk_page];
+}
+
+/*
+ * number of pages we need for the entire stripe across all the
+ * drives
+ */
+static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
+{
+ unsigned long nr = stripe_len * nr_stripes;
+ return (nr + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+}
+
+/*
+ * allocation and initial setup for the btrfs_raid_bio. Not
+ * this does not allocate any pages for rbio->pages.
+ */
+static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
+ struct btrfs_bio *bbio, u64 *raid_map,
+ u64 stripe_len)
+{
+ struct btrfs_raid_bio *rbio;
+ int nr_data = 0;
+ int num_pages = rbio_nr_pages(stripe_len, bbio->num_stripes);
+ void *p;
+
+ rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2,
+ GFP_NOFS);
+ if (!rbio) {
+ kfree(raid_map);
+ kfree(bbio);
+ return ERR_PTR(-ENOMEM);
+ }
+
+ bio_list_init(&rbio->bio_list);
+ INIT_LIST_HEAD(&rbio->plug_list);
+ spin_lock_init(&rbio->bio_list_lock);
+ INIT_LIST_HEAD(&rbio->stripe_cache);
+ INIT_LIST_HEAD(&rbio->hash_list);
+ rbio->bbio = bbio;
+ rbio->raid_map = raid_map;
+ rbio->fs_info = root->fs_info;
+ rbio->stripe_len = stripe_len;
+ rbio->nr_pages = num_pages;
+ rbio->faila = -1;
+ rbio->failb = -1;
+ atomic_set(&rbio->refs, 1);
+
+ /*
+ * the stripe_pages and bio_pages array point to the extra
+ * memory we allocated past the end of the rbio
+ */
+ p = rbio + 1;
+ rbio->stripe_pages = p;
+ rbio->bio_pages = p + sizeof(struct page *) * num_pages;
+
+ if (raid_map[bbio->num_stripes - 1] == RAID6_Q_STRIPE)
+ nr_data = bbio->num_stripes - 2;
+ else
+ nr_data = bbio->num_stripes - 1;
+
+ rbio->nr_data = nr_data;
+ return rbio;
+}
+
+/* allocate pages for all the stripes in the bio, including parity */
+static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
+{
+ int i;
+ struct page *page;
+
+ for (i = 0; i < rbio->nr_pages; i++) {
+ if (rbio->stripe_pages[i])
+ continue;
+ page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
+ if (!page)
+ return -ENOMEM;
+ rbio->stripe_pages[i] = page;
+ ClearPageUptodate(page);
+ }
+ return 0;
+}
+
+/* allocate pages for just the p/q stripes */
+static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
+{
+ int i;
+ struct page *page;
+
+ i = (rbio->nr_data * rbio->stripe_len) >> PAGE_CACHE_SHIFT;
+
+ for (; i < rbio->nr_pages; i++) {
+ if (rbio->stripe_pages[i])
+ continue;
+ page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
+ if (!page)
+ return -ENOMEM;
+ rbio->stripe_pages[i] = page;
+ }
+ return 0;
+}
+
+/*
+ * add a single page from a specific stripe into our list of bios for IO
+ * this will try to merge into existing bios if possible, and returns
+ * zero if all went well.
+ */
+int rbio_add_io_page(struct btrfs_raid_bio *rbio,
+ struct bio_list *bio_list,
+ struct page *page,
+ int stripe_nr,
+ unsigned long page_index,
+ unsigned long bio_max_len)
+{
+ struct bio *last = bio_list->tail;
+ u64 last_end = 0;
+ int ret;
+ struct bio *bio;
+ struct btrfs_bio_stripe *stripe;
+ u64 disk_start;
+
+ stripe = &rbio->bbio->stripes[stripe_nr];
+ disk_start = stripe->physical + (page_index << PAGE_CACHE_SHIFT);
+
+ /* if the device is missing, just fail this stripe */
+ if (!stripe->dev->bdev)
+ return fail_rbio_index(rbio, stripe_nr);
+
+ /* see if we can add this page onto our existing bio */
+ if (last) {
+ last_end = (u64)last->bi_sector << 9;
+ last_end += last->bi_size;
+
+ /*
+ * we can't merge these if they are from different
+ * devices or if they are not contiguous
+ */
+ if (last_end == disk_start && stripe->dev->bdev &&
+ test_bit(BIO_UPTODATE, &last->bi_flags) &&
+ last->bi_bdev == stripe->dev->bdev) {
+ ret = bio_add_page(last, page, PAGE_CACHE_SIZE, 0);
+ if (ret == PAGE_CACHE_SIZE)
+ return 0;
+ }
+ }
+
+ /* put a new bio on the list */
+ bio = bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
+ if (!bio)
+ return -ENOMEM;
+
+ bio->bi_size = 0;
+ bio->bi_bdev = stripe->dev->bdev;
+ bio->bi_sector = disk_start >> 9;
+ set_bit(BIO_UPTODATE, &bio->bi_flags);
+
+ bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
+ bio_list_add(bio_list, bio);
+ return 0;
+}
+
+/*
+ * while we're doing the read/modify/write cycle, we could
+ * have errors in reading pages off the disk. This checks
+ * for errors and if we're not able to read the page it'll
+ * trigger parity reconstruction. The rmw will be finished
+ * after we've reconstructed the failed stripes
+ */
+static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
+{
+ if (rbio->faila >= 0 || rbio->failb >= 0) {
+ BUG_ON(rbio->faila == rbio->bbio->num_stripes - 1);
+ __raid56_parity_recover(rbio);
+ } else {
+ finish_rmw(rbio);
+ }
+}
+
+/*
+ * these are just the pages from the rbio array, not from anything
+ * the FS sent down to us
+ */
+static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int page)
+{
+ int index;
+ index = stripe * (rbio->stripe_len >> PAGE_CACHE_SHIFT);
+ index += page;
+ return rbio->stripe_pages[index];
+}
+
+/*
+ * helper function to walk our bio list and populate the bio_pages array with
+ * the result. This seems expensive, but it is faster than constantly
+ * searching through the bio list as we setup the IO in finish_rmw or stripe
+ * reconstruction.
+ *
+ * This must be called before you trust the answers from page_in_rbio
+ */
+static void index_rbio_pages(struct btrfs_raid_bio *rbio)
+{
+ struct bio *bio;
+ u64 start;
+ unsigned long stripe_offset;
+ unsigned long page_index;
+ struct page *p;
+ int i;
+
+ spin_lock_irq(&rbio->bio_list_lock);
+ bio_list_for_each(bio, &rbio->bio_list) {
+ start = (u64)bio->bi_sector << 9;
+ stripe_offset = start - rbio->raid_map[0];
+ page_index = stripe_offset >> PAGE_CACHE_SHIFT;
+
+ for (i = 0; i < bio->bi_vcnt; i++) {
+ p = bio->bi_io_vec[i].bv_page;
+ rbio->bio_pages[page_index + i] = p;
+ }
+ }
+ spin_unlock_irq(&rbio->bio_list_lock);
+}
+
+/*
+ * this is called from one of two situations. We either
+ * have a full stripe from the higher layers, or we've read all
+ * the missing bits off disk.
+ *
+ * This will calculate the parity and then send down any
+ * changed blocks.
+ */
+static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
+{
+ struct btrfs_bio *bbio = rbio->bbio;
+ void *pointers[bbio->num_stripes];
+ int stripe_len = rbio->stripe_len;
+ int nr_data = rbio->nr_data;
+ int stripe;
+ int pagenr;
+ int p_stripe = -1;
+ int q_stripe = -1;
+ struct bio_list bio_list;
+ struct bio *bio;
+ int pages_per_stripe = stripe_len >> PAGE_CACHE_SHIFT;
+ int ret;
+
+ bio_list_init(&bio_list);
+
+ if (bbio->num_stripes - rbio->nr_data == 1) {
+ p_stripe = bbio->num_stripes - 1;
+ } else if (bbio->num_stripes - rbio->nr_data == 2) {
+ p_stripe = bbio->num_stripes - 2;
+ q_stripe = bbio->num_stripes - 1;
+ } else {
+ BUG();
+ }
+
+ /* at this point we either have a full stripe,
+ * or we've read the full stripe from the drive.
+ * recalculate the parity and write the new results.
+ *
+ * We're not allowed to add any new bios to the
+ * bio list here, anyone else that wants to
+ * change this stripe needs to do their own rmw.
+ */
+ spin_lock_irq(&rbio->bio_list_lock);
+ set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
+ spin_unlock_irq(&rbio->bio_list_lock);
+
+ atomic_set(&rbio->bbio->error, 0);
+
+ /*
+ * now that we've set rmw_locked, run through the
+ * bio list one last time and map the page pointers
+ *
+ * We don't cache full rbios because we're assuming
+ * the higher layers are unlikely to use this area of
+ * the disk again soon. If they do use it again,
+ * hopefully they will send another full bio.
+ */
+ index_rbio_pages(rbio);
+ if (!rbio_is_full(rbio))
+ cache_rbio_pages(rbio);
+ else
+ clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
+
+ for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
+ struct page *p;
+ /* first collect one page from each data stripe */
+ for (stripe = 0; stripe < nr_data; stripe++) {
+ p = page_in_rbio(rbio, stripe, pagenr, 0);
+ pointers[stripe] = kmap(p);
+ }
+
+ /* then add the parity stripe */
+ p = rbio_pstripe_page(rbio, pagenr);
+ SetPageUptodate(p);
+ pointers[stripe++] = kmap(p);
+
+ if (q_stripe != -1) {
+
+ /*
+ * raid6, add the qstripe and call the
+ * library function to fill in our p/q
+ */
+ p = rbio_qstripe_page(rbio, pagenr);
+ SetPageUptodate(p);
+ pointers[stripe++] = kmap(p);
+
+ raid6_call.gen_syndrome(bbio->num_stripes, PAGE_SIZE,
+ pointers);
+ } else {
+ /* raid5 */
+ memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
+ run_xor(pointers + 1, nr_data - 1, PAGE_CACHE_SIZE);
+ }
+
+
+ for (stripe = 0; stripe < bbio->num_stripes; stripe++)
+ kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
+ }
+
+ /*
+ * time to start writing. Make bios for everything from the
+ * higher layers (the bio_list in our rbio) and our p/q. Ignore
+ * everything else.
+ */
+ for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
+ for (pagenr = 0; pagenr < pages_per_stripe; pagenr++) {
+ struct page *page;
+ if (stripe < rbio->nr_data) {
+ page = page_in_rbio(rbio, stripe, pagenr, 1);
+ if (!page)
+ continue;
+ } else {
+ page = rbio_stripe_page(rbio, stripe, pagenr);
+ }
+
+ ret = rbio_add_io_page(rbio, &bio_list,
+ page, stripe, pagenr, rbio->stripe_len);
+ if (ret)
+ goto cleanup;
+ }
+ }
+
+ atomic_set(&bbio->stripes_pending, bio_list_size(&bio_list));
+ BUG_ON(atomic_read(&bbio->stripes_pending) == 0);
+
+ while (1) {
+ bio = bio_list_pop(&bio_list);
+ if (!bio)
+ break;
+
+ bio->bi_private = rbio;
+ bio->bi_end_io = raid_write_end_io;
+ BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
+ submit_bio(WRITE, bio);
+ }
+ return;
+
+cleanup:
+ rbio_orig_end_io(rbio, -EIO, 0);
+}
+
+/*
+ * helper to find the stripe number for a given bio. Used to figure out which
+ * stripe has failed. This expects the bio to correspond to a physical disk,
+ * so it looks up based on physical sector numbers.
+ */
+static int find_bio_stripe(struct btrfs_raid_bio *rbio,
+ struct bio *bio)
+{
+ u64 physical = bio->bi_sector;
+ u64 stripe_start;
+ int i;
+ struct btrfs_bio_stripe *stripe;
+
+ physical <<= 9;
+
+ for (i = 0; i < rbio->bbio->num_stripes; i++) {
+ stripe = &rbio->bbio->stripes[i];
+ stripe_start = stripe->physical;
+ if (physical >= stripe_start &&
+ physical < stripe_start + rbio->stripe_len) {
+ return i;
+ }
+ }
+ return -1;
+}
+
+/*
+ * helper to find the stripe number for a given
+ * bio (before mapping). Used to figure out which stripe has
+ * failed. This looks up based on logical block numbers.
+ */
+static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
+ struct bio *bio)
+{
+ u64 logical = bio->bi_sector;
+ u64 stripe_start;
+ int i;
+
+ logical <<= 9;
+
+ for (i = 0; i < rbio->nr_data; i++) {
+ stripe_start = rbio->raid_map[i];
+ if (logical >= stripe_start &&
+ logical < stripe_start + rbio->stripe_len) {
+ return i;
+ }
+ }
+ return -1;
+}
+
+/*
+ * returns -EIO if we had too many failures
+ */
+static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
+{
+ unsigned long flags;
+ int ret = 0;
+
+ spin_lock_irqsave(&rbio->bio_list_lock, flags);
+
+ /* we already know this stripe is bad, move on */
+ if (rbio->faila == failed || rbio->failb == failed)
+ goto out;
+
+ if (rbio->faila == -1) {
+ /* first failure on this rbio */
+ rbio->faila = failed;
+ atomic_inc(&rbio->bbio->error);
+ } else if (rbio->failb == -1) {
+ /* second failure on this rbio */
+ rbio->failb = failed;
+ atomic_inc(&rbio->bbio->error);
+ } else {
+ ret = -EIO;
+ }
+out:
+ spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
+
+ return ret;
+}
+
+/*
+ * helper to fail a stripe based on a physical disk
+ * bio.
+ */
+static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
+ struct bio *bio)
+{
+ int failed = find_bio_stripe(rbio, bio);
+
+ if (failed < 0)
+ return -EIO;
+
+ return fail_rbio_index(rbio, failed);
+}
+
+/*
+ * this sets each page in the bio uptodate. It should only be used on private
+ * rbio pages, nothing that comes in from the higher layers
+ */
+static void set_bio_pages_uptodate(struct bio *bio)
+{
+ int i;
+ struct page *p;
+
+ for (i = 0; i < bio->bi_vcnt; i++) {
+ p = bio->bi_io_vec[i].bv_page;
+ SetPageUptodate(p);
+ }
+}
+
+/*
+ * end io for the read phase of the rmw cycle. All the bios here are physical
+ * stripe bios we've read from the disk so we can recalculate the parity of the
+ * stripe.
+ *
+ * This will usually kick off finish_rmw once all the bios are read in, but it
+ * may trigger parity reconstruction if we had any errors along the way
+ */
+static void raid_rmw_end_io(struct bio *bio, int err)
+{
+ struct btrfs_raid_bio *rbio = bio->bi_private;
+
+ if (err)
+ fail_bio_stripe(rbio, bio);
+ else
+ set_bio_pages_uptodate(bio);
+
+ bio_put(bio);
+
+ if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
+ return;
+
+ err = 0;
+ if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
+ goto cleanup;
+
+ /*
+ * this will normally call finish_rmw to start our write
+ * but if there are any failed stripes we'll reconstruct
+ * from parity first
+ */
+ validate_rbio_for_rmw(rbio);
+ return;
+
+cleanup:
+
+ rbio_orig_end_io(rbio, -EIO, 0);
+}
+
+static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
+{
+ rbio->work.flags = 0;
+ rbio->work.func = rmw_work;
+
+ btrfs_queue_worker(&rbio->fs_info->rmw_workers,
+ &rbio->work);
+}
+
+static void async_read_rebuild(struct btrfs_raid_bio *rbio)
+{
+ rbio->work.flags = 0;
+ rbio->work.func = read_rebuild_work;
+
+ btrfs_queue_worker(&rbio->fs_info->rmw_workers,
+ &rbio->work);
+}
+
+/*
+ * the stripe must be locked by the caller. It will
+ * unlock after all the writes are done
+ */
+static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
+{
+ int bios_to_read = 0;
+ struct btrfs_bio *bbio = rbio->bbio;
+ struct bio_list bio_list;
+ int ret;
+ int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+ int pagenr;
+ int stripe;
+ struct bio *bio;
+
+ bio_list_init(&bio_list);
+
+ ret = alloc_rbio_pages(rbio);
+ if (ret)
+ goto cleanup;
+
+ index_rbio_pages(rbio);
+
+ atomic_set(&rbio->bbio->error, 0);
+ /*
+ * build a list of bios to read all the missing parts of this
+ * stripe
+ */
+ for (stripe = 0; stripe < rbio->nr_data; stripe++) {
+ for (pagenr = 0; pagenr < nr_pages; pagenr++) {
+ struct page *page;
+ /*
+ * we want to find all the pages missing from
+ * the rbio and read them from the disk. If
+ * page_in_rbio finds a page in the bio list
+ * we don't need to read it off the stripe.
+ */
+ page = page_in_rbio(rbio, stripe, pagenr, 1);
+ if (page)
+ continue;
+
+ page = rbio_stripe_page(rbio, stripe, pagenr);
+ /*
+ * the bio cache may have handed us an uptodate
+ * page. If so, be happy and use it
+ */
+ if (PageUptodate(page))
+ continue;
+
+ ret = rbio_add_io_page(rbio, &bio_list, page,
+ stripe, pagenr, rbio->stripe_len);
+ if (ret)
+ goto cleanup;
+ }
+ }
+
+ bios_to_read = bio_list_size(&bio_list);
+ if (!bios_to_read) {
+ /*
+ * this can happen if others have merged with
+ * us, it means there is nothing left to read.
+ * But if there are missing devices it may not be
+ * safe to do the full stripe write yet.
+ */
+ goto finish;
+ }
+
+ /*
+ * the bbio may be freed once we submit the last bio. Make sure
+ * not to touch it after that
+ */
+ atomic_set(&bbio->stripes_pending, bios_to_read);
+ while (1) {
+ bio = bio_list_pop(&bio_list);
+ if (!bio)
+ break;
+
+ bio->bi_private = rbio;
+ bio->bi_end_io = raid_rmw_end_io;
+
+ btrfs_bio_wq_end_io(rbio->fs_info, bio,
+ BTRFS_WQ_ENDIO_RAID56);
+
+ BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
+ submit_bio(READ, bio);
+ }
+ /* the actual write will happen once the reads are done */
+ return 0;
+
+cleanup:
+ rbio_orig_end_io(rbio, -EIO, 0);
+ return -EIO;
+
+finish:
+ validate_rbio_for_rmw(rbio);
+ return 0;
+}
+
+/*
+ * if the upper layers pass in a full stripe, we thank them by only allocating
+ * enough pages to hold the parity, and sending it all down quickly.
+ */
+static int full_stripe_write(struct btrfs_raid_bio *rbio)
+{
+ int ret;
+
+ ret = alloc_rbio_parity_pages(rbio);
+ if (ret)
+ return ret;
+
+ ret = lock_stripe_add(rbio);
+ if (ret == 0)
+ finish_rmw(rbio);
+ return 0;
+}
+
+/*
+ * partial stripe writes get handed over to async helpers.
+ * We're really hoping to merge a few more writes into this
+ * rbio before calculating new parity
+ */
+static int partial_stripe_write(struct btrfs_raid_bio *rbio)
+{
+ int ret;
+
+ ret = lock_stripe_add(rbio);
+ if (ret == 0)
+ async_rmw_stripe(rbio);
+ return 0;
+}
+
+/*
+ * sometimes while we were reading from the drive to
+ * recalculate parity, enough new bios come into create
+ * a full stripe. So we do a check here to see if we can
+ * go directly to finish_rmw
+ */
+static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
+{
+ /* head off into rmw land if we don't have a full stripe */
+ if (!rbio_is_full(rbio))
+ return partial_stripe_write(rbio);
+ return full_stripe_write(rbio);
+}
+
+/*
+ * We use plugging call backs to collect full stripes.
+ * Any time we get a partial stripe write while plugged
+ * we collect it into a list. When the unplug comes down,
+ * we sort the list by logical block number and merge
+ * everything we can into the same rbios
+ */
+struct btrfs_plug_cb {
+ struct blk_plug_cb cb;
+ struct btrfs_fs_info *info;
+ struct list_head rbio_list;
+ struct btrfs_work work;
+};
+
+/*
+ * rbios on the plug list are sorted for easier merging.
+ */
+static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
+{
+ struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
+ plug_list);
+ struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
+ plug_list);
+ u64 a_sector = ra->bio_list.head->bi_sector;
+ u64 b_sector = rb->bio_list.head->bi_sector;
+
+ if (a_sector < b_sector)
+ return -1;
+ if (a_sector > b_sector)
+ return 1;
+ return 0;
+}
+
+static void run_plug(struct btrfs_plug_cb *plug)
+{
+ struct btrfs_raid_bio *cur;
+ struct btrfs_raid_bio *last = NULL;
+
+ /*
+ * sort our plug list then try to merge
+ * everything we can in hopes of creating full
+ * stripes.
+ */
+ list_sort(NULL, &plug->rbio_list, plug_cmp);
+ while (!list_empty(&plug->rbio_list)) {
+ cur = list_entry(plug->rbio_list.next,
+ struct btrfs_raid_bio, plug_list);
+ list_del_init(&cur->plug_list);
+
+ if (rbio_is_full(cur)) {
+ /* we have a full stripe, send it down */
+ full_stripe_write(cur);
+ continue;
+ }
+ if (last) {
+ if (rbio_can_merge(last, cur)) {
+ merge_rbio(last, cur);
+ __free_raid_bio(cur);
+ continue;
+
+ }
+ __raid56_parity_write(last);
+ }
+ last = cur;
+ }
+ if (last) {
+ __raid56_parity_write(last);
+ }
+ kfree(plug);
+}
+
+/*
+ * if the unplug comes from schedule, we have to push the
+ * work off to a helper thread
+ */
+static void unplug_work(struct btrfs_work *work)
+{
+ struct btrfs_plug_cb *plug;
+ plug = container_of(work, struct btrfs_plug_cb, work);
+ run_plug(plug);
+}
+
+static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
+{
+ struct btrfs_plug_cb *plug;
+ plug = container_of(cb, struct btrfs_plug_cb, cb);
+
+ if (from_schedule) {
+ plug->work.flags = 0;
+ plug->work.func = unplug_work;
+ btrfs_queue_worker(&plug->info->rmw_workers,
+ &plug->work);
+ return;
+ }
+ run_plug(plug);
+}
+
+/*
+ * our main entry point for writes from the rest of the FS.
+ */
+int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
+ struct btrfs_bio *bbio, u64 *raid_map,
+ u64 stripe_len)
+{
+ struct btrfs_raid_bio *rbio;
+ struct btrfs_plug_cb *plug = NULL;
+ struct blk_plug_cb *cb;
+
+ rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
+ if (IS_ERR(rbio)) {
+ kfree(raid_map);
+ kfree(bbio);
+ return PTR_ERR(rbio);
+ }
+ bio_list_add(&rbio->bio_list, bio);
+ rbio->bio_list_bytes = bio->bi_size;
+
+ /*
+ * don't plug on full rbios, just get them out the door
+ * as quickly as we can
+ */
+ if (rbio_is_full(rbio))
+ return full_stripe_write(rbio);
+
+ cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
+ sizeof(*plug));
+ if (cb) {
+ plug = container_of(cb, struct btrfs_plug_cb, cb);
+ if (!plug->info) {
+ plug->info = root->fs_info;
+ INIT_LIST_HEAD(&plug->rbio_list);
+ }
+ list_add_tail(&rbio->plug_list, &plug->rbio_list);
+ } else {
+ return __raid56_parity_write(rbio);
+ }
+ return 0;
+}
+
+/*
+ * all parity reconstruction happens here. We've read in everything
+ * we can find from the drives and this does the heavy lifting of
+ * sorting the good from the bad.
+ */
+static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
+{
+ int pagenr, stripe;
+ void **pointers;
+ int faila = -1, failb = -1;
+ int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+ struct page *page;
+ int err;
+ int i;
+
+ pointers = kzalloc(rbio->bbio->num_stripes * sizeof(void *),
+ GFP_NOFS);
+ if (!pointers) {
+ err = -ENOMEM;
+ goto cleanup_io;
+ }
+
+ faila = rbio->faila;
+ failb = rbio->failb;
+
+ if (rbio->read_rebuild) {
+ spin_lock_irq(&rbio->bio_list_lock);
+ set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
+ spin_unlock_irq(&rbio->bio_list_lock);
+ }
+
+ index_rbio_pages(rbio);
+
+ for (pagenr = 0; pagenr < nr_pages; pagenr++) {
+ /* setup our array of pointers with pages
+ * from each stripe
+ */
+ for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
+ /*
+ * if we're rebuilding a read, we have to use
+ * pages from the bio list
+ */
+ if (rbio->read_rebuild &&
+ (stripe == faila || stripe == failb)) {
+ page = page_in_rbio(rbio, stripe, pagenr, 0);
+ } else {
+ page = rbio_stripe_page(rbio, stripe, pagenr);
+ }
+ pointers[stripe] = kmap(page);
+ }
+
+ /* all raid6 handling here */
+ if (rbio->raid_map[rbio->bbio->num_stripes - 1] ==
+ RAID6_Q_STRIPE) {
+
+ /*
+ * single failure, rebuild from parity raid5
+ * style
+ */
+ if (failb < 0) {
+ if (faila == rbio->nr_data) {
+ /*
+ * Just the P stripe has failed, without
+ * a bad data or Q stripe.
+ * TODO, we should redo the xor here.
+ */
+ err = -EIO;
+ goto cleanup;
+ }
+ /*
+ * a single failure in raid6 is rebuilt
+ * in the pstripe code below
+ */
+ goto pstripe;
+ }
+
+ /* make sure our ps and qs are in order */
+ if (faila > failb) {
+ int tmp = failb;
+ failb = faila;
+ faila = tmp;
+ }
+
+ /* if the q stripe is failed, do a pstripe reconstruction
+ * from the xors.
+ * If both the q stripe and the P stripe are failed, we're
+ * here due to a crc mismatch and we can't give them the
+ * data they want
+ */
+ if (rbio->raid_map[failb] == RAID6_Q_STRIPE) {
+ if (rbio->raid_map[faila] == RAID5_P_STRIPE) {
+ err = -EIO;
+ goto cleanup;
+ }
+ /*
+ * otherwise we have one bad data stripe and
+ * a good P stripe. raid5!
+ */
+ goto pstripe;
+ }
+
+ if (rbio->raid_map[failb] == RAID5_P_STRIPE) {
+ raid6_datap_recov(rbio->bbio->num_stripes,
+ PAGE_SIZE, faila, pointers);
+ } else {
+ raid6_2data_recov(rbio->bbio->num_stripes,
+ PAGE_SIZE, faila, failb,
+ pointers);
+ }
+ } else {
+ void *p;
+
+ /* rebuild from P stripe here (raid5 or raid6) */
+ BUG_ON(failb != -1);
+pstripe:
+ /* Copy parity block into failed block to start with */
+ memcpy(pointers[faila],
+ pointers[rbio->nr_data],
+ PAGE_CACHE_SIZE);
+
+ /* rearrange the pointer array */
+ p = pointers[faila];
+ for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
+ pointers[stripe] = pointers[stripe + 1];
+ pointers[rbio->nr_data - 1] = p;
+
+ /* xor in the rest */
+ run_xor(pointers, rbio->nr_data - 1, PAGE_CACHE_SIZE);
+ }
+ /* if we're doing this rebuild as part of an rmw, go through
+ * and set all of our private rbio pages in the
+ * failed stripes as uptodate. This way finish_rmw will
+ * know they can be trusted. If this was a read reconstruction,
+ * other endio functions will fiddle the uptodate bits
+ */
+ if (!rbio->read_rebuild) {
+ for (i = 0; i < nr_pages; i++) {
+ if (faila != -1) {
+ page = rbio_stripe_page(rbio, faila, i);
+ SetPageUptodate(page);
+ }
+ if (failb != -1) {
+ page = rbio_stripe_page(rbio, failb, i);
+ SetPageUptodate(page);
+ }
+ }
+ }
+ for (stripe = 0; stripe < rbio->bbio->num_stripes; stripe++) {
+ /*
+ * if we're rebuilding a read, we have to use
+ * pages from the bio list
+ */
+ if (rbio->read_rebuild &&
+ (stripe == faila || stripe == failb)) {
+ page = page_in_rbio(rbio, stripe, pagenr, 0);
+ } else {
+ page = rbio_stripe_page(rbio, stripe, pagenr);
+ }
+ kunmap(page);
+ }
+ }
+
+ err = 0;
+cleanup:
+ kfree(pointers);
+
+cleanup_io:
+
+ if (rbio->read_rebuild) {
+ if (err == 0)
+ cache_rbio_pages(rbio);
+ else
+ clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
+
+ rbio_orig_end_io(rbio, err, err == 0);
+ } else if (err == 0) {
+ rbio->faila = -1;
+ rbio->failb = -1;
+ finish_rmw(rbio);
+ } else {
+ rbio_orig_end_io(rbio, err, 0);
+ }
+}
+
+/*
+ * This is called only for stripes we've read from disk to
+ * reconstruct the parity.
+ */
+static void raid_recover_end_io(struct bio *bio, int err)
+{
+ struct btrfs_raid_bio *rbio = bio->bi_private;
+
+ /*
+ * we only read stripe pages off the disk, set them
+ * up to date if there were no errors
+ */
+ if (err)
+ fail_bio_stripe(rbio, bio);
+ else
+ set_bio_pages_uptodate(bio);
+ bio_put(bio);
+
+ if (!atomic_dec_and_test(&rbio->bbio->stripes_pending))
+ return;
+
+ if (atomic_read(&rbio->bbio->error) > rbio->bbio->max_errors)
+ rbio_orig_end_io(rbio, -EIO, 0);
+ else
+ __raid_recover_end_io(rbio);
+}
+
+/*
+ * reads everything we need off the disk to reconstruct
+ * the parity. endio handlers trigger final reconstruction
+ * when the IO is done.
+ *
+ * This is used both for reads from the higher layers and for
+ * parity construction required to finish a rmw cycle.
+ */
+static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
+{
+ int bios_to_read = 0;
+ struct btrfs_bio *bbio = rbio->bbio;
+ struct bio_list bio_list;
+ int ret;
+ int nr_pages = (rbio->stripe_len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
+ int pagenr;
+ int stripe;
+ struct bio *bio;
+
+ bio_list_init(&bio_list);
+
+ ret = alloc_rbio_pages(rbio);
+ if (ret)
+ goto cleanup;
+
+ atomic_set(&rbio->bbio->error, 0);
+
+ /*
+ * read everything that hasn't failed. Thanks to the
+ * stripe cache, it is possible that some or all of these
+ * pages are going to be uptodate.
+ */
+ for (stripe = 0; stripe < bbio->num_stripes; stripe++) {
+ if (rbio->faila == stripe ||
+ rbio->failb == stripe)
+ continue;
+
+ for (pagenr = 0; pagenr < nr_pages; pagenr++) {
+ struct page *p;
+
+ /*
+ * the rmw code may have already read this
+ * page in
+ */
+ p = rbio_stripe_page(rbio, stripe, pagenr);
+ if (PageUptodate(p))
+ continue;
+
+ ret = rbio_add_io_page(rbio, &bio_list,
+ rbio_stripe_page(rbio, stripe, pagenr),
+ stripe, pagenr, rbio->stripe_len);
+ if (ret < 0)
+ goto cleanup;
+ }
+ }
+
+ bios_to_read = bio_list_size(&bio_list);
+ if (!bios_to_read) {
+ /*
+ * we might have no bios to read just because the pages
+ * were up to date, or we might have no bios to read because
+ * the devices were gone.
+ */
+ if (atomic_read(&rbio->bbio->error) <= rbio->bbio->max_errors) {
+ __raid_recover_end_io(rbio);
+ goto out;
+ } else {
+ goto cleanup;
+ }
+ }
+
+ /*
+ * the bbio may be freed once we submit the last bio. Make sure
+ * not to touch it after that
+ */
+ atomic_set(&bbio->stripes_pending, bios_to_read);
+ while (1) {
+ bio = bio_list_pop(&bio_list);
+ if (!bio)
+ break;
+
+ bio->bi_private = rbio;
+ bio->bi_end_io = raid_recover_end_io;
+
+ btrfs_bio_wq_end_io(rbio->fs_info, bio,
+ BTRFS_WQ_ENDIO_RAID56);
+
+ BUG_ON(!test_bit(BIO_UPTODATE, &bio->bi_flags));
+ submit_bio(READ, bio);
+ }
+out:
+ return 0;
+
+cleanup:
+ if (rbio->read_rebuild)
+ rbio_orig_end_io(rbio, -EIO, 0);
+ return -EIO;
+}
+
+/*
+ * the main entry point for reads from the higher layers. This
+ * is really only called when the normal read path had a failure,
+ * so we assume the bio they send down corresponds to a failed part
+ * of the drive.
+ */
+int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
+ struct btrfs_bio *bbio, u64 *raid_map,
+ u64 stripe_len, int mirror_num)
+{
+ struct btrfs_raid_bio *rbio;
+ int ret;
+
+ rbio = alloc_rbio(root, bbio, raid_map, stripe_len);
+ if (IS_ERR(rbio)) {
+ return PTR_ERR(rbio);
+ }
+
+ rbio->read_rebuild = 1;
+ bio_list_add(&rbio->bio_list, bio);
+ rbio->bio_list_bytes = bio->bi_size;
+
+ rbio->faila = find_logical_bio_stripe(rbio, bio);
+ if (rbio->faila == -1) {
+ BUG();
+ kfree(rbio);
+ return -EIO;
+ }
+
+ /*
+ * reconstruct from the q stripe if they are
+ * asking for mirror 3
+ */
+ if (mirror_num == 3)
+ rbio->failb = bbio->num_stripes - 2;
+
+ ret = lock_stripe_add(rbio);
+
+ /*
+ * __raid56_parity_recover will end the bio with
+ * any errors it hits. We don't want to return
+ * its error value up the stack because our caller
+ * will end up calling bio_endio with any nonzero
+ * return
+ */
+ if (ret == 0)
+ __raid56_parity_recover(rbio);
+ /*
+ * our rbio has been added to the list of
+ * rbios that will be handled after the
+ * currently lock owner is done
+ */
+ return 0;
+
+}
+
+static void rmw_work(struct btrfs_work *work)
+{
+ struct btrfs_raid_bio *rbio;
+
+ rbio = container_of(work, struct btrfs_raid_bio, work);
+ raid56_rmw_stripe(rbio);
+}
+
+static void read_rebuild_work(struct btrfs_work *work)
+{
+ struct btrfs_raid_bio *rbio;
+
+ rbio = container_of(work, struct btrfs_raid_bio, work);
+ __raid56_parity_recover(rbio);
+}
diff --git a/fs/btrfs/raid56.h b/fs/btrfs/raid56.h
new file mode 100644
index 00000000000..ea5d73bfdfb
--- /dev/null
+++ b/fs/btrfs/raid56.h
@@ -0,0 +1,51 @@
+/*
+ * Copyright (C) 2012 Fusion-io All rights reserved.
+ * Copyright (C) 2012 Intel Corp. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#ifndef __BTRFS_RAID56__
+#define __BTRFS_RAID56__
+static inline int nr_parity_stripes(struct map_lookup *map)
+{
+ if (map->type & BTRFS_BLOCK_GROUP_RAID5)
+ return 1;
+ else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
+ return 2;
+ else
+ return 0;
+}
+
+static inline int nr_data_stripes(struct map_lookup *map)
+{
+ return map->num_stripes - nr_parity_stripes(map);
+}
+#define RAID5_P_STRIPE ((u64)-2)
+#define RAID6_Q_STRIPE ((u64)-1)
+
+#define is_parity_stripe(x) (((x) == RAID5_P_STRIPE) || \
+ ((x) == RAID6_Q_STRIPE))
+
+int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
+ struct btrfs_bio *bbio, u64 *raid_map,
+ u64 stripe_len, int mirror_num);
+int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
+ struct btrfs_bio *bbio, u64 *raid_map,
+ u64 stripe_len);
+
+int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info);
+void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info);
+#endif
diff --git a/fs/btrfs/scrub.c b/fs/btrfs/scrub.c
index c78b2a3fc33..53c3501fa4c 100644
--- a/fs/btrfs/scrub.c
+++ b/fs/btrfs/scrub.c
@@ -28,6 +28,7 @@
#include "dev-replace.h"
#include "check-integrity.h"
#include "rcu-string.h"
+#include "raid56.h"
/*
* This is only the first step towards a full-features scrub. It reads all
@@ -2254,6 +2255,13 @@ static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
struct btrfs_device *extent_dev;
int extent_mirror_num;
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6)) {
+ if (num >= nr_data_stripes(map)) {
+ return 0;
+ }
+ }
+
nstripes = length;
offset = 0;
do_div(nstripes, map->stripe_len);
diff --git a/fs/btrfs/transaction.c b/fs/btrfs/transaction.c
index 955204ca044..a83d486cc70 100644
--- a/fs/btrfs/transaction.c
+++ b/fs/btrfs/transaction.c
@@ -167,6 +167,9 @@ loop:
spin_lock_init(&cur_trans->commit_lock);
spin_lock_init(&cur_trans->delayed_refs.lock);
+ atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
+ atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
+ init_waitqueue_head(&cur_trans->delayed_refs.wait);
INIT_LIST_HEAD(&cur_trans->pending_snapshots);
INIT_LIST_HEAD(&cur_trans->ordered_operations);
@@ -637,7 +640,7 @@ static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
if (!list_empty(&trans->new_bgs))
btrfs_create_pending_block_groups(trans, root);
- while (count < 2) {
+ while (count < 1) {
unsigned long cur = trans->delayed_ref_updates;
trans->delayed_ref_updates = 0;
if (cur &&
@@ -649,6 +652,7 @@ static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
}
count++;
}
+
btrfs_trans_release_metadata(trans, root);
trans->block_rsv = NULL;
@@ -744,7 +748,9 @@ int btrfs_write_marked_extents(struct btrfs_root *root,
struct extent_state *cached_state = NULL;
u64 start = 0;
u64 end;
+ struct blk_plug plug;
+ blk_start_plug(&plug);
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
mark, &cached_state)) {
convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
@@ -758,6 +764,7 @@ int btrfs_write_marked_extents(struct btrfs_root *root,
}
if (err)
werr = err;
+ blk_finish_plug(&plug);
return werr;
}
diff --git a/fs/btrfs/volumes.c b/fs/btrfs/volumes.c
index 72b1cf1b2b5..7992dc4ea4c 100644
--- a/fs/btrfs/volumes.c
+++ b/fs/btrfs/volumes.c
@@ -25,6 +25,8 @@
#include <linux/capability.h>
#include <linux/ratelimit.h>
#include <linux/kthread.h>
+#include <linux/raid/pq.h>
+#include <asm/div64.h>
#include "compat.h"
#include "ctree.h"
#include "extent_map.h"
@@ -32,6 +34,7 @@
#include "transaction.h"
#include "print-tree.h"
#include "volumes.h"
+#include "raid56.h"
#include "async-thread.h"
#include "check-integrity.h"
#include "rcu-string.h"
@@ -1465,6 +1468,21 @@ int btrfs_rm_device(struct btrfs_root *root, char *device_path)
goto out;
}
+ if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
+ root->fs_info->fs_devices->rw_devices <= 2) {
+ printk(KERN_ERR "btrfs: unable to go below two "
+ "devices on raid5\n");
+ ret = -EINVAL;
+ goto out;
+ }
+ if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
+ root->fs_info->fs_devices->rw_devices <= 3) {
+ printk(KERN_ERR "btrfs: unable to go below three "
+ "devices on raid6\n");
+ ret = -EINVAL;
+ goto out;
+ }
+
if (strcmp(device_path, "missing") == 0) {
struct list_head *devices;
struct btrfs_device *tmp;
@@ -2726,11 +2744,15 @@ static int chunk_drange_filter(struct extent_buffer *leaf,
return 0;
if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
- BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
- factor = 2;
- else
- factor = 1;
- factor = num_stripes / factor;
+ BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
+ factor = num_stripes / 2;
+ } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
+ factor = num_stripes - 1;
+ } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
+ factor = num_stripes - 2;
+ } else {
+ factor = num_stripes;
+ }
for (i = 0; i < num_stripes; i++) {
stripe = btrfs_stripe_nr(chunk, i);
@@ -3090,7 +3112,9 @@ int btrfs_balance(struct btrfs_balance_control *bctl,
allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
else
allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
- BTRFS_BLOCK_GROUP_RAID10);
+ BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6);
if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
(!alloc_profile_is_valid(bctl->data.target, 1) ||
@@ -3130,7 +3154,9 @@ int btrfs_balance(struct btrfs_balance_control *bctl,
/* allow to reduce meta or sys integrity only if force set */
allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
- BTRFS_BLOCK_GROUP_RAID10;
+ BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6;
do {
seq = read_seqbegin(&fs_info->profiles_lock);
@@ -3204,11 +3230,6 @@ int btrfs_balance(struct btrfs_balance_control *bctl,
update_ioctl_balance_args(fs_info, 0, bargs);
}
- if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
- balance_need_close(fs_info)) {
- __cancel_balance(fs_info);
- }
-
wake_up(&fs_info->balance_wait_q);
return ret;
@@ -3611,8 +3632,46 @@ struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
.devs_increment = 1,
.ncopies = 1,
},
+ [BTRFS_RAID_RAID5] = {
+ .sub_stripes = 1,
+ .dev_stripes = 1,
+ .devs_max = 0,
+ .devs_min = 2,
+ .devs_increment = 1,
+ .ncopies = 2,
+ },
+ [BTRFS_RAID_RAID6] = {
+ .sub_stripes = 1,
+ .dev_stripes = 1,
+ .devs_max = 0,
+ .devs_min = 3,
+ .devs_increment = 1,
+ .ncopies = 3,
+ },
};
-
+
+static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
+{
+ /* TODO allow them to set a preferred stripe size */
+ return 64 * 1024;
+}
+
+static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
+{
+ u64 features;
+
+ if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
+ return;
+
+ features = btrfs_super_incompat_flags(info->super_copy);
+ if (features & BTRFS_FEATURE_INCOMPAT_RAID56)
+ return;
+
+ features |= BTRFS_FEATURE_INCOMPAT_RAID56;
+ btrfs_set_super_incompat_flags(info->super_copy, features);
+ printk(KERN_INFO "btrfs: setting RAID5/6 feature flag\n");
+}
+
static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
struct btrfs_root *extent_root,
struct map_lookup **map_ret,
@@ -3628,6 +3687,8 @@ static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
struct btrfs_device_info *devices_info = NULL;
u64 total_avail;
int num_stripes; /* total number of stripes to allocate */
+ int data_stripes; /* number of stripes that count for
+ block group size */
int sub_stripes; /* sub_stripes info for map */
int dev_stripes; /* stripes per dev */
int devs_max; /* max devs to use */
@@ -3639,6 +3700,7 @@ static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
u64 max_chunk_size;
u64 stripe_size;
u64 num_bytes;
+ u64 raid_stripe_len = BTRFS_STRIPE_LEN;
int ndevs;
int i;
int j;
@@ -3768,16 +3830,31 @@ static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
stripe_size = devices_info[ndevs-1].max_avail;
num_stripes = ndevs * dev_stripes;
+ /*
+ * this will have to be fixed for RAID1 and RAID10 over
+ * more drives
+ */
+ data_stripes = num_stripes / ncopies;
+
if (stripe_size * ndevs > max_chunk_size * ncopies) {
stripe_size = max_chunk_size * ncopies;
do_div(stripe_size, ndevs);
}
-
+ if (type & BTRFS_BLOCK_GROUP_RAID5) {
+ raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
+ btrfs_super_stripesize(info->super_copy));
+ data_stripes = num_stripes - 1;
+ }
+ if (type & BTRFS_BLOCK_GROUP_RAID6) {
+ raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
+ btrfs_super_stripesize(info->super_copy));
+ data_stripes = num_stripes - 2;
+ }
do_div(stripe_size, dev_stripes);
/* align to BTRFS_STRIPE_LEN */
- do_div(stripe_size, BTRFS_STRIPE_LEN);
- stripe_size *= BTRFS_STRIPE_LEN;
+ do_div(stripe_size, raid_stripe_len);
+ stripe_size *= raid_stripe_len;
map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
if (!map) {
@@ -3795,14 +3872,14 @@ static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
}
}
map->sector_size = extent_root->sectorsize;
- map->stripe_len = BTRFS_STRIPE_LEN;
- map->io_align = BTRFS_STRIPE_LEN;
- map->io_width = BTRFS_STRIPE_LEN;
+ map->stripe_len = raid_stripe_len;
+ map->io_align = raid_stripe_len;
+ map->io_width = raid_stripe_len;
map->type = type;
map->sub_stripes = sub_stripes;
*map_ret = map;
- num_bytes = stripe_size * (num_stripes / ncopies);
+ num_bytes = stripe_size * data_stripes;
*stripe_size_out = stripe_size;
*num_bytes_out = num_bytes;
@@ -3853,6 +3930,8 @@ static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
}
free_extent_map(em);
+ check_raid56_incompat_flag(extent_root->fs_info, type);
+
kfree(devices_info);
return 0;
@@ -4136,6 +4215,10 @@ int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
ret = map->num_stripes;
else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
ret = map->sub_stripes;
+ else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
+ ret = 2;
+ else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
+ ret = 3;
else
ret = 1;
free_extent_map(em);
@@ -4148,6 +4231,52 @@ int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
return ret;
}
+unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
+ struct btrfs_mapping_tree *map_tree,
+ u64 logical)
+{
+ struct extent_map *em;
+ struct map_lookup *map;
+ struct extent_map_tree *em_tree = &map_tree->map_tree;
+ unsigned long len = root->sectorsize;
+
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, logical, len);
+ read_unlock(&em_tree->lock);
+ BUG_ON(!em);
+
+ BUG_ON(em->start > logical || em->start + em->len < logical);
+ map = (struct map_lookup *)em->bdev;
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6)) {
+ len = map->stripe_len * nr_data_stripes(map);
+ }
+ free_extent_map(em);
+ return len;
+}
+
+int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
+ u64 logical, u64 len, int mirror_num)
+{
+ struct extent_map *em;
+ struct map_lookup *map;
+ struct extent_map_tree *em_tree = &map_tree->map_tree;
+ int ret = 0;
+
+ read_lock(&em_tree->lock);
+ em = lookup_extent_mapping(em_tree, logical, len);
+ read_unlock(&em_tree->lock);
+ BUG_ON(!em);
+
+ BUG_ON(em->start > logical || em->start + em->len < logical);
+ map = (struct map_lookup *)em->bdev;
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6))
+ ret = 1;
+ free_extent_map(em);
+ return ret;
+}
+
static int find_live_mirror(struct btrfs_fs_info *fs_info,
struct map_lookup *map, int first, int num,
int optimal, int dev_replace_is_ongoing)
@@ -4185,10 +4314,39 @@ static int find_live_mirror(struct btrfs_fs_info *fs_info,
return optimal;
}
+static inline int parity_smaller(u64 a, u64 b)
+{
+ return a > b;
+}
+
+/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
+static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
+{
+ struct btrfs_bio_stripe s;
+ int i;
+ u64 l;
+ int again = 1;
+
+ while (again) {
+ again = 0;
+ for (i = 0; i < bbio->num_stripes - 1; i++) {
+ if (parity_smaller(raid_map[i], raid_map[i+1])) {
+ s = bbio->stripes[i];
+ l = raid_map[i];
+ bbio->stripes[i] = bbio->stripes[i+1];
+ raid_map[i] = raid_map[i+1];
+ bbio->stripes[i+1] = s;
+ raid_map[i+1] = l;
+ again = 1;
+ }
+ }
+ }
+}
+
static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
u64 logical, u64 *length,
struct btrfs_bio **bbio_ret,
- int mirror_num)
+ int mirror_num, u64 **raid_map_ret)
{
struct extent_map *em;
struct map_lookup *map;
@@ -4200,6 +4358,8 @@ static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
u64 stripe_nr;
u64 stripe_nr_orig;
u64 stripe_nr_end;
+ u64 stripe_len;
+ u64 *raid_map = NULL;
int stripe_index;
int i;
int ret = 0;
@@ -4211,6 +4371,7 @@ static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
int num_alloc_stripes;
int patch_the_first_stripe_for_dev_replace = 0;
u64 physical_to_patch_in_first_stripe = 0;
+ u64 raid56_full_stripe_start = (u64)-1;
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, logical, *length);
@@ -4227,29 +4388,63 @@ static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
map = (struct map_lookup *)em->bdev;
offset = logical - em->start;
+ if (mirror_num > map->num_stripes)
+ mirror_num = 0;
+
+ stripe_len = map->stripe_len;
stripe_nr = offset;
/*
* stripe_nr counts the total number of stripes we have to stride
* to get to this block
*/
- do_div(stripe_nr, map->stripe_len);
+ do_div(stripe_nr, stripe_len);
- stripe_offset = stripe_nr * map->stripe_len;
+ stripe_offset = stripe_nr * stripe_len;
BUG_ON(offset < stripe_offset);
/* stripe_offset is the offset of this block in its stripe*/
stripe_offset = offset - stripe_offset;
- if (rw & REQ_DISCARD)
+ /* if we're here for raid56, we need to know the stripe aligned start */
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
+ unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
+ raid56_full_stripe_start = offset;
+
+ /* allow a write of a full stripe, but make sure we don't
+ * allow straddling of stripes
+ */
+ do_div(raid56_full_stripe_start, full_stripe_len);
+ raid56_full_stripe_start *= full_stripe_len;
+ }
+
+ if (rw & REQ_DISCARD) {
+ /* we don't discard raid56 yet */
+ if (map->type &
+ (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
+ ret = -EOPNOTSUPP;
+ goto out;
+ }
*length = min_t(u64, em->len - offset, *length);
- else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
- /* we limit the length of each bio to what fits in a stripe */
- *length = min_t(u64, em->len - offset,
- map->stripe_len - stripe_offset);
+ } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
+ u64 max_len;
+ /* For writes to RAID[56], allow a full stripeset across all disks.
+ For other RAID types and for RAID[56] reads, just allow a single
+ stripe (on a single disk). */
+ if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
+ (rw & REQ_WRITE)) {
+ max_len = stripe_len * nr_data_stripes(map) -
+ (offset - raid56_full_stripe_start);
+ } else {
+ /* we limit the length of each bio to what fits in a stripe */
+ max_len = stripe_len - stripe_offset;
+ }
+ *length = min_t(u64, em->len - offset, max_len);
} else {
*length = em->len - offset;
}
+ /* This is for when we're called from btrfs_merge_bio_hook() and all
+ it cares about is the length */
if (!bbio_ret)
goto out;
@@ -4282,7 +4477,7 @@ static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
u64 physical_of_found = 0;
ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
- logical, &tmp_length, &tmp_bbio, 0);
+ logical, &tmp_length, &tmp_bbio, 0, NULL);
if (ret) {
WARN_ON(tmp_bbio != NULL);
goto out;
@@ -4348,6 +4543,7 @@ static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
do_div(stripe_nr_end, map->stripe_len);
stripe_end_offset = stripe_nr_end * map->stripe_len -
(offset + *length);
+
if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
if (rw & REQ_DISCARD)
num_stripes = min_t(u64, map->num_stripes,
@@ -4398,6 +4594,65 @@ static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
dev_replace_is_ongoing);
mirror_num = stripe_index - old_stripe_index + 1;
}
+
+ } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6)) {
+ u64 tmp;
+
+ if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
+ && raid_map_ret) {
+ int i, rot;
+
+ /* push stripe_nr back to the start of the full stripe */
+ stripe_nr = raid56_full_stripe_start;
+ do_div(stripe_nr, stripe_len);
+
+ stripe_index = do_div(stripe_nr, nr_data_stripes(map));
+
+ /* RAID[56] write or recovery. Return all stripes */
+ num_stripes = map->num_stripes;
+ max_errors = nr_parity_stripes(map);
+
+ raid_map = kmalloc(sizeof(u64) * num_stripes,
+ GFP_NOFS);
+ if (!raid_map) {
+ ret = -ENOMEM;
+ goto out;
+ }
+
+ /* Work out the disk rotation on this stripe-set */
+ tmp = stripe_nr;
+ rot = do_div(tmp, num_stripes);
+
+ /* Fill in the logical address of each stripe */
+ tmp = stripe_nr * nr_data_stripes(map);
+ for (i = 0; i < nr_data_stripes(map); i++)
+ raid_map[(i+rot) % num_stripes] =
+ em->start + (tmp + i) * map->stripe_len;
+
+ raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
+ if (map->type & BTRFS_BLOCK_GROUP_RAID6)
+ raid_map[(i+rot+1) % num_stripes] =
+ RAID6_Q_STRIPE;
+
+ *length = map->stripe_len;
+ stripe_index = 0;
+ stripe_offset = 0;
+ } else {
+ /*
+ * Mirror #0 or #1 means the original data block.
+ * Mirror #2 is RAID5 parity block.
+ * Mirror #3 is RAID6 Q block.
+ */
+ stripe_index = do_div(stripe_nr, nr_data_stripes(map));
+ if (mirror_num > 1)
+ stripe_index = nr_data_stripes(map) +
+ mirror_num - 2;
+
+ /* We distribute the parity blocks across stripes */
+ tmp = stripe_nr + stripe_index;
+ stripe_index = do_div(tmp, map->num_stripes);
+ }
} else {
/*
* after this do_div call, stripe_nr is the number of stripes
@@ -4506,8 +4761,11 @@ static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID10 |
+ BTRFS_BLOCK_GROUP_RAID5 |
BTRFS_BLOCK_GROUP_DUP)) {
max_errors = 1;
+ } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
+ max_errors = 2;
}
}
@@ -4608,6 +4866,10 @@ static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
bbio->mirror_num = map->num_stripes + 1;
}
+ if (raid_map) {
+ sort_parity_stripes(bbio, raid_map);
+ *raid_map_ret = raid_map;
+ }
out:
if (dev_replace_is_ongoing)
btrfs_dev_replace_unlock(dev_replace);
@@ -4620,7 +4882,7 @@ int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
struct btrfs_bio **bbio_ret, int mirror_num)
{
return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
- mirror_num);
+ mirror_num, NULL);
}
int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
@@ -4634,6 +4896,7 @@ int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
u64 bytenr;
u64 length;
u64 stripe_nr;
+ u64 rmap_len;
int i, j, nr = 0;
read_lock(&em_tree->lock);
@@ -4644,10 +4907,17 @@ int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
map = (struct map_lookup *)em->bdev;
length = em->len;
+ rmap_len = map->stripe_len;
+
if (map->type & BTRFS_BLOCK_GROUP_RAID10)
do_div(length, map->num_stripes / map->sub_stripes);
else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
do_div(length, map->num_stripes);
+ else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
+ BTRFS_BLOCK_GROUP_RAID6)) {
+ do_div(length, nr_data_stripes(map));
+ rmap_len = map->stripe_len * nr_data_stripes(map);
+ }
buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
BUG_ON(!buf); /* -ENOMEM */
@@ -4667,8 +4937,11 @@ int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
do_div(stripe_nr, map->sub_stripes);
} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
stripe_nr = stripe_nr * map->num_stripes + i;
- }
- bytenr = chunk_start + stripe_nr * map->stripe_len;
+ } /* else if RAID[56], multiply by nr_data_stripes().
+ * Alternatively, just use rmap_len below instead of
+ * map->stripe_len */
+
+ bytenr = chunk_start + stripe_nr * rmap_len;
WARN_ON(nr >= map->num_stripes);
for (j = 0; j < nr; j++) {
if (buf[j] == bytenr)
@@ -4682,7 +4955,7 @@ int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
*logical = buf;
*naddrs = nr;
- *stripe_len = map->stripe_len;
+ *stripe_len = rmap_len;
free_extent_map(em);
return 0;
@@ -4756,7 +5029,7 @@ static void btrfs_end_bio(struct bio *bio, int err)
bio->bi_bdev = (struct block_device *)
(unsigned long)bbio->mirror_num;
/* only send an error to the higher layers if it is
- * beyond the tolerance of the multi-bio
+ * beyond the tolerance of the btrfs bio
*/
if (atomic_read(&bbio->error) > bbio->max_errors) {
err = -EIO;
@@ -4790,13 +5063,18 @@ struct async_sched {
* This will add one bio to the pending list for a device and make sure
* the work struct is scheduled.
*/
-static noinline void schedule_bio(struct btrfs_root *root,
+noinline void btrfs_schedule_bio(struct btrfs_root *root,
struct btrfs_device *device,
int rw, struct bio *bio)
{
int should_queue = 1;
struct btrfs_pending_bios *pending_bios;
+ if (device->missing || !device->bdev) {
+ bio_endio(bio, -EIO);
+ return;
+ }
+
/* don't bother with additional async steps for reads, right now */
if (!(rw & REQ_WRITE)) {
bio_get(bio);
@@ -4894,7 +5172,7 @@ static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
#endif
bio->bi_bdev = dev->bdev;
if (async)
- schedule_bio(root, dev, rw, bio);
+ btrfs_schedule_bio(root, dev, rw, bio);
else
btrfsic_submit_bio(rw, bio);
}
@@ -4953,6 +5231,7 @@ int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
u64 logical = (u64)bio->bi_sector << 9;
u64 length = 0;
u64 map_length;
+ u64 *raid_map = NULL;
int ret;
int dev_nr = 0;
int total_devs = 1;
@@ -4961,12 +5240,30 @@ int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
length = bio->bi_size;
map_length = length;
- ret = btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
- mirror_num);
- if (ret)
+ ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
+ mirror_num, &raid_map);
+ if (ret) /* -ENOMEM */
return ret;
total_devs = bbio->num_stripes;
+ bbio->orig_bio = first_bio;
+ bbio->private = first_bio->bi_private;
+ bbio->end_io = first_bio->bi_end_io;
+ atomic_set(&bbio->stripes_pending, bbio->num_stripes);
+
+ if (raid_map) {
+ /* In this case, map_length has been set to the length of
+ a single stripe; not the whole write */
+ if (rw & WRITE) {
+ return raid56_parity_write(root, bio, bbio,
+ raid_map, map_length);
+ } else {
+ return raid56_parity_recover(root, bio, bbio,
+ raid_map, map_length,
+ mirror_num);
+ }
+ }
+
if (map_length < length) {
printk(KERN_CRIT "btrfs: mapping failed logical %llu bio len %llu "
"len %llu\n", (unsigned long long)logical,
@@ -4975,11 +5272,6 @@ int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
BUG();
}
- bbio->orig_bio = first_bio;
- bbio->private = first_bio->bi_private;
- bbio->end_io = first_bio->bi_end_io;
- atomic_set(&bbio->stripes_pending, bbio->num_stripes);
-
while (dev_nr < total_devs) {
dev = bbio->stripes[dev_nr].dev;
if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
diff --git a/fs/btrfs/volumes.h b/fs/btrfs/volumes.h
index 12bb84166a5..062d8604d35 100644
--- a/fs/btrfs/volumes.h
+++ b/fs/btrfs/volumes.h
@@ -321,7 +321,14 @@ void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
struct btrfs_device *tgtdev);
int btrfs_scratch_superblock(struct btrfs_device *device);
-
+void btrfs_schedule_bio(struct btrfs_root *root,
+ struct btrfs_device *device,
+ int rw, struct bio *bio);
+int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
+ u64 logical, u64 len, int mirror_num);
+unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
+ struct btrfs_mapping_tree *map_tree,
+ u64 logical);
static inline void btrfs_dev_stat_inc(struct btrfs_device *dev,
int index)
{