aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/workqueue.txt103
-rw-r--r--arch/arm/Kconfig29
-rw-r--r--arch/arm/kernel/topology.c278
-rw-r--r--arch/x86/kernel/cpu/Makefile2
-rw-r--r--arch/x86/kernel/cpu/sched.c55
-rw-r--r--drivers/cpuidle/Kconfig3
-rw-r--r--drivers/cpuidle/Makefile1
-rw-r--r--drivers/cpuidle/coupled.c715
-rw-r--r--drivers/cpuidle/cpuidle.c68
-rw-r--r--drivers/cpuidle/cpuidle.h32
-rw-r--r--include/linux/cpu.h5
-rw-r--r--include/linux/cpuidle.h11
-rw-r--r--include/linux/kthread.h8
-rw-r--r--include/linux/sched.h19
-rw-r--r--include/trace/events/sched.h151
-rw-r--r--include/trace/events/workqueue.h2
-rw-r--r--kernel/kthread.c88
-rw-r--r--kernel/sched/core.c5
-rw-r--r--kernel/sched/debug.c39
-rw-r--r--kernel/sched/fair.c1099
-rw-r--r--kernel/sched/features.h2
-rw-r--r--kernel/sched/sched.h60
-rw-r--r--kernel/workqueue.c1144
-rw-r--r--linaro/configs/android.conf30
-rw-r--r--linaro/configs/big-LITTLE-MP.conf9
-rw-r--r--linaro/configs/linaro-base.conf84
-rw-r--r--linaro/configs/ubuntu-minimal.conf24
-rw-r--r--linaro/configs/ubuntu.conf2133
28 files changed, 5187 insertions, 1012 deletions
diff --git a/Documentation/workqueue.txt b/Documentation/workqueue.txt
index a0b577de918..a6ab4b62d92 100644
--- a/Documentation/workqueue.txt
+++ b/Documentation/workqueue.txt
@@ -89,25 +89,28 @@ called thread-pools.
The cmwq design differentiates between the user-facing workqueues that
subsystems and drivers queue work items on and the backend mechanism
-which manages thread-pool and processes the queued work items.
+which manages thread-pools and processes the queued work items.
The backend is called gcwq. There is one gcwq for each possible CPU
-and one gcwq to serve work items queued on unbound workqueues.
+and one gcwq to serve work items queued on unbound workqueues. Each
+gcwq has two thread-pools - one for normal work items and the other
+for high priority ones.
Subsystems and drivers can create and queue work items through special
workqueue API functions as they see fit. They can influence some
aspects of the way the work items are executed by setting flags on the
workqueue they are putting the work item on. These flags include
-things like CPU locality, reentrancy, concurrency limits and more. To
-get a detailed overview refer to the API description of
+things like CPU locality, reentrancy, concurrency limits, priority and
+more. To get a detailed overview refer to the API description of
alloc_workqueue() below.
-When a work item is queued to a workqueue, the target gcwq is
-determined according to the queue parameters and workqueue attributes
-and appended on the shared worklist of the gcwq. For example, unless
-specifically overridden, a work item of a bound workqueue will be
-queued on the worklist of exactly that gcwq that is associated to the
-CPU the issuer is running on.
+When a work item is queued to a workqueue, the target gcwq and
+thread-pool is determined according to the queue parameters and
+workqueue attributes and appended on the shared worklist of the
+thread-pool. For example, unless specifically overridden, a work item
+of a bound workqueue will be queued on the worklist of either normal
+or highpri thread-pool of the gcwq that is associated to the CPU the
+issuer is running on.
For any worker pool implementation, managing the concurrency level
(how many execution contexts are active) is an important issue. cmwq
@@ -115,26 +118,26 @@ tries to keep the concurrency at a minimal but sufficient level.
Minimal to save resources and sufficient in that the system is used at
its full capacity.
-Each gcwq bound to an actual CPU implements concurrency management by
-hooking into the scheduler. The gcwq is notified whenever an active
-worker wakes up or sleeps and keeps track of the number of the
-currently runnable workers. Generally, work items are not expected to
-hog a CPU and consume many cycles. That means maintaining just enough
-concurrency to prevent work processing from stalling should be
-optimal. As long as there are one or more runnable workers on the
-CPU, the gcwq doesn't start execution of a new work, but, when the
-last running worker goes to sleep, it immediately schedules a new
-worker so that the CPU doesn't sit idle while there are pending work
-items. This allows using a minimal number of workers without losing
-execution bandwidth.
+Each thread-pool bound to an actual CPU implements concurrency
+management by hooking into the scheduler. The thread-pool is notified
+whenever an active worker wakes up or sleeps and keeps track of the
+number of the currently runnable workers. Generally, work items are
+not expected to hog a CPU and consume many cycles. That means
+maintaining just enough concurrency to prevent work processing from
+stalling should be optimal. As long as there are one or more runnable
+workers on the CPU, the thread-pool doesn't start execution of a new
+work, but, when the last running worker goes to sleep, it immediately
+schedules a new worker so that the CPU doesn't sit idle while there
+are pending work items. This allows using a minimal number of workers
+without losing execution bandwidth.
Keeping idle workers around doesn't cost other than the memory space
for kthreads, so cmwq holds onto idle ones for a while before killing
them.
For an unbound wq, the above concurrency management doesn't apply and
-the gcwq for the pseudo unbound CPU tries to start executing all work
-items as soon as possible. The responsibility of regulating
+the thread-pools for the pseudo unbound CPU try to start executing all
+work items as soon as possible. The responsibility of regulating
concurrency level is on the users. There is also a flag to mark a
bound wq to ignore the concurrency management. Please refer to the
API section for details.
@@ -205,31 +208,22 @@ resources, scheduled and executed.
WQ_HIGHPRI
- Work items of a highpri wq are queued at the head of the
- worklist of the target gcwq and start execution regardless of
- the current concurrency level. In other words, highpri work
- items will always start execution as soon as execution
- resource is available.
+ Work items of a highpri wq are queued to the highpri
+ thread-pool of the target gcwq. Highpri thread-pools are
+ served by worker threads with elevated nice level.
- Ordering among highpri work items is preserved - a highpri
- work item queued after another highpri work item will start
- execution after the earlier highpri work item starts.
-
- Although highpri work items are not held back by other
- runnable work items, they still contribute to the concurrency
- level. Highpri work items in runnable state will prevent
- non-highpri work items from starting execution.
-
- This flag is meaningless for unbound wq.
+ Note that normal and highpri thread-pools don't interact with
+ each other. Each maintain its separate pool of workers and
+ implements concurrency management among its workers.
WQ_CPU_INTENSIVE
Work items of a CPU intensive wq do not contribute to the
concurrency level. In other words, runnable CPU intensive
- work items will not prevent other work items from starting
- execution. This is useful for bound work items which are
- expected to hog CPU cycles so that their execution is
- regulated by the system scheduler.
+ work items will not prevent other work items in the same
+ thread-pool from starting execution. This is useful for bound
+ work items which are expected to hog CPU cycles so that their
+ execution is regulated by the system scheduler.
Although CPU intensive work items don't contribute to the
concurrency level, start of their executions is still
@@ -239,14 +233,6 @@ resources, scheduled and executed.
This flag is meaningless for unbound wq.
- WQ_HIGHPRI | WQ_CPU_INTENSIVE
-
- This combination makes the wq avoid interaction with
- concurrency management completely and behave as a simple
- per-CPU execution context provider. Work items queued on a
- highpri CPU-intensive wq start execution as soon as resources
- are available and don't affect execution of other work items.
-
@max_active:
@max_active determines the maximum number of execution contexts per
@@ -328,20 +314,7 @@ If @max_active == 2,
35 w2 wakes up and finishes
Now, let's assume w1 and w2 are queued to a different wq q1 which has
-WQ_HIGHPRI set,
-
- TIME IN MSECS EVENT
- 0 w1 and w2 start and burn CPU
- 5 w1 sleeps
- 10 w2 sleeps
- 10 w0 starts and burns CPU
- 15 w0 sleeps
- 15 w1 wakes up and finishes
- 20 w2 wakes up and finishes
- 25 w0 wakes up and burns CPU
- 30 w0 finishes
-
-If q1 has WQ_CPU_INTENSIVE set,
+WQ_CPU_INTENSIVE set,
TIME IN MSECS EVENT
0 w0 starts and burns CPU
diff --git a/arch/arm/Kconfig b/arch/arm/Kconfig
index a91009c6187..adddd220bd9 100644
--- a/arch/arm/Kconfig
+++ b/arch/arm/Kconfig
@@ -1512,6 +1512,35 @@ config SCHED_SMT
MultiThreading at a cost of slightly increased overhead in some
places. If unsure say N here.
+config DISABLE_CPU_SCHED_DOMAIN_BALANCE
+ bool "(EXPERIMENTAL) Disable CPU level scheduler load-balancing"
+ help
+ Disables scheduler load-balancing at CPU sched domain level.
+
+config SCHED_HMP
+ bool "(EXPERIMENTAL) Heterogenous multiprocessor scheduling"
+ depends on DISABLE_CPU_SCHED_DOMAIN_BALANCE && SCHED_MC && FAIR_GROUP_SCHED && !SCHED_AUTOGROUP
+ help
+ Experimental scheduler optimizations for heterogeneous platforms.
+ Attempts introspectively select task affinity to optimize power
+ and performance. Currently support two types of CPUs: fast
+ (high-performance) and slow (power-efficient). There is currently
+ no support for migration of task groups, hence !SCHED_AUTOGROUP.
+
+config HMP_FAST_CPU_MASK
+ string "HMP scheduler fast CPU mask"
+ depends on SCHED_HMP
+ help
+ Specifies the cpuids of the fast CPUs in the system as a list
+ string, e.g. cpuid 0+1 should be specified as 0-1.
+
+config HMP_SLOW_CPU_MASK
+ string "HMP scheduler slow CPU mask"
+ depends on SCHED_HMP
+ help
+ Specifies the cpuids of the slow CPUs in the system as a list
+ string, e.g. cpuid 0+1 should be specified as 0-1.
+
config HAVE_ARM_SCU
bool
help
diff --git a/arch/arm/kernel/topology.c b/arch/arm/kernel/topology.c
index 8200deaa14f..61302df56ef 100644
--- a/arch/arm/kernel/topology.c
+++ b/arch/arm/kernel/topology.c
@@ -17,11 +17,160 @@
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
+#include <linux/of.h>
#include <linux/sched.h>
+#include <linux/slab.h>
#include <asm/cputype.h>
#include <asm/topology.h>
+/*
+ * cpu power scale management
+ */
+
+/*
+ * cpu power table
+ * This per cpu data structure describes the relative capacity of each core.
+ * On a heteregenous system, cores don't have the same computation capacity
+ * and we reflect that difference in the cpu_power field so the scheduler can
+ * take this difference into account during load balance. A per cpu structure
+ * is preferred because each CPU updates its own cpu_power field during the
+ * load balance except for idle cores. One idle core is selected to run the
+ * rebalance_domains for all idle cores and the cpu_power can be updated
+ * during this sequence.
+ */
+static DEFINE_PER_CPU(unsigned long, cpu_scale);
+
+unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
+{
+ return per_cpu(cpu_scale, cpu);
+}
+
+static void set_power_scale(unsigned int cpu, unsigned long power)
+{
+ per_cpu(cpu_scale, cpu) = power;
+}
+
+#ifdef CONFIG_OF
+struct cpu_efficiency {
+ const char *compatible;
+ unsigned long efficiency;
+};
+
+/*
+ * Table of relative efficiency of each processors
+ * The efficiency value must fit in 20bit. The final
+ * cpu_scale value must be in the range
+ * 0 < cpu_scale < 2*SCHED_POWER_SCALE.
+ * Processors that are not defined in the table,
+ * use the default SCHED_POWER_SCALE value for cpu_scale.
+ */
+struct cpu_efficiency table_efficiency[] = {
+ {"arm,cortex-a15", 3891},
+ {"arm,cortex-a7", 2048},
+ {NULL, },
+};
+
+struct cpu_capacity {
+ unsigned long hwid;
+ unsigned long capacity;
+};
+
+struct cpu_capacity *cpu_capacity;
+
+unsigned long middle_capacity = 1;
+
+static void __init parse_dt_topology(void)
+{
+ struct cpu_efficiency *cpu_eff;
+ struct device_node *cn = NULL;
+ unsigned long min_capacity = (unsigned long)(-1);
+ unsigned long max_capacity = 0;
+ unsigned long capacity = 0;
+ int alloc_size, cpu = 0;
+
+ alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity);
+ cpu_capacity = (struct cpu_capacity *)kzalloc(alloc_size, GFP_NOWAIT);
+
+ while ((cn = of_find_node_by_type(cn, "cpu"))) {
+ const u32 *rate, *reg;
+ int len;
+
+ if (cpu >= num_possible_cpus())
+ break;
+
+ for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
+ if (of_device_is_compatible(cn, cpu_eff->compatible))
+ break;
+
+ if (cpu_eff->compatible == NULL)
+ continue;
+
+ rate = of_get_property(cn, "clock-frequency", &len);
+ if (!rate || len != 4) {
+ pr_err("%s missing clock-frequency property\n",
+ cn->full_name);
+ continue;
+ }
+
+ reg = of_get_property(cn, "reg", &len);
+ if (!reg || len != 4) {
+ pr_err("%s missing reg property\n", cn->full_name);
+ continue;
+ }
+
+ capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
+
+ /* Save min capacity of the system */
+ if (capacity < min_capacity)
+ min_capacity = capacity;
+
+ /* Save max capacity of the system */
+ if (capacity > max_capacity)
+ max_capacity = capacity;
+
+ cpu_capacity[cpu].capacity = capacity;
+ cpu_capacity[cpu++].hwid = be32_to_cpup(reg);
+ }
+
+ if (cpu < num_possible_cpus())
+ cpu_capacity[cpu].hwid = (unsigned long)(-1);
+
+ middle_capacity = (min_capacity + max_capacity) >> 11;
+}
+
+void update_cpu_power(unsigned int cpu, unsigned long hwid)
+{
+ unsigned int idx = 0;
+
+ /* look for the cpu's hwid in the cpu capacity table */
+ for (idx = 0; idx < num_possible_cpus(); idx++) {
+ if (cpu_capacity[idx].hwid == hwid)
+ break;
+
+ if (cpu_capacity[idx].hwid == -1)
+ return;
+ }
+
+ if (idx == num_possible_cpus())
+ return;
+
+ set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity);
+
+ printk(KERN_INFO "CPU%u: update cpu_power %lu\n",
+ cpu, arch_scale_freq_power(NULL, cpu));
+}
+
+#else
+static inline void parse_dt_topology(void) {}
+static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {}
+#endif
+
+
+/*
+ * cpu topology management
+ */
+
#define MPIDR_SMP_BITMASK (0x3 << 30)
#define MPIDR_SMP_VALUE (0x2 << 30)
@@ -31,6 +180,7 @@
* These masks reflect the current use of the affinity levels.
* The affinity level can be up to 16 bits according to ARM ARM
*/
+#define MPIDR_HWID_BITMASK 0xFFFFFF
#define MPIDR_LEVEL0_MASK 0x3
#define MPIDR_LEVEL0_SHIFT 0
@@ -41,6 +191,9 @@
#define MPIDR_LEVEL2_MASK 0xFF
#define MPIDR_LEVEL2_SHIFT 16
+/*
+ * cpu topology table
+ */
struct cputopo_arm cpu_topology[NR_CPUS];
const struct cpumask *cpu_coregroup_mask(int cpu)
@@ -48,6 +201,32 @@ const struct cpumask *cpu_coregroup_mask(int cpu)
return &cpu_topology[cpu].core_sibling;
}
+void update_siblings_masks(unsigned int cpuid)
+{
+ struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
+ int cpu;
+
+ /* update core and thread sibling masks */
+ for_each_possible_cpu(cpu) {
+ cpu_topo = &cpu_topology[cpu];
+
+ if (cpuid_topo->socket_id != cpu_topo->socket_id)
+ continue;
+
+ cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
+ if (cpu != cpuid)
+ cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
+
+ if (cpuid_topo->core_id != cpu_topo->core_id)
+ continue;
+
+ cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
+ if (cpu != cpuid)
+ cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
+ }
+ smp_wmb();
+}
+
/*
* store_cpu_topology is called at boot when only one cpu is running
* and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
@@ -57,7 +236,6 @@ void store_cpu_topology(unsigned int cpuid)
{
struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
unsigned int mpidr;
- unsigned int cpu;
/* If the cpu topology has been already set, just return */
if (cpuid_topo->core_id != -1)
@@ -99,26 +277,9 @@ void store_cpu_topology(unsigned int cpuid)
cpuid_topo->socket_id = -1;
}
- /* update core and thread sibling masks */
- for_each_possible_cpu(cpu) {
- struct cputopo_arm *cpu_topo = &cpu_topology[cpu];
-
- if (cpuid_topo->socket_id == cpu_topo->socket_id) {
- cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
- if (cpu != cpuid)
- cpumask_set_cpu(cpu,
- &cpuid_topo->core_sibling);
-
- if (cpuid_topo->core_id == cpu_topo->core_id) {
- cpumask_set_cpu(cpuid,
- &cpu_topo->thread_sibling);
- if (cpu != cpuid)
- cpumask_set_cpu(cpu,
- &cpuid_topo->thread_sibling);
- }
- }
- }
- smp_wmb();
+ update_siblings_masks(cpuid);
+
+ update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK);
printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
cpuid, cpu_topology[cpuid].thread_id,
@@ -126,6 +287,75 @@ void store_cpu_topology(unsigned int cpuid)
cpu_topology[cpuid].socket_id, mpidr);
}
+
+#ifdef CONFIG_SCHED_HMP
+
+static const char * const little_cores[] = {
+ "arm,cortex-a7",
+ NULL,
+};
+
+static bool is_little_cpu(struct device_node *cn)
+{
+ const char * const *lc;
+ for (lc = little_cores; *lc; lc++)
+ if (of_device_is_compatible(cn, *lc))
+ return true;
+ return false;
+}
+
+void __init arch_get_fast_and_slow_cpus(struct cpumask *fast,
+ struct cpumask *slow)
+{
+ struct device_node *cn = NULL;
+ int cpu = 0;
+
+ cpumask_clear(fast);
+ cpumask_clear(slow);
+
+ /*
+ * Use the config options if they are given. This helps testing
+ * HMP scheduling on systems without a big.LITTLE architecture.
+ */
+ if (strlen(CONFIG_HMP_FAST_CPU_MASK) && strlen(CONFIG_HMP_SLOW_CPU_MASK)) {
+ if (cpulist_parse(CONFIG_HMP_FAST_CPU_MASK, fast))
+ WARN(1, "Failed to parse HMP fast cpu mask!\n");
+ if (cpulist_parse(CONFIG_HMP_SLOW_CPU_MASK, slow))
+ WARN(1, "Failed to parse HMP slow cpu mask!\n");
+ return;
+ }
+
+ /*
+ * Else, parse device tree for little cores.
+ */
+ while ((cn = of_find_node_by_type(cn, "cpu"))) {
+
+ if (cpu >= num_possible_cpus())
+ break;
+
+ if (is_little_cpu(cn))
+ cpumask_set_cpu(cpu, slow);
+ else
+ cpumask_set_cpu(cpu, fast);
+
+ cpu++;
+ }
+
+ if (!cpumask_empty(fast) && !cpumask_empty(slow))
+ return;
+
+ /*
+ * We didn't find both big and little cores so let's call all cores
+ * fast as this will keep the system running, with all cores being
+ * treated equal.
+ */
+ cpumask_setall(fast);
+ cpumask_clear(slow);
+}
+
+#endif /* CONFIG_SCHED_HMP */
+
+
/*
* init_cpu_topology is called at boot when only one cpu is running
* which prevent simultaneous write access to cpu_topology array
@@ -134,7 +364,7 @@ void init_cpu_topology(void)
{
unsigned int cpu;
- /* init core mask */
+ /* init core mask and power*/
for_each_possible_cpu(cpu) {
struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
@@ -143,6 +373,10 @@ void init_cpu_topology(void)
cpu_topo->socket_id = -1;
cpumask_clear(&cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
+
+ set_power_scale(cpu, SCHED_POWER_SCALE);
}
smp_wmb();
+
+ parse_dt_topology();
}
diff --git a/arch/x86/kernel/cpu/Makefile b/arch/x86/kernel/cpu/Makefile
index 6ab6aa2fdfd..c5981267a60 100644
--- a/arch/x86/kernel/cpu/Makefile
+++ b/arch/x86/kernel/cpu/Makefile
@@ -14,7 +14,7 @@ CFLAGS_common.o := $(nostackp)
obj-y := intel_cacheinfo.o scattered.o topology.o
obj-y += proc.o capflags.o powerflags.o common.o
-obj-y += vmware.o hypervisor.o sched.o mshyperv.o
+obj-y += vmware.o hypervisor.o mshyperv.o
obj-y += rdrand.o
obj-y += match.o
diff --git a/arch/x86/kernel/cpu/sched.c b/arch/x86/kernel/cpu/sched.c
deleted file mode 100644
index a640ae5ad20..00000000000
--- a/arch/x86/kernel/cpu/sched.c
+++ /dev/null
@@ -1,55 +0,0 @@
-#include <linux/sched.h>
-#include <linux/math64.h>
-#include <linux/percpu.h>
-#include <linux/irqflags.h>
-
-#include <asm/cpufeature.h>
-#include <asm/processor.h>
-
-#ifdef CONFIG_SMP
-
-static DEFINE_PER_CPU(struct aperfmperf, old_perf_sched);
-
-static unsigned long scale_aperfmperf(void)
-{
- struct aperfmperf val, *old = &__get_cpu_var(old_perf_sched);
- unsigned long ratio, flags;
-
- local_irq_save(flags);
- get_aperfmperf(&val);
- local_irq_restore(flags);
-
- ratio = calc_aperfmperf_ratio(old, &val);
- *old = val;
-
- return ratio;
-}
-
-unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu)
-{
- /*
- * do aperf/mperf on the cpu level because it includes things
- * like turbo mode, which are relevant to full cores.
- */
- if (boot_cpu_has(X86_FEATURE_APERFMPERF))
- return scale_aperfmperf();
-
- /*
- * maybe have something cpufreq here
- */
-
- return default_scale_freq_power(sd, cpu);
-}
-
-unsigned long arch_scale_smt_power(struct sched_domain *sd, int cpu)
-{
- /*
- * aperf/mperf already includes the smt gain
- */
- if (boot_cpu_has(X86_FEATURE_APERFMPERF))
- return SCHED_LOAD_SCALE;
-
- return default_scale_smt_power(sd, cpu);
-}
-
-#endif
diff --git a/drivers/cpuidle/Kconfig b/drivers/cpuidle/Kconfig
index 78a666d1e5f..a76b689e553 100644
--- a/drivers/cpuidle/Kconfig
+++ b/drivers/cpuidle/Kconfig
@@ -18,3 +18,6 @@ config CPU_IDLE_GOV_MENU
bool
depends on CPU_IDLE && NO_HZ
default y
+
+config ARCH_NEEDS_CPU_IDLE_COUPLED
+ def_bool n
diff --git a/drivers/cpuidle/Makefile b/drivers/cpuidle/Makefile
index 5634f88379d..38c8f69f30c 100644
--- a/drivers/cpuidle/Makefile
+++ b/drivers/cpuidle/Makefile
@@ -3,3 +3,4 @@
#
obj-y += cpuidle.o driver.o governor.o sysfs.o governors/
+obj-$(CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED) += coupled.o
diff --git a/drivers/cpuidle/coupled.c b/drivers/cpuidle/coupled.c
new file mode 100644
index 00000000000..fc427fa1fef
--- /dev/null
+++ b/drivers/cpuidle/coupled.c
@@ -0,0 +1,715 @@
+/*
+ * coupled.c - helper functions to enter the same idle state on multiple cpus
+ *
+ * Copyright (c) 2011 Google, Inc.
+ *
+ * Author: Colin Cross <ccross@android.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ */
+
+#include <linux/kernel.h>
+#include <linux/cpu.h>
+#include <linux/cpuidle.h>
+#include <linux/mutex.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+
+#include "cpuidle.h"
+
+/**
+ * DOC: Coupled cpuidle states
+ *
+ * On some ARM SMP SoCs (OMAP4460, Tegra 2, and probably more), the
+ * cpus cannot be independently powered down, either due to
+ * sequencing restrictions (on Tegra 2, cpu 0 must be the last to
+ * power down), or due to HW bugs (on OMAP4460, a cpu powering up
+ * will corrupt the gic state unless the other cpu runs a work
+ * around). Each cpu has a power state that it can enter without
+ * coordinating with the other cpu (usually Wait For Interrupt, or
+ * WFI), and one or more "coupled" power states that affect blocks
+ * shared between the cpus (L2 cache, interrupt controller, and
+ * sometimes the whole SoC). Entering a coupled power state must
+ * be tightly controlled on both cpus.
+ *
+ * This file implements a solution, where each cpu will wait in the
+ * WFI state until all cpus are ready to enter a coupled state, at
+ * which point the coupled state function will be called on all
+ * cpus at approximately the same time.
+ *
+ * Once all cpus are ready to enter idle, they are woken by an smp
+ * cross call. At this point, there is a chance that one of the
+ * cpus will find work to do, and choose not to enter idle. A
+ * final pass is needed to guarantee that all cpus will call the
+ * power state enter function at the same time. During this pass,
+ * each cpu will increment the ready counter, and continue once the
+ * ready counter matches the number of online coupled cpus. If any
+ * cpu exits idle, the other cpus will decrement their counter and
+ * retry.
+ *
+ * requested_state stores the deepest coupled idle state each cpu
+ * is ready for. It is assumed that the states are indexed from
+ * shallowest (highest power, lowest exit latency) to deepest
+ * (lowest power, highest exit latency). The requested_state
+ * variable is not locked. It is only written from the cpu that
+ * it stores (or by the on/offlining cpu if that cpu is offline),
+ * and only read after all the cpus are ready for the coupled idle
+ * state are are no longer updating it.
+ *
+ * Three atomic counters are used. alive_count tracks the number
+ * of cpus in the coupled set that are currently or soon will be
+ * online. waiting_count tracks the number of cpus that are in
+ * the waiting loop, in the ready loop, or in the coupled idle state.
+ * ready_count tracks the number of cpus that are in the ready loop
+ * or in the coupled idle state.
+ *
+ * To use coupled cpuidle states, a cpuidle driver must:
+ *
+ * Set struct cpuidle_device.coupled_cpus to the mask of all
+ * coupled cpus, usually the same as cpu_possible_mask if all cpus
+ * are part of the same cluster. The coupled_cpus mask must be
+ * set in the struct cpuidle_device for each cpu.
+ *
+ * Set struct cpuidle_device.safe_state to a state that is not a
+ * coupled state. This is usually WFI.
+ *
+ * Set CPUIDLE_FLAG_COUPLED in struct cpuidle_state.flags for each
+ * state that affects multiple cpus.
+ *
+ * Provide a struct cpuidle_state.enter function for each state
+ * that affects multiple cpus. This function is guaranteed to be
+ * called on all cpus at approximately the same time. The driver
+ * should ensure that the cpus all abort together if any cpu tries
+ * to abort once the function is called. The function should return
+ * with interrupts still disabled.
+ */
+
+/**
+ * struct cpuidle_coupled - data for set of cpus that share a coupled idle state
+ * @coupled_cpus: mask of cpus that are part of the coupled set
+ * @requested_state: array of requested states for cpus in the coupled set
+ * @ready_waiting_counts: combined count of cpus in ready or waiting loops
+ * @online_count: count of cpus that are online
+ * @refcnt: reference count of cpuidle devices that are using this struct
+ * @prevent: flag to prevent coupled idle while a cpu is hotplugging
+ */
+struct cpuidle_coupled {
+ cpumask_t coupled_cpus;
+ int requested_state[NR_CPUS];
+ atomic_t ready_waiting_counts;
+ int online_count;
+ int refcnt;
+ int prevent;
+};
+
+#define WAITING_BITS 16
+#define MAX_WAITING_CPUS (1 << WAITING_BITS)
+#define WAITING_MASK (MAX_WAITING_CPUS - 1)
+#define READY_MASK (~WAITING_MASK)
+
+#define CPUIDLE_COUPLED_NOT_IDLE (-1)
+
+static DEFINE_MUTEX(cpuidle_coupled_lock);
+static DEFINE_PER_CPU(struct call_single_data, cpuidle_coupled_poke_cb);
+
+/*
+ * The cpuidle_coupled_poked_mask mask is used to avoid calling
+ * __smp_call_function_single with the per cpu call_single_data struct already
+ * in use. This prevents a deadlock where two cpus are waiting for each others
+ * call_single_data struct to be available
+ */
+static cpumask_t cpuidle_coupled_poked_mask;
+
+/**
+ * cpuidle_coupled_parallel_barrier - synchronize all online coupled cpus
+ * @dev: cpuidle_device of the calling cpu
+ * @a: atomic variable to hold the barrier
+ *
+ * No caller to this function will return from this function until all online
+ * cpus in the same coupled group have called this function. Once any caller
+ * has returned from this function, the barrier is immediately available for
+ * reuse.
+ *
+ * The atomic variable a must be initialized to 0 before any cpu calls
+ * this function, will be reset to 0 before any cpu returns from this function.
+ *
+ * Must only be called from within a coupled idle state handler
+ * (state.enter when state.flags has CPUIDLE_FLAG_COUPLED set).
+ *
+ * Provides full smp barrier semantics before and after calling.
+ */
+void cpuidle_coupled_parallel_barrier(struct cpuidle_device *dev, atomic_t *a)
+{
+ int n = dev->coupled->online_count;
+
+ smp_mb__before_atomic_inc();
+ atomic_inc(a);
+
+ while (atomic_read(a) < n)
+ cpu_relax();
+
+ if (atomic_inc_return(a) == n * 2) {
+ atomic_set(a, 0);
+ return;
+ }
+
+ while (atomic_read(a) > n)
+ cpu_relax();
+}
+
+/**
+ * cpuidle_state_is_coupled - check if a state is part of a coupled set
+ * @dev: struct cpuidle_device for the current cpu
+ * @drv: struct cpuidle_driver for the platform
+ * @state: index of the target state in drv->states
+ *
+ * Returns true if the target state is coupled with cpus besides this one
+ */
+bool cpuidle_state_is_coupled(struct cpuidle_device *dev,
+ struct cpuidle_driver *drv, int state)
+{
+ return drv->states[state].flags & CPUIDLE_FLAG_COUPLED;
+}
+
+/**
+ * cpuidle_coupled_set_ready - mark a cpu as ready
+ * @coupled: the struct coupled that contains the current cpu
+ */
+static inline void cpuidle_coupled_set_ready(struct cpuidle_coupled *coupled)
+{
+ atomic_add(MAX_WAITING_CPUS, &coupled->ready_waiting_counts);
+}
+
+/**
+ * cpuidle_coupled_set_not_ready - mark a cpu as not ready
+ * @coupled: the struct coupled that contains the current cpu
+ *
+ * Decrements the ready counter, unless the ready (and thus the waiting) counter
+ * is equal to the number of online cpus. Prevents a race where one cpu
+ * decrements the waiting counter and then re-increments it just before another
+ * cpu has decremented its ready counter, leading to the ready counter going
+ * down from the number of online cpus without going through the coupled idle
+ * state.
+ *
+ * Returns 0 if the counter was decremented successfully, -EINVAL if the ready
+ * counter was equal to the number of online cpus.
+ */
+static
+inline int cpuidle_coupled_set_not_ready(struct cpuidle_coupled *coupled)
+{
+ int all;
+ int ret;
+
+ all = coupled->online_count || (coupled->online_count << WAITING_BITS);
+ ret = atomic_add_unless(&coupled->ready_waiting_counts,
+ -MAX_WAITING_CPUS, all);
+
+ return ret ? 0 : -EINVAL;
+}
+
+/**
+ * cpuidle_coupled_no_cpus_ready - check if no cpus in a coupled set are ready
+ * @coupled: the struct coupled that contains the current cpu
+ *
+ * Returns true if all of the cpus in a coupled set are out of the ready loop.
+ */
+static inline int cpuidle_coupled_no_cpus_ready(struct cpuidle_coupled *coupled)
+{
+ int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS;
+ return r == 0;
+}
+
+/**
+ * cpuidle_coupled_cpus_ready - check if all cpus in a coupled set are ready
+ * @coupled: the struct coupled that contains the current cpu
+ *
+ * Returns true if all cpus coupled to this target state are in the ready loop
+ */
+static inline bool cpuidle_coupled_cpus_ready(struct cpuidle_coupled *coupled)
+{
+ int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS;
+ return r == coupled->online_count;
+}
+
+/**
+ * cpuidle_coupled_cpus_waiting - check if all cpus in a coupled set are waiting
+ * @coupled: the struct coupled that contains the current cpu
+ *
+ * Returns true if all cpus coupled to this target state are in the wait loop
+ */
+static inline bool cpuidle_coupled_cpus_waiting(struct cpuidle_coupled *coupled)
+{
+ int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK;
+ return w == coupled->online_count;
+}
+
+/**
+ * cpuidle_coupled_no_cpus_waiting - check if no cpus in coupled set are waiting
+ * @coupled: the struct coupled that contains the current cpu
+ *
+ * Returns true if all of the cpus in a coupled set are out of the waiting loop.
+ */
+static inline int cpuidle_coupled_no_cpus_waiting(struct cpuidle_coupled *coupled)
+{
+ int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK;
+ return w == 0;
+}
+
+/**
+ * cpuidle_coupled_get_state - determine the deepest idle state
+ * @dev: struct cpuidle_device for this cpu
+ * @coupled: the struct coupled that contains the current cpu
+ *
+ * Returns the deepest idle state that all coupled cpus can enter
+ */
+static inline int cpuidle_coupled_get_state(struct cpuidle_device *dev,
+ struct cpuidle_coupled *coupled)
+{
+ int i;
+ int state = INT_MAX;
+
+ /*
+ * Read barrier ensures that read of requested_state is ordered after
+ * reads of ready_count. Matches the write barriers
+ * cpuidle_set_state_waiting.
+ */
+ smp_rmb();
+
+ for_each_cpu_mask(i, coupled->coupled_cpus)
+ if (cpu_online(i) && coupled->requested_state[i] < state)
+ state = coupled->requested_state[i];
+
+ return state;
+}
+
+static void cpuidle_coupled_poked(void *info)
+{
+ int cpu = (unsigned long)info;
+ cpumask_clear_cpu(cpu, &cpuidle_coupled_poked_mask);
+}
+
+/**
+ * cpuidle_coupled_poke - wake up a cpu that may be waiting
+ * @cpu: target cpu
+ *
+ * Ensures that the target cpu exits it's waiting idle state (if it is in it)
+ * and will see updates to waiting_count before it re-enters it's waiting idle
+ * state.
+ *
+ * If cpuidle_coupled_poked_mask is already set for the target cpu, that cpu
+ * either has or will soon have a pending IPI that will wake it out of idle,
+ * or it is currently processing the IPI and is not in idle.
+ */
+static void cpuidle_coupled_poke(int cpu)
+{
+ struct call_single_data *csd = &per_cpu(cpuidle_coupled_poke_cb, cpu);
+
+ if (!cpumask_test_and_set_cpu(cpu, &cpuidle_coupled_poked_mask))
+ __smp_call_function_single(cpu, csd, 0);
+}
+
+/**
+ * cpuidle_coupled_poke_others - wake up all other cpus that may be waiting
+ * @dev: struct cpuidle_device for this cpu
+ * @coupled: the struct coupled that contains the current cpu
+ *
+ * Calls cpuidle_coupled_poke on all other online cpus.
+ */
+static void cpuidle_coupled_poke_others(int this_cpu,
+ struct cpuidle_coupled *coupled)
+{
+ int cpu;
+
+ for_each_cpu_mask(cpu, coupled->coupled_cpus)
+ if (cpu != this_cpu && cpu_online(cpu))
+ cpuidle_coupled_poke(cpu);
+}
+
+/**
+ * cpuidle_coupled_set_waiting - mark this cpu as in the wait loop
+ * @dev: struct cpuidle_device for this cpu
+ * @coupled: the struct coupled that contains the current cpu
+ * @next_state: the index in drv->states of the requested state for this cpu
+ *
+ * Updates the requested idle state for the specified cpuidle device,
+ * poking all coupled cpus out of idle if necessary to let them see the new
+ * state.
+ */
+static void cpuidle_coupled_set_waiting(int cpu,
+ struct cpuidle_coupled *coupled, int next_state)
+{
+ int w;
+
+ coupled->requested_state[cpu] = next_state;
+
+ /*
+ * If this is the last cpu to enter the waiting state, poke
+ * all the other cpus out of their waiting state so they can
+ * enter a deeper state. This can race with one of the cpus
+ * exiting the waiting state due to an interrupt and
+ * decrementing waiting_count, see comment below.
+ *
+ * The atomic_inc_return provides a write barrier to order the write
+ * to requested_state with the later write that increments ready_count.
+ */
+ w = atomic_inc_return(&coupled->ready_waiting_counts) & WAITING_MASK;
+ if (w == coupled->online_count)
+ cpuidle_coupled_poke_others(cpu, coupled);
+}
+
+/**
+ * cpuidle_coupled_set_not_waiting - mark this cpu as leaving the wait loop
+ * @dev: struct cpuidle_device for this cpu
+ * @coupled: the struct coupled that contains the current cpu
+ *
+ * Removes the requested idle state for the specified cpuidle device.
+ */
+static void cpuidle_coupled_set_not_waiting(int cpu,
+ struct cpuidle_coupled *coupled)
+{
+ /*
+ * Decrementing waiting count can race with incrementing it in
+ * cpuidle_coupled_set_waiting, but that's OK. Worst case, some
+ * cpus will increment ready_count and then spin until they
+ * notice that this cpu has cleared it's requested_state.
+ */
+ atomic_dec(&coupled->ready_waiting_counts);
+
+ coupled->requested_state[cpu] = CPUIDLE_COUPLED_NOT_IDLE;
+}
+
+/**
+ * cpuidle_coupled_set_done - mark this cpu as leaving the ready loop
+ * @cpu: the current cpu
+ * @coupled: the struct coupled that contains the current cpu
+ *
+ * Marks this cpu as no longer in the ready and waiting loops. Decrements
+ * the waiting count first to prevent another cpu looping back in and seeing
+ * this cpu as waiting just before it exits idle.
+ */
+static void cpuidle_coupled_set_done(int cpu, struct cpuidle_coupled *coupled)
+{
+ cpuidle_coupled_set_not_waiting(cpu, coupled);
+ atomic_sub(MAX_WAITING_CPUS, &coupled->ready_waiting_counts);
+}
+
+/**
+ * cpuidle_coupled_clear_pokes - spin until the poke interrupt is processed
+ * @cpu - this cpu
+ *
+ * Turns on interrupts and spins until any outstanding poke interrupts have
+ * been processed and the poke bit has been cleared.
+ *
+ * Other interrupts may also be processed while interrupts are enabled, so
+ * need_resched() must be tested after turning interrupts off again to make sure
+ * the interrupt didn't schedule work that should take the cpu out of idle.
+ *
+ * Returns 0 if need_resched was false, -EINTR if need_resched was true.
+ */
+static int cpuidle_coupled_clear_pokes(int cpu)
+{
+ local_irq_enable();
+ while (cpumask_test_cpu(cpu, &cpuidle_coupled_poked_mask))
+ cpu_relax();
+ local_irq_disable();
+
+ return need_resched() ? -EINTR : 0;
+}
+
+/**
+ * cpuidle_enter_state_coupled - attempt to enter a state with coupled cpus
+ * @dev: struct cpuidle_device for the current cpu
+ * @drv: struct cpuidle_driver for the platform
+ * @next_state: index of the requested state in drv->states
+ *
+ * Coordinate with coupled cpus to enter the target state. This is a two
+ * stage process. In the first stage, the cpus are operating independently,
+ * and may call into cpuidle_enter_state_coupled at completely different times.
+ * To save as much power as possible, the first cpus to call this function will
+ * go to an intermediate state (the cpuidle_device's safe state), and wait for
+ * all the other cpus to call this function. Once all coupled cpus are idle,
+ * the second stage will start. Each coupled cpu will spin until all cpus have
+ * guaranteed that they will call the target_state.
+ *
+ * This function must be called with interrupts disabled. It may enable
+ * interrupts while preparing for idle, and it will always return with
+ * interrupts enabled.
+ */
+int cpuidle_enter_state_coupled(struct cpuidle_device *dev,
+ struct cpuidle_driver *drv, int next_state)
+{
+ int entered_state = -1;
+ struct cpuidle_coupled *coupled = dev->coupled;
+
+ if (!coupled)
+ return -EINVAL;
+
+ while (coupled->prevent) {
+ if (cpuidle_coupled_clear_pokes(dev->cpu)) {
+ local_irq_enable();
+ return entered_state;
+ }
+ entered_state = cpuidle_enter_state(dev, drv,
+ dev->safe_state_index);
+ }
+
+ /* Read barrier ensures online_count is read after prevent is cleared */
+ smp_rmb();
+
+ cpuidle_coupled_set_waiting(dev->cpu, coupled, next_state);
+
+retry:
+ /*
+ * Wait for all coupled cpus to be idle, using the deepest state
+ * allowed for a single cpu.
+ */
+ while (!cpuidle_coupled_cpus_waiting(coupled)) {
+ if (cpuidle_coupled_clear_pokes(dev->cpu)) {
+ cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
+ goto out;
+ }
+
+ if (coupled->prevent) {
+ cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
+ goto out;
+ }
+
+ entered_state = cpuidle_enter_state(dev, drv,
+ dev->safe_state_index);
+ }
+
+ if (cpuidle_coupled_clear_pokes(dev->cpu)) {
+ cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
+ goto out;
+ }
+
+ /*
+ * All coupled cpus are probably idle. There is a small chance that
+ * one of the other cpus just became active. Increment the ready count,
+ * and spin until all coupled cpus have incremented the counter. Once a
+ * cpu has incremented the ready counter, it cannot abort idle and must
+ * spin until either all cpus have incremented the ready counter, or
+ * another cpu leaves idle and decrements the waiting counter.
+ */
+
+ cpuidle_coupled_set_ready(coupled);
+ while (!cpuidle_coupled_cpus_ready(coupled)) {
+ /* Check if any other cpus bailed out of idle. */
+ if (!cpuidle_coupled_cpus_waiting(coupled))
+ if (!cpuidle_coupled_set_not_ready(coupled))
+ goto retry;
+
+ cpu_relax();
+ }
+
+ /* all cpus have acked the coupled state */
+ next_state = cpuidle_coupled_get_state(dev, coupled);
+
+ entered_state = cpuidle_enter_state(dev, drv, next_state);
+
+ cpuidle_coupled_set_done(dev->cpu, coupled);
+
+out:
+ /*
+ * Normal cpuidle states are expected to return with irqs enabled.
+ * That leads to an inefficiency where a cpu receiving an interrupt
+ * that brings it out of idle will process that interrupt before
+ * exiting the idle enter function and decrementing ready_count. All
+ * other cpus will need to spin waiting for the cpu that is processing
+ * the interrupt. If the driver returns with interrupts disabled,
+ * all other cpus will loop back into the safe idle state instead of
+ * spinning, saving power.
+ *
+ * Calling local_irq_enable here allows coupled states to return with
+ * interrupts disabled, but won't cause problems for drivers that
+ * exit with interrupts enabled.
+ */
+ local_irq_enable();
+
+ /*
+ * Wait until all coupled cpus have exited idle. There is no risk that
+ * a cpu exits and re-enters the ready state because this cpu has
+ * already decremented its waiting_count.
+ */
+ while (!cpuidle_coupled_no_cpus_ready(coupled))
+ cpu_relax();
+
+ return entered_state;
+}
+
+static void cpuidle_coupled_update_online_cpus(struct cpuidle_coupled *coupled)
+{
+ cpumask_t cpus;
+ cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus);
+ coupled->online_count = cpumask_weight(&cpus);
+}
+
+/**
+ * cpuidle_coupled_register_device - register a coupled cpuidle device
+ * @dev: struct cpuidle_device for the current cpu
+ *
+ * Called from cpuidle_register_device to handle coupled idle init. Finds the
+ * cpuidle_coupled struct for this set of coupled cpus, or creates one if none
+ * exists yet.
+ */
+int cpuidle_coupled_register_device(struct cpuidle_device *dev)
+{
+ int cpu;
+ struct cpuidle_device *other_dev;
+ struct call_single_data *csd;
+ struct cpuidle_coupled *coupled;
+
+ if (cpumask_empty(&dev->coupled_cpus))
+ return 0;
+
+ for_each_cpu_mask(cpu, dev->coupled_cpus) {
+ other_dev = per_cpu(cpuidle_devices, cpu);
+ if (other_dev && other_dev->coupled) {
+ coupled = other_dev->coupled;
+ goto have_coupled;
+ }
+ }
+
+ /* No existing coupled info found, create a new one */
+ coupled = kzalloc(sizeof(struct cpuidle_coupled), GFP_KERNEL);
+ if (!coupled)
+ return -ENOMEM;
+
+ coupled->coupled_cpus = dev->coupled_cpus;
+
+have_coupled:
+ dev->coupled = coupled;
+ if (WARN_ON(!cpumask_equal(&dev->coupled_cpus, &coupled->coupled_cpus)))
+ coupled->prevent++;
+
+ cpuidle_coupled_update_online_cpus(coupled);
+
+ coupled->refcnt++;
+
+ csd = &per_cpu(cpuidle_coupled_poke_cb, dev->cpu);
+ csd->func = cpuidle_coupled_poked;
+ csd->info = (void *)(unsigned long)dev->cpu;
+
+ return 0;
+}
+
+/**
+ * cpuidle_coupled_unregister_device - unregister a coupled cpuidle device
+ * @dev: struct cpuidle_device for the current cpu
+ *
+ * Called from cpuidle_unregister_device to tear down coupled idle. Removes the
+ * cpu from the coupled idle set, and frees the cpuidle_coupled_info struct if
+ * this was the last cpu in the set.
+ */
+void cpuidle_coupled_unregister_device(struct cpuidle_device *dev)
+{
+ struct cpuidle_coupled *coupled = dev->coupled;
+
+ if (cpumask_empty(&dev->coupled_cpus))
+ return;
+
+ if (--coupled->refcnt)
+ kfree(coupled);
+ dev->coupled = NULL;
+}
+
+/**
+ * cpuidle_coupled_prevent_idle - prevent cpus from entering a coupled state
+ * @coupled: the struct coupled that contains the cpu that is changing state
+ *
+ * Disables coupled cpuidle on a coupled set of cpus. Used to ensure that
+ * cpu_online_mask doesn't change while cpus are coordinating coupled idle.
+ */
+static void cpuidle_coupled_prevent_idle(struct cpuidle_coupled *coupled)
+{
+ int cpu = get_cpu();
+
+ /* Force all cpus out of the waiting loop. */
+ coupled->prevent++;
+ cpuidle_coupled_poke_others(cpu, coupled);
+ put_cpu();
+ while (!cpuidle_coupled_no_cpus_waiting(coupled))
+ cpu_relax();
+}
+
+/**
+ * cpuidle_coupled_allow_idle - allows cpus to enter a coupled state
+ * @coupled: the struct coupled that contains the cpu that is changing state
+ *
+ * Enables coupled cpuidle on a coupled set of cpus. Used to ensure that
+ * cpu_online_mask doesn't change while cpus are coordinating coupled idle.
+ */
+static void cpuidle_coupled_allow_idle(struct cpuidle_coupled *coupled)
+{
+ int cpu = get_cpu();
+
+ /*
+ * Write barrier ensures readers see the new online_count when they
+ * see prevent == false.
+ */
+ smp_wmb();
+ coupled->prevent--;
+ /* Force cpus out of the prevent loop. */
+ cpuidle_coupled_poke_others(cpu, coupled);
+ put_cpu();
+}
+
+/**
+ * cpuidle_coupled_cpu_notify - notifier called during hotplug transitions
+ * @nb: notifier block
+ * @action: hotplug transition
+ * @hcpu: target cpu number
+ *
+ * Called when a cpu is brought on or offline using hotplug. Updates the
+ * coupled cpu set appropriately
+ */
+static int cpuidle_coupled_cpu_notify(struct notifier_block *nb,
+ unsigned long action, void *hcpu)
+{
+ int cpu = (unsigned long)hcpu;
+ struct cpuidle_device *dev;
+
+ mutex_lock(&cpuidle_lock);
+
+ dev = per_cpu(cpuidle_devices, cpu);
+ if (!dev->coupled)
+ goto out;
+
+ switch (action & ~CPU_TASKS_FROZEN) {
+ case CPU_UP_PREPARE:
+ case CPU_DOWN_PREPARE:
+ cpuidle_coupled_prevent_idle(dev->coupled);
+ break;
+ case CPU_ONLINE:
+ case CPU_DEAD:
+ cpuidle_coupled_update_online_cpus(dev->coupled);
+ /* Fall through */
+ case CPU_UP_CANCELED:
+ case CPU_DOWN_FAILED:
+ cpuidle_coupled_allow_idle(dev->coupled);
+ break;
+ }
+
+out:
+ mutex_unlock(&cpuidle_lock);
+ return NOTIFY_OK;
+}
+
+static struct notifier_block cpuidle_coupled_cpu_notifier = {
+ .notifier_call = cpuidle_coupled_cpu_notify,
+};
+
+static int __init cpuidle_coupled_init(void)
+{
+ return register_cpu_notifier(&cpuidle_coupled_cpu_notifier);
+}
+core_initcall(cpuidle_coupled_init);
diff --git a/drivers/cpuidle/cpuidle.c b/drivers/cpuidle/cpuidle.c
index d90519cec88..ed1dd859299 100644
--- a/drivers/cpuidle/cpuidle.c
+++ b/drivers/cpuidle/cpuidle.c
@@ -92,6 +92,34 @@ int cpuidle_play_dead(void)
}
/**
+ * cpuidle_enter_state - enter the state and update stats
+ * @dev: cpuidle device for this cpu
+ * @drv: cpuidle driver for this cpu
+ * @next_state: index into drv->states of the state to enter
+ */
+int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
+ int next_state)
+{
+ int entered_state;
+
+ entered_state = cpuidle_enter_ops(dev, drv, next_state);
+
+ if (entered_state >= 0) {
+ /* Update cpuidle counters */
+ /* This can be moved to within driver enter routine
+ * but that results in multiple copies of same code.
+ */
+ dev->states_usage[entered_state].time +=
+ (unsigned long long)dev->last_residency;
+ dev->states_usage[entered_state].usage++;
+ } else {
+ dev->last_residency = 0;
+ }
+
+ return entered_state;
+}
+
+/**
* cpuidle_idle_call - the main idle loop
*
* NOTE: no locks or semaphores should be used here
@@ -132,23 +160,15 @@ int cpuidle_idle_call(void)
trace_power_start_rcuidle(POWER_CSTATE, next_state, dev->cpu);
trace_cpu_idle_rcuidle(next_state, dev->cpu);
- entered_state = cpuidle_enter_ops(dev, drv, next_state);
+ if (cpuidle_state_is_coupled(dev, drv, next_state))
+ entered_state = cpuidle_enter_state_coupled(dev, drv,
+ next_state);
+ else
+ entered_state = cpuidle_enter_state(dev, drv, next_state);
trace_power_end_rcuidle(dev->cpu);
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, dev->cpu);
- if (entered_state >= 0) {
- /* Update cpuidle counters */
- /* This can be moved to within driver enter routine
- * but that results in multiple copies of same code.
- */
- dev->states_usage[entered_state].time +=
- (unsigned long long)dev->last_residency;
- dev->states_usage[entered_state].usage++;
- } else {
- dev->last_residency = 0;
- }
-
/* give the governor an opportunity to reflect on the outcome */
if (cpuidle_curr_governor->reflect)
cpuidle_curr_governor->reflect(dev, entered_state);
@@ -376,13 +396,25 @@ static int __cpuidle_register_device(struct cpuidle_device *dev)
per_cpu(cpuidle_devices, dev->cpu) = dev;
list_add(&dev->device_list, &cpuidle_detected_devices);
- if ((ret = cpuidle_add_sysfs(cpu_dev))) {
- module_put(cpuidle_driver->owner);
- return ret;
- }
+ ret = cpuidle_add_sysfs(cpu_dev);
+ if (ret)
+ goto err_sysfs;
+
+ ret = cpuidle_coupled_register_device(dev);
+ if (ret)
+ goto err_coupled;
dev->registered = 1;
return 0;
+
+err_coupled:
+ cpuidle_remove_sysfs(cpu_dev);
+ wait_for_completion(&dev->kobj_unregister);
+err_sysfs:
+ list_del(&dev->device_list);
+ per_cpu(cpuidle_devices, dev->cpu) = NULL;
+ module_put(cpuidle_driver->owner);
+ return ret;
}
/**
@@ -432,6 +464,8 @@ void cpuidle_unregister_device(struct cpuidle_device *dev)
wait_for_completion(&dev->kobj_unregister);
per_cpu(cpuidle_devices, dev->cpu) = NULL;
+ cpuidle_coupled_unregister_device(dev);
+
cpuidle_resume_and_unlock();
module_put(cpuidle_driver->owner);
diff --git a/drivers/cpuidle/cpuidle.h b/drivers/cpuidle/cpuidle.h
index 7db186685c2..76e7f696ad8 100644
--- a/drivers/cpuidle/cpuidle.h
+++ b/drivers/cpuidle/cpuidle.h
@@ -14,6 +14,8 @@ extern struct list_head cpuidle_detected_devices;
extern struct mutex cpuidle_lock;
extern spinlock_t cpuidle_driver_lock;
extern int cpuidle_disabled(void);
+extern int cpuidle_enter_state(struct cpuidle_device *dev,
+ struct cpuidle_driver *drv, int next_state);
/* idle loop */
extern void cpuidle_install_idle_handler(void);
@@ -30,4 +32,34 @@ extern void cpuidle_remove_state_sysfs(struct cpuidle_device *device);
extern int cpuidle_add_sysfs(struct device *dev);
extern void cpuidle_remove_sysfs(struct device *dev);
+#ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
+bool cpuidle_state_is_coupled(struct cpuidle_device *dev,
+ struct cpuidle_driver *drv, int state);
+int cpuidle_enter_state_coupled(struct cpuidle_device *dev,
+ struct cpuidle_driver *drv, int next_state);
+int cpuidle_coupled_register_device(struct cpuidle_device *dev);
+void cpuidle_coupled_unregister_device(struct cpuidle_device *dev);
+#else
+static inline bool cpuidle_state_is_coupled(struct cpuidle_device *dev,
+ struct cpuidle_driver *drv, int state)
+{
+ return false;
+}
+
+static inline int cpuidle_enter_state_coupled(struct cpuidle_device *dev,
+ struct cpuidle_driver *drv, int next_state)
+{
+ return -1;
+}
+
+static inline int cpuidle_coupled_register_device(struct cpuidle_device *dev)
+{
+ return 0;
+}
+
+static inline void cpuidle_coupled_unregister_device(struct cpuidle_device *dev)
+{
+}
+#endif
+
#endif /* __DRIVER_CPUIDLE_H */
diff --git a/include/linux/cpu.h b/include/linux/cpu.h
index 2e9b9ebbeb7..ce7a074f251 100644
--- a/include/linux/cpu.h
+++ b/include/linux/cpu.h
@@ -73,8 +73,9 @@ enum {
/* migration should happen before other stuff but after perf */
CPU_PRI_PERF = 20,
CPU_PRI_MIGRATION = 10,
- /* prepare workqueues for other notifiers */
- CPU_PRI_WORKQUEUE = 5,
+ /* bring up workqueues before normal notifiers and down after */
+ CPU_PRI_WORKQUEUE_UP = 5,
+ CPU_PRI_WORKQUEUE_DOWN = -5,
};
#define CPU_ONLINE 0x0002 /* CPU (unsigned)v is up */
diff --git a/include/linux/cpuidle.h b/include/linux/cpuidle.h
index 6c26a3da0e0..5ab7183313c 100644
--- a/include/linux/cpuidle.h
+++ b/include/linux/cpuidle.h
@@ -57,6 +57,7 @@ struct cpuidle_state {
/* Idle State Flags */
#define CPUIDLE_FLAG_TIME_VALID (0x01) /* is residency time measurable? */
+#define CPUIDLE_FLAG_COUPLED (0x02) /* state applies to multiple cpus */
#define CPUIDLE_DRIVER_FLAGS_MASK (0xFFFF0000)
@@ -100,6 +101,12 @@ struct cpuidle_device {
struct list_head device_list;
struct kobject kobj;
struct completion kobj_unregister;
+
+#ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
+ int safe_state_index;
+ cpumask_t coupled_cpus;
+ struct cpuidle_coupled *coupled;
+#endif
};
DECLARE_PER_CPU(struct cpuidle_device *, cpuidle_devices);
@@ -176,6 +183,10 @@ static inline int cpuidle_play_dead(void) {return -ENODEV; }
#endif
+#ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED
+void cpuidle_coupled_parallel_barrier(struct cpuidle_device *dev, atomic_t *a);
+#endif
+
/******************************
* CPUIDLE GOVERNOR INTERFACE *
******************************/
diff --git a/include/linux/kthread.h b/include/linux/kthread.h
index 5365347a0dc..8d816646f76 100644
--- a/include/linux/kthread.h
+++ b/include/linux/kthread.h
@@ -58,8 +58,6 @@ extern int tsk_fork_get_node(struct task_struct *tsk);
* can be queued and flushed using queue/flush_kthread_work()
* respectively. Queued kthread_works are processed by a kthread
* running kthread_worker_fn().
- *
- * A kthread_work can't be freed while it is executing.
*/
struct kthread_work;
typedef void (*kthread_work_func_t)(struct kthread_work *work);
@@ -68,15 +66,14 @@ struct kthread_worker {
spinlock_t lock;
struct list_head work_list;
struct task_struct *task;
+ struct kthread_work *current_work;
};
struct kthread_work {
struct list_head node;
kthread_work_func_t func;
wait_queue_head_t done;
- atomic_t flushing;
- int queue_seq;
- int done_seq;
+ struct kthread_worker *worker;
};
#define KTHREAD_WORKER_INIT(worker) { \
@@ -88,7 +85,6 @@ struct kthread_work {
.node = LIST_HEAD_INIT((work).node), \
.func = (fn), \
.done = __WAIT_QUEUE_HEAD_INITIALIZER((work).done), \
- .flushing = ATOMIC_INIT(0), \
}
#define DEFINE_KTHREAD_WORKER(worker) \
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 4a1f493e0fe..c30a799227d 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -1100,6 +1100,7 @@ struct sched_class {
#ifdef CONFIG_SMP
int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
+ void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
void (*post_schedule) (struct rq *this_rq);
@@ -1134,6 +1135,15 @@ struct load_weight {
unsigned long weight, inv_weight;
};
+struct sched_avg {
+ u32 runnable_avg_sum, runnable_avg_period;
+ u64 last_runnable_update;
+ s64 decay_count;
+ unsigned long load_avg_contrib;
+ unsigned long load_avg_ratio;
+ u32 usage_avg_sum;
+};
+
#ifdef CONFIG_SCHEDSTATS
struct sched_statistics {
u64 wait_start;
@@ -1194,6 +1204,15 @@ struct sched_entity {
/* rq "owned" by this entity/group: */
struct cfs_rq *my_q;
#endif
+/*
+ * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
+ * removed when useful for applications beyond shares distribution (e.g.
+ * load-balance).
+ */
+#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
+ /* Per-entity load-tracking */
+ struct sched_avg avg;
+#endif
};
struct sched_rt_entity {
diff --git a/include/trace/events/sched.h b/include/trace/events/sched.h
index ea7a2035456..2c50a06fbed 100644
--- a/include/trace/events/sched.h
+++ b/include/trace/events/sched.h
@@ -426,6 +426,157 @@ TRACE_EVENT(sched_pi_setprio,
__entry->oldprio, __entry->newprio)
);
+/*
+ * Tracepoint for showing tracked load contribution.
+ */
+TRACE_EVENT(sched_task_load_contrib,
+
+ TP_PROTO(struct task_struct *tsk, unsigned long load_contrib),
+
+ TP_ARGS(tsk, load_contrib),
+
+ TP_STRUCT__entry(
+ __array(char, comm, TASK_COMM_LEN)
+ __field(pid_t, pid)
+ __field(unsigned long, load_contrib)
+ ),
+
+ TP_fast_assign(
+ memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+ __entry->pid = tsk->pid;
+ __entry->load_contrib = load_contrib;
+ ),
+
+ TP_printk("comm=%s pid=%d load_contrib=%lu",
+ __entry->comm, __entry->pid,
+ __entry->load_contrib)
+);
+
+/*
+ * Tracepoint for showing tracked task runnable ratio [0..1023].
+ */
+TRACE_EVENT(sched_task_runnable_ratio,
+
+ TP_PROTO(struct task_struct *tsk, unsigned long ratio),
+
+ TP_ARGS(tsk, ratio),
+
+ TP_STRUCT__entry(
+ __array(char, comm, TASK_COMM_LEN)
+ __field(pid_t, pid)
+ __field(unsigned long, ratio)
+ ),
+
+ TP_fast_assign(
+ memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+ __entry->pid = tsk->pid;
+ __entry->ratio = ratio;
+ ),
+
+ TP_printk("comm=%s pid=%d ratio=%lu",
+ __entry->comm, __entry->pid,
+ __entry->ratio)
+);
+
+/*
+ * Tracepoint for showing tracked rq runnable ratio [0..1023].
+ */
+TRACE_EVENT(sched_rq_runnable_ratio,
+
+ TP_PROTO(int cpu, unsigned long ratio),
+
+ TP_ARGS(cpu, ratio),
+
+ TP_STRUCT__entry(
+ __field(int, cpu)
+ __field(unsigned long, ratio)
+ ),
+
+ TP_fast_assign(
+ __entry->cpu = cpu;
+ __entry->ratio = ratio;
+ ),
+
+ TP_printk("cpu=%d ratio=%lu",
+ __entry->cpu,
+ __entry->ratio)
+);
+
+/*
+ * Tracepoint for showing tracked rq runnable load.
+ */
+TRACE_EVENT(sched_rq_runnable_load,
+
+ TP_PROTO(int cpu, u64 load),
+
+ TP_ARGS(cpu, load),
+
+ TP_STRUCT__entry(
+ __field(int, cpu)
+ __field(u64, load)
+ ),
+
+ TP_fast_assign(
+ __entry->cpu = cpu;
+ __entry->load = load;
+ ),
+
+ TP_printk("cpu=%d load=%llu",
+ __entry->cpu,
+ __entry->load)
+);
+
+/*
+ * Tracepoint for showing tracked task cpu usage ratio [0..1023].
+ */
+TRACE_EVENT(sched_task_usage_ratio,
+
+ TP_PROTO(struct task_struct *tsk, unsigned long ratio),
+
+ TP_ARGS(tsk, ratio),
+
+ TP_STRUCT__entry(
+ __array(char, comm, TASK_COMM_LEN)
+ __field(pid_t, pid)
+ __field(unsigned long, ratio)
+ ),
+
+ TP_fast_assign(
+ memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+ __entry->pid = tsk->pid;
+ __entry->ratio = ratio;
+ ),
+
+ TP_printk("comm=%s pid=%d ratio=%lu",
+ __entry->comm, __entry->pid,
+ __entry->ratio)
+);
+
+/*
+ * Tracepoint for HMP (CONFIG_SCHED_HMP) task migrations.
+ */
+TRACE_EVENT(sched_hmp_migrate,
+
+ TP_PROTO(struct task_struct *tsk, int val),
+
+ TP_ARGS(tsk, val),
+
+ TP_STRUCT__entry(
+ __array(char, comm, TASK_COMM_LEN)
+ __field(pid_t, pid)
+ __field(int, val)
+ ),
+
+ TP_fast_assign(
+ memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
+ __entry->pid = tsk->pid;
+ __entry->val = val;
+ ),
+
+ TP_printk("comm=%s pid=%d val=%d",
+ __entry->comm, __entry->pid,
+ __entry->val)
+);
#endif /* _TRACE_SCHED_H */
/* This part must be outside protection */
diff --git a/include/trace/events/workqueue.h b/include/trace/events/workqueue.h
index 4018f5058f2..f28d1b65f17 100644
--- a/include/trace/events/workqueue.h
+++ b/include/trace/events/workqueue.h
@@ -54,7 +54,7 @@ TRACE_EVENT(workqueue_queue_work,
__entry->function = work->func;
__entry->workqueue = cwq->wq;
__entry->req_cpu = req_cpu;
- __entry->cpu = cwq->gcwq->cpu;
+ __entry->cpu = cwq->pool->gcwq->cpu;
),
TP_printk("work struct=%p function=%pf workqueue=%p req_cpu=%u cpu=%u",
diff --git a/kernel/kthread.c b/kernel/kthread.c
index 571fa798323..146a6fa9682 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -507,16 +507,12 @@ repeat:
struct kthread_work, node);
list_del_init(&work->node);
}
+ worker->current_work = work;
spin_unlock_irq(&worker->lock);
if (work) {
__set_current_state(TASK_RUNNING);
work->func(work);
- smp_wmb(); /* wmb worker-b0 paired with flush-b1 */
- work->done_seq = work->queue_seq;
- smp_mb(); /* mb worker-b1 paired with flush-b0 */
- if (atomic_read(&work->flushing))
- wake_up_all(&work->done);
} else if (!freezing(current))
schedule();
@@ -525,6 +521,19 @@ repeat:
}
EXPORT_SYMBOL_GPL(kthread_worker_fn);
+/* insert @work before @pos in @worker */
+static void insert_kthread_work(struct kthread_worker *worker,
+ struct kthread_work *work,
+ struct list_head *pos)
+{
+ lockdep_assert_held(&worker->lock);
+
+ list_add_tail(&work->node, pos);
+ work->worker = worker;
+ if (likely(worker->task))
+ wake_up_process(worker->task);
+}
+
/**
* queue_kthread_work - queue a kthread_work
* @worker: target kthread_worker
@@ -542,10 +551,7 @@ bool queue_kthread_work(struct kthread_worker *worker,
spin_lock_irqsave(&worker->lock, flags);
if (list_empty(&work->node)) {
- list_add_tail(&work->node, &worker->work_list);
- work->queue_seq++;
- if (likely(worker->task))
- wake_up_process(worker->task);
+ insert_kthread_work(worker, work, &worker->work_list);
ret = true;
}
spin_unlock_irqrestore(&worker->lock, flags);
@@ -553,6 +559,18 @@ bool queue_kthread_work(struct kthread_worker *worker,
}
EXPORT_SYMBOL_GPL(queue_kthread_work);
+struct kthread_flush_work {
+ struct kthread_work work;
+ struct completion done;
+};
+
+static void kthread_flush_work_fn(struct kthread_work *work)
+{
+ struct kthread_flush_work *fwork =
+ container_of(work, struct kthread_flush_work, work);
+ complete(&fwork->done);
+}
+
/**
* flush_kthread_work - flush a kthread_work
* @work: work to flush
@@ -561,39 +579,37 @@ EXPORT_SYMBOL_GPL(queue_kthread_work);
*/
void flush_kthread_work(struct kthread_work *work)
{
- int seq = work->queue_seq;
-
- atomic_inc(&work->flushing);
+ struct kthread_flush_work fwork = {
+ KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
+ COMPLETION_INITIALIZER_ONSTACK(fwork.done),
+ };
+ struct kthread_worker *worker;
+ bool noop = false;
- /*
- * mb flush-b0 paired with worker-b1, to make sure either
- * worker sees the above increment or we see done_seq update.
- */
- smp_mb__after_atomic_inc();
+retry:
+ worker = work->worker;
+ if (!worker)
+ return;
- /* A - B <= 0 tests whether B is in front of A regardless of overflow */
- wait_event(work->done, seq - work->done_seq <= 0);
- atomic_dec(&work->flushing);
+ spin_lock_irq(&worker->lock);
+ if (work->worker != worker) {
+ spin_unlock_irq(&worker->lock);
+ goto retry;
+ }
- /*
- * rmb flush-b1 paired with worker-b0, to make sure our caller
- * sees every change made by work->func().
- */
- smp_mb__after_atomic_dec();
-}
-EXPORT_SYMBOL_GPL(flush_kthread_work);
+ if (!list_empty(&work->node))
+ insert_kthread_work(worker, &fwork.work, work->node.next);
+ else if (worker->current_work == work)
+ insert_kthread_work(worker, &fwork.work, worker->work_list.next);
+ else
+ noop = true;
-struct kthread_flush_work {
- struct kthread_work work;
- struct completion done;
-};
+ spin_unlock_irq(&worker->lock);
-static void kthread_flush_work_fn(struct kthread_work *work)
-{
- struct kthread_flush_work *fwork =
- container_of(work, struct kthread_flush_work, work);
- complete(&fwork->done);
+ if (!noop)
+ wait_for_completion(&fwork.done);
}
+EXPORT_SYMBOL_GPL(flush_kthread_work);
/**
* flush_kthread_worker - flush all current works on a kthread_worker
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 468bdd44c1b..9df64ea993f 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -1109,6 +1109,8 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
trace_sched_migrate_task(p, new_cpu);
if (task_cpu(p) != new_cpu) {
+ if (p->sched_class->migrate_task_rq)
+ p->sched_class->migrate_task_rq(p, new_cpu);
p->se.nr_migrations++;
perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
}
@@ -1713,6 +1715,9 @@ static void __sched_fork(struct task_struct *p)
p->se.vruntime = 0;
INIT_LIST_HEAD(&p->se.group_node);
+#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
+ p->se.avg.decay_count = 0;
+#endif
#ifdef CONFIG_SCHEDSTATS
memset(&p->se.statistics, 0, sizeof(p->se.statistics));
#endif
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index 6f79596e0ea..b9d54d0d7bb 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -61,14 +61,20 @@ static unsigned long nsec_low(unsigned long long nsec)
static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
{
struct sched_entity *se = tg->se[cpu];
- if (!se)
- return;
#define P(F) \
SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
#define PN(F) \
SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
+ if (!se) {
+ struct sched_avg *avg = &cpu_rq(cpu)->avg;
+ P(avg->runnable_avg_sum);
+ P(avg->runnable_avg_period);
+ return;
+ }
+
+
PN(se->exec_start);
PN(se->vruntime);
PN(se->sum_exec_runtime);
@@ -85,6 +91,13 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
P(se->statistics.wait_count);
#endif
P(se->load.weight);
+#ifdef CONFIG_SMP
+ P(se->avg.runnable_avg_sum);
+ P(se->avg.runnable_avg_period);
+ P(se->avg.usage_avg_sum);
+ P(se->avg.load_avg_contrib);
+ P(se->avg.decay_count);
+#endif
#undef PN
#undef P
}
@@ -206,14 +219,20 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_SMP
- SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_avg",
- SPLIT_NS(cfs_rq->load_avg));
- SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "load_period",
- SPLIT_NS(cfs_rq->load_period));
- SEQ_printf(m, " .%-30s: %ld\n", "load_contrib",
- cfs_rq->load_contribution);
- SEQ_printf(m, " .%-30s: %d\n", "load_tg",
- atomic_read(&cfs_rq->tg->load_weight));
+ SEQ_printf(m, " .%-30s: %lld\n", "runnable_load_avg",
+ cfs_rq->runnable_load_avg);
+ SEQ_printf(m, " .%-30s: %lld\n", "blocked_load_avg",
+ cfs_rq->blocked_load_avg);
+ SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
+ atomic64_read(&cfs_rq->tg->load_avg));
+ SEQ_printf(m, " .%-30s: %lld\n", "tg_load_contrib",
+ cfs_rq->tg_load_contrib);
+ SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib",
+ cfs_rq->tg_runnable_contrib);
+ SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg",
+ atomic_read(&cfs_rq->tg->runnable_avg));
+ SEQ_printf(m, " .%-30s: %d\n", "tg->usage_avg",
+ atomic_read(&cfs_rq->tg->usage_avg));
#endif
print_cfs_group_stats(m, cpu, cfs_rq->tg);
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index c099cc6eebe..e05636144c6 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -653,9 +653,6 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
return calc_delta_fair(sched_slice(cfs_rq, se), se);
}
-static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
-static void update_cfs_shares(struct cfs_rq *cfs_rq);
-
/*
* Update the current task's runtime statistics. Skip current tasks that
* are not in our scheduling class.
@@ -675,10 +672,6 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
curr->vruntime += delta_exec_weighted;
update_min_vruntime(cfs_rq);
-
-#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
- cfs_rq->load_unacc_exec_time += delta_exec;
-#endif
}
static void update_curr(struct cfs_rq *cfs_rq)
@@ -801,72 +794,7 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
}
#ifdef CONFIG_FAIR_GROUP_SCHED
-/* we need this in update_cfs_load and load-balance functions below */
-static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
# ifdef CONFIG_SMP
-static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
- int global_update)
-{
- struct task_group *tg = cfs_rq->tg;
- long load_avg;
-
- load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
- load_avg -= cfs_rq->load_contribution;
-
- if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
- atomic_add(load_avg, &tg->load_weight);
- cfs_rq->load_contribution += load_avg;
- }
-}
-
-static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
-{
- u64 period = sysctl_sched_shares_window;
- u64 now, delta;
- unsigned long load = cfs_rq->load.weight;
-
- if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
- return;
-
- now = rq_of(cfs_rq)->clock_task;
- delta = now - cfs_rq->load_stamp;
-
- /* truncate load history at 4 idle periods */
- if (cfs_rq->load_stamp > cfs_rq->load_last &&
- now - cfs_rq->load_last > 4 * period) {
- cfs_rq->load_period = 0;
- cfs_rq->load_avg = 0;
- delta = period - 1;
- }
-
- cfs_rq->load_stamp = now;
- cfs_rq->load_unacc_exec_time = 0;
- cfs_rq->load_period += delta;
- if (load) {
- cfs_rq->load_last = now;
- cfs_rq->load_avg += delta * load;
- }
-
- /* consider updating load contribution on each fold or truncate */
- if (global_update || cfs_rq->load_period > period
- || !cfs_rq->load_period)
- update_cfs_rq_load_contribution(cfs_rq, global_update);
-
- while (cfs_rq->load_period > period) {
- /*
- * Inline assembly required to prevent the compiler
- * optimising this loop into a divmod call.
- * See __iter_div_u64_rem() for another example of this.
- */
- asm("" : "+rm" (cfs_rq->load_period));
- cfs_rq->load_period /= 2;
- cfs_rq->load_avg /= 2;
- }
-
- if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
- list_del_leaf_cfs_rq(cfs_rq);
-}
-
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
long tg_weight;
@@ -876,8 +804,8 @@ static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
* to gain a more accurate current total weight. See
* update_cfs_rq_load_contribution().
*/
- tg_weight = atomic_read(&tg->load_weight);
- tg_weight -= cfs_rq->load_contribution;
+ tg_weight = atomic64_read(&tg->load_avg);
+ tg_weight -= cfs_rq->tg_load_contrib;
tg_weight += cfs_rq->load.weight;
return tg_weight;
@@ -901,27 +829,11 @@ static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
return shares;
}
-
-static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
-{
- if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
- update_cfs_load(cfs_rq, 0);
- update_cfs_shares(cfs_rq);
- }
-}
# else /* CONFIG_SMP */
-static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
-{
-}
-
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
{
return tg->shares;
}
-
-static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
-{
-}
# endif /* CONFIG_SMP */
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
unsigned long weight)
@@ -939,6 +851,8 @@ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
account_entity_enqueue(cfs_rq, se);
}
+static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
+
static void update_cfs_shares(struct cfs_rq *cfs_rq)
{
struct task_group *tg;
@@ -958,18 +872,491 @@ static void update_cfs_shares(struct cfs_rq *cfs_rq)
reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
-static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
+static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
{
}
+#endif /* CONFIG_FAIR_GROUP_SCHED */
-static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
+/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
+#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
+/*
+ * We choose a half-life close to 1 scheduling period.
+ * Note: The tables below are dependent on this value.
+ */
+#define LOAD_AVG_PERIOD 32
+#define LOAD_AVG_MAX 46742 /* maximum possible load avg */
+#define LOAD_AVG_MAX_N 516 /* number of full periods it takes to produce max */
+
+/* Precomputed fixed inverse multiplies for multiplication by y^n */
+static const u32 runnable_avg_yN_inv[] = {
+ 0xffffffff, 0xfa83b2db, 0xf5257d15, 0xefe4b99b, 0xeac0c6e7, 0xe5b906e7,
+ 0xe0ccdeec, 0xdbfbb797, 0xd744fcca, 0xd2a81d91, 0xce248c15, 0xc9b9bd86,
+ 0xc5672a11, 0xc12c4cca, 0xbd08a39f, 0xb8fbaf47, 0xb504f333, 0xb123f581,
+ 0xad583eea, 0xa9a15ab4, 0xa5fed6a9, 0xa2704303, 0x9ef53260, 0x9b8d39b9,
+ 0x9837f051, 0x94f4efa8, 0x91c3d373, 0x8ea4398b, 0x8b95c1e3, 0x88980e80,
+ 0x85aac367, 0x82cd8698,
+};
+
+/* Precomputed \Sum y^k { 1<=k<=n } */
+static const u32 runnable_avg_yN_sum[] = {
+ 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
+ 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
+ 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
+};
+
+/*
+ * Approximate:
+ * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
+ */
+static __always_inline u64 decay_load(u64 val, u64 n)
+{
+ int local_n;
+ if (!n)
+ return val;
+ else if (unlikely(n > LOAD_AVG_PERIOD * 63))
+ return 0;
+
+ /* will be 32 bits if that's desirable */
+ local_n = n;
+
+ /*
+ * As y^PERIOD = 1/2, we can combine
+ * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
+ * With a look-up table which covers k^n (n<PERIOD)
+ *
+ * To achieve constant time decay_load.
+ */
+ if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
+ val >>= local_n / LOAD_AVG_PERIOD;
+ n %= LOAD_AVG_PERIOD;
+ }
+
+ val *= runnable_avg_yN_inv[local_n];
+ return SRR(val, 32);
+}
+
+/*
+ * For updates fully spanning n periods, the contribution to runnable
+ * average will be: \Sum 1024*y^n
+ *
+ * We can compute this reasonably efficiently by combining:
+ * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
+ */
+static u32 __compute_runnable_contrib(int n)
{
+ u32 contrib = 0;
+
+ if (likely(n <= LOAD_AVG_PERIOD))
+ return runnable_avg_yN_sum[n];
+ else if (unlikely(n >= LOAD_AVG_MAX_N))
+ return LOAD_AVG_MAX;
+
+ /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
+ do {
+ contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
+ contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
+
+ n -= LOAD_AVG_PERIOD;
+ } while (n > LOAD_AVG_PERIOD);
+
+ contrib = decay_load(contrib, n);
+ return contrib + runnable_avg_yN_sum[n];
}
-static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
+/* We can represent the historical contribution to runnable average as the
+ * coefficients of a geometric series. To do this we sub-divide our runnable
+ * history into segments of approximately 1ms (1024us); label the segment that
+ * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
+ *
+ * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
+ * p0 p1 p1
+ * (now) (~1ms ago) (~2ms ago)
+ *
+ * Let u_i denote the fraction of p_i that the entity was runnable.
+ *
+ * We then designate the fractions u_i as our co-efficients, yielding the
+ * following representation of historical load:
+ * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
+ *
+ * We choose y based on the with of a reasonably scheduling period, fixing:
+ * y^32 = 0.5
+ *
+ * This means that the contribution to load ~32ms ago (u_32) will be weighted
+ * approximately half as much as the contribution to load within the last ms
+ * (u_0).
+ *
+ * When a period "rolls over" and we have new u_0`, multiplying the previous
+ * sum again by y is sufficient to update:
+ * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
+ * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1]
+ */
+static __always_inline int __update_entity_runnable_avg(u64 now,
+ struct sched_avg *sa,
+ int runnable,
+ int running)
{
+ u64 delta, periods;
+ u32 runnable_contrib;
+ int delta_w, decayed = 0;
+
+ delta = now - sa->last_runnable_update;
+ /*
+ * This should only happen when time goes backwards, which it
+ * unfortunately does during sched clock init when we swap over to TSC.
+ */
+ if ((s64)delta < 0) {
+ sa->last_runnable_update = now;
+ return 0;
+ }
+
+ /*
+ * Use 1024ns as the unit of measurement since it's a reasonable
+ * approximation of 1us and fast to compute.
+ */
+ delta >>= 10;
+ if (!delta)
+ return 0;
+ sa->last_runnable_update = now;
+
+ /* delta_w is the amount already accumulated against our next period */
+ delta_w = sa->runnable_avg_period % 1024;
+ if (delta + delta_w >= 1024) {
+ /* period roll-over */
+ decayed = 1;
+
+ /*
+ * Now that we know we're crossing a period boundary, figure
+ * out how much from delta we need to complete the current
+ * period and accrue it.
+ */
+ delta_w = 1024 - delta_w;
+ if (runnable)
+ sa->runnable_avg_sum += delta_w;
+ if (running)
+ sa->usage_avg_sum += delta_w;
+ sa->runnable_avg_period += delta_w;
+
+ delta -= delta_w;
+
+ /* Figure out how many additional periods this update spans */
+ periods = delta / 1024;
+ delta %= 1024;
+
+ sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
+ periods + 1);
+ sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
+ periods + 1);
+ sa->usage_avg_sum = decay_load(sa->usage_avg_sum, periods + 1);
+
+ /* Efficiently calculate \sum (1..n_period) 1024*y^i */
+ runnable_contrib = __compute_runnable_contrib(periods);
+ if (runnable)
+ sa->runnable_avg_sum += runnable_contrib;
+ if (running)
+ sa->usage_avg_sum += runnable_contrib;
+ sa->runnable_avg_period += runnable_contrib;
+ }
+
+ /* Remainder of delta accrued against u_0` */
+ if (runnable)
+ sa->runnable_avg_sum += delta;
+ if (running)
+ sa->usage_avg_sum += delta;
+ sa->runnable_avg_period += delta;
+
+ return decayed;
}
-#endif /* CONFIG_FAIR_GROUP_SCHED */
+
+/* Synchronize an entity's decay with its parentin cfs_rq.*/
+static inline u64 __synchronize_entity_decay(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+ u64 decays = atomic64_read(&cfs_rq->decay_counter);
+
+ decays -= se->avg.decay_count;
+ if (!decays)
+ return 0;
+
+ se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
+ se->avg.decay_count += decays;
+
+ return decays;
+}
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
+ int force_update)
+{
+ struct task_group *tg = cfs_rq->tg;
+ s64 tg_contrib;
+
+ tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
+ tg_contrib -= cfs_rq->tg_load_contrib;
+
+ if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
+ atomic64_add(tg_contrib, &tg->load_avg);
+ cfs_rq->tg_load_contrib += tg_contrib;
+ }
+}
+
+/*
+ * Aggregate cfs_rq runnable averages into an equivalent task_group
+ * representation for computing load contributions.
+ */
+static inline void __update_tg_runnable_avg(struct sched_avg *sa,
+ struct cfs_rq *cfs_rq)
+{
+ struct task_group *tg = cfs_rq->tg;
+ long contrib, usage_contrib;
+
+ contrib = div_u64(sa->runnable_avg_sum << 12,
+ sa->runnable_avg_period + 1);
+ contrib -= cfs_rq->tg_runnable_contrib;
+
+ usage_contrib = div_u64(sa->usage_avg_sum << 12,
+ sa->runnable_avg_period + 1);
+ usage_contrib -= cfs_rq->tg_usage_contrib;
+
+ /*
+ * contrib/usage at this point represent deltas, only update if they
+ * are substantive.
+ */
+ if ((abs(contrib) > cfs_rq->tg_runnable_contrib / 64) ||
+ (abs(usage_contrib) > cfs_rq->tg_usage_contrib / 64)) {
+ atomic_add(contrib, &tg->runnable_avg);
+ cfs_rq->tg_runnable_contrib += contrib;
+
+ atomic_add(usage_contrib, &tg->usage_avg);
+ cfs_rq->tg_usage_contrib += usage_contrib;
+ }
+}
+
+static inline void __update_group_entity_contrib(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = group_cfs_rq(se);
+ struct task_group *tg = cfs_rq->tg;
+ int runnable_avg;
+
+ u64 contrib;
+
+ contrib = cfs_rq->tg_load_contrib * tg->shares;
+ se->avg.load_avg_contrib = div64_u64(contrib,
+ atomic64_read(&tg->load_avg) + 1);
+
+ /*
+ * Unlike a task-entity, a group entity may be using >=1 cpu globally.
+ * However, in the case that it's using <1 cpu we need to form a
+ * correction term so that we contribute the same load as a task of
+ * equal weight. (Global runnable time is taken as a fraction over
+ * 2^12.)
+ */
+ runnable_avg = atomic_read(&tg->runnable_avg);
+ if (runnable_avg < (1<<12)) {
+ se->avg.load_avg_contrib *= runnable_avg;
+ se->avg.load_avg_contrib /= (1<<12);
+ }
+}
+#else
+static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
+ int force_update) {}
+static inline void __update_tg_runnable_avg(struct sched_avg *sa,
+ struct cfs_rq *cfs_rq) {}
+static inline void __update_group_entity_contrib(struct sched_entity *se) {}
+#endif
+
+static inline void __update_task_entity_contrib(struct sched_entity *se)
+{
+ u32 contrib;
+
+ /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
+ contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
+ contrib /= (se->avg.runnable_avg_period + 1);
+ se->avg.load_avg_contrib = scale_load(contrib);
+ trace_sched_task_load_contrib(task_of(se), se->avg.load_avg_contrib);
+ contrib = se->avg.runnable_avg_sum * scale_load_down(1024);
+ contrib /= (se->avg.runnable_avg_period + 1);
+ se->avg.load_avg_ratio = scale_load(contrib);
+ trace_sched_task_runnable_ratio(task_of(se), se->avg.load_avg_ratio);
+ contrib = se->avg.usage_avg_sum * scale_load_down(1024);
+ contrib /= (se->avg.runnable_avg_period + 1);
+ trace_sched_task_usage_ratio(task_of(se), scale_load(contrib));
+}
+
+/* Compute the current contribution to load_avg by se, return any delta */
+static long __update_entity_load_avg_contrib(struct sched_entity *se)
+{
+ long old_contrib = se->avg.load_avg_contrib;
+
+ if (entity_is_task(se)) {
+ __update_task_entity_contrib(se);
+ } else {
+ __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
+ __update_group_entity_contrib(se);
+ }
+
+ return se->avg.load_avg_contrib - old_contrib;
+}
+
+static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
+ long load_contrib)
+{
+ if (likely(load_contrib < cfs_rq->blocked_load_avg))
+ cfs_rq->blocked_load_avg -= load_contrib;
+ else
+ cfs_rq->blocked_load_avg = 0;
+}
+
+static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
+
+/* Update a sched_entity's runnable average */
+static inline void update_entity_load_avg(struct sched_entity *se,
+ int update_cfs_rq)
+{
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+ long contrib_delta;
+ u64 now;
+
+ /*
+ * For a group entity we need to use their owned cfs_rq_clock_task() in
+ * case they are the parent of a throttled hierarchy.
+ */
+ if (entity_is_task(se))
+ now = cfs_rq_clock_task(cfs_rq);
+ else
+ now = cfs_rq_clock_task(group_cfs_rq(se));
+
+ if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq,
+ cfs_rq->curr == se))
+ return;
+
+ contrib_delta = __update_entity_load_avg_contrib(se);
+
+ if (!update_cfs_rq)
+ return;
+
+ if (se->on_rq)
+ cfs_rq->runnable_load_avg += contrib_delta;
+ else
+ subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
+}
+
+/*
+ * Decay the load contributed by all blocked children and account this so that
+ * they their contribution may appropriately discounted when they wake up.
+ */
+static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
+{
+ u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
+ u64 decays;
+
+ decays = now - cfs_rq->last_decay;
+ if (!decays && !force_update)
+ return;
+
+ if (atomic64_read(&cfs_rq->removed_load)) {
+ u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
+ subtract_blocked_load_contrib(cfs_rq, removed_load);
+ }
+
+ if (decays) {
+ cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
+ decays);
+ atomic64_add(decays, &cfs_rq->decay_counter);
+ cfs_rq->last_decay = now;
+ }
+
+ __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
+ update_cfs_shares(cfs_rq);
+}
+
+static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
+{
+ u32 contrib;
+ __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable,
+ runnable);
+ __update_tg_runnable_avg(&rq->avg, &rq->cfs);
+ contrib = rq->avg.runnable_avg_sum * scale_load_down(1024);
+ contrib /= (rq->avg.runnable_avg_period + 1);
+ trace_sched_rq_runnable_ratio(cpu_of(rq), scale_load(contrib));
+ trace_sched_rq_runnable_load(cpu_of(rq), rq->cfs.runnable_load_avg);
+}
+
+/* Add the load generated by se into cfs_rq's child load-average */
+static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
+ struct sched_entity *se,
+ int wakeup)
+{
+ /*
+ * We track migrations using entity decay_count <= 0, on a wake-up
+ * migration we use a negative decay count to track the remote decays
+ * accumulated while sleeping.
+ */
+ if (unlikely(se->avg.decay_count <= 0)) {
+ se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
+ if (se->avg.decay_count) {
+ /*
+ * In a wake-up migration we have to approximate the
+ * time sleeping. This is because we can't synchronize
+ * clock_task between the two cpus, and it is not
+ * guaranteed to be read-safe. Instead, we can
+ * approximate this using our carried decays, which are
+ * explicitly atomically readable.
+ */
+ se->avg.last_runnable_update -= (-se->avg.decay_count)
+ << 20;
+ update_entity_load_avg(se, 0);
+ }
+ se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
+ wakeup = 0;
+ } else {
+ __synchronize_entity_decay(se);
+ }
+
+ /* migrated tasks did not contribute to our blocked load */
+ if (wakeup) {
+ subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
+ update_entity_load_avg(se, 0);
+ }
+
+ cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
+ /* we force update consideration on load-balancer moves */
+ update_cfs_rq_blocked_load(cfs_rq, !wakeup);
+}
+
+/*
+ * Remove se's load from this cfs_rq child load-average, if the entity is
+ * transitioning to a blocked state we track its projected decay using
+ * blocked_load_avg.
+ */
+static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
+ struct sched_entity *se,
+ int sleep)
+{
+ update_entity_load_avg(se, 1);
+ /* we force update consideration on load-balancer moves */
+ update_cfs_rq_blocked_load(cfs_rq, !sleep);
+
+ cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
+ if (sleep) {
+ cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
+ se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
+ } else {
+ se->avg.decay_count = 0;
+ }
+}
+#else
+static inline void update_entity_load_avg(struct sched_entity *se,
+ int update_cfs_rq) {}
+static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
+static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
+ struct sched_entity *se,
+ int wakeup) {}
+static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
+ struct sched_entity *se,
+ int sleep) {}
+static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
+ int force_update) {}
+#endif
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
@@ -1096,9 +1483,8 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
- update_cfs_load(cfs_rq, 0);
account_entity_enqueue(cfs_rq, se);
- update_cfs_shares(cfs_rq);
+ enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
if (flags & ENQUEUE_WAKEUP) {
place_entity(cfs_rq, se, 0);
@@ -1190,9 +1576,8 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
if (se != cfs_rq->curr)
__dequeue_entity(cfs_rq, se);
- se->on_rq = 0;
- update_cfs_load(cfs_rq, 0);
account_entity_dequeue(cfs_rq, se);
+ dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
/*
* Normalize the entity after updating the min_vruntime because the
@@ -1206,7 +1591,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
return_cfs_rq_runtime(cfs_rq);
update_min_vruntime(cfs_rq);
- update_cfs_shares(cfs_rq);
+ se->on_rq = 0;
}
/*
@@ -1261,6 +1646,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
*/
update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
+ update_entity_load_avg(se, 1);
}
update_stats_curr_start(cfs_rq, se);
@@ -1340,6 +1726,8 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
update_stats_wait_start(cfs_rq, prev);
/* Put 'current' back into the tree. */
__enqueue_entity(cfs_rq, prev);
+ /* in !on_rq case, update occurred at dequeue */
+ update_entity_load_avg(prev, 1);
}
cfs_rq->curr = NULL;
}
@@ -1353,9 +1741,10 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
update_curr(cfs_rq);
/*
- * Update share accounting for long-running entities.
+ * Ensure that runnable average is periodically updated.
*/
- update_entity_shares_tick(cfs_rq);
+ update_entity_load_avg(curr, 1);
+ update_cfs_rq_blocked_load(cfs_rq, 1);
#ifdef CONFIG_SCHED_HRTICK
/*
@@ -1448,6 +1837,15 @@ static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
return &tg->cfs_bandwidth;
}
+/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
+static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
+{
+ if (unlikely(cfs_rq->throttle_count))
+ return cfs_rq->throttled_clock_task;
+
+ return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
+}
+
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
@@ -1592,14 +1990,9 @@ static int tg_unthrottle_up(struct task_group *tg, void *data)
cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
if (!cfs_rq->throttle_count) {
- u64 delta = rq->clock_task - cfs_rq->load_stamp;
-
- /* leaving throttled state, advance shares averaging windows */
- cfs_rq->load_stamp += delta;
- cfs_rq->load_last += delta;
-
- /* update entity weight now that we are on_rq again */
- update_cfs_shares(cfs_rq);
+ /* adjust cfs_rq_clock_task() */
+ cfs_rq->throttled_clock_task_time += rq->clock_task -
+ cfs_rq->throttled_clock_task;
}
#endif
@@ -1611,9 +2004,9 @@ static int tg_throttle_down(struct task_group *tg, void *data)
struct rq *rq = data;
struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
- /* group is entering throttled state, record last load */
+ /* group is entering throttled state, stop time */
if (!cfs_rq->throttle_count)
- update_cfs_load(cfs_rq, 0);
+ cfs_rq->throttled_clock_task = rq->clock_task;
cfs_rq->throttle_count++;
return 0;
@@ -1628,7 +2021,7 @@ static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
- /* account load preceding throttle */
+ /* freeze hierarchy runnable averages while throttled */
rcu_read_lock();
walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
rcu_read_unlock();
@@ -1652,7 +2045,7 @@ static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
rq->nr_running -= task_delta;
cfs_rq->throttled = 1;
- cfs_rq->throttled_timestamp = rq->clock;
+ cfs_rq->throttled_clock = rq->clock;
raw_spin_lock(&cfs_b->lock);
list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
raw_spin_unlock(&cfs_b->lock);
@@ -1670,10 +2063,9 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
cfs_rq->throttled = 0;
raw_spin_lock(&cfs_b->lock);
- cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
+ cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
list_del_rcu(&cfs_rq->throttled_list);
raw_spin_unlock(&cfs_b->lock);
- cfs_rq->throttled_timestamp = 0;
update_rq_clock(rq);
/* update hierarchical throttle state */
@@ -2073,8 +2465,13 @@ void unthrottle_offline_cfs_rqs(struct rq *rq)
}
#else /* CONFIG_CFS_BANDWIDTH */
-static __always_inline
-void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
+static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
+{
+ return rq_of(cfs_rq)->clock_task;
+}
+
+static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
+ unsigned long delta_exec) {}
static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
@@ -2207,12 +2604,14 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
- update_cfs_load(cfs_rq, 0);
- update_cfs_shares(cfs_rq);
+ update_entity_load_avg(se, 1);
+ update_cfs_rq_blocked_load(cfs_rq, 0);
}
- if (!se)
+ if (!se) {
+ update_rq_runnable_avg(rq, rq->nr_running);
inc_nr_running(rq);
+ }
hrtick_update(rq);
}
@@ -2266,12 +2665,14 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
- update_cfs_load(cfs_rq, 0);
- update_cfs_shares(cfs_rq);
+ update_entity_load_avg(se, 1);
+ update_cfs_rq_blocked_load(cfs_rq, 0);
}
- if (!se)
+ if (!se) {
dec_nr_running(rq);
+ update_rq_runnable_avg(rq, 1);
+ }
hrtick_update(rq);
}
@@ -2681,6 +3082,67 @@ done:
return target;
}
+#ifdef CONFIG_SCHED_HMP
+/* Heterogenous multiprocessor (HMP) optimizations
+ * We need to know which cpus that are fast and slow. */
+static struct cpumask hmp_fast_cpu_mask;
+static struct cpumask hmp_slow_cpu_mask;
+
+extern void __init arch_get_fast_and_slow_cpus(struct cpumask *fast,
+ struct cpumask *slow);
+
+/* Setup fast and slow cpumasks. */
+static int __init hmp_cpu_mask_setup(void)
+{
+ char buf[64];
+
+ arch_get_fast_and_slow_cpus(&hmp_fast_cpu_mask, &hmp_slow_cpu_mask);
+
+ printk(KERN_DEBUG "Initializing HMP scheduler:\n");
+ cpulist_scnprintf(buf, 64, &hmp_fast_cpu_mask);
+ printk(KERN_DEBUG " fast cpus: %s\n", buf);
+ cpulist_scnprintf(buf, 64, &hmp_slow_cpu_mask);
+ printk(KERN_DEBUG " slow cpus: %s\n", buf);
+
+ return 1;
+}
+early_initcall(hmp_cpu_mask_setup);
+
+/* Migration thresholds should be in the range [0..1023]
+ * hmp_up_threshold: min. load required for migrating tasks to a fast cpu
+ * hmp_down_threshold: max. load allowed for tasks migrating to a slow cpu
+ * hmp_up_prio: min. task prio for tasks migrating to faster cpus */
+unsigned int hmp_up_threshold = 512;
+unsigned int hmp_down_threshold = 256;
+unsigned int hmp_up_prio = 125;
+static unsigned int hmp_up_migration(int cpu, struct sched_entity *se);
+static unsigned int hmp_down_migration(int cpu, struct sched_entity *se);
+
+static unsigned int hmp_cpu_is_fast(int cpu)
+{
+ return cpumask_test_cpu(cpu, &hmp_fast_cpu_mask);
+}
+
+static unsigned int hmp_cpu_is_slow(int cpu)
+{
+ return cpumask_test_cpu(cpu, &hmp_slow_cpu_mask);
+}
+
+/* Select target cpu for HMP migration to fast cpu
+ * returns target >= nr_cpu_ids if no fast cpus in affinity mask */
+static inline unsigned int hmp_select_fast_cpu(struct task_struct *tsk)
+{
+ return cpumask_any_and(&hmp_fast_cpu_mask, tsk_cpus_allowed(tsk));
+}
+
+/* Select target cpu for HMP migration to slow cpu
+ * returns target >= nr_cpu_ids if no slow cpus in affinity mask */
+static inline unsigned int hmp_select_slow_cpu(struct task_struct *tsk)
+{
+ return cpumask_any_and(&hmp_slow_cpu_mask, tsk_cpus_allowed(tsk));
+}
+#endif /* CONFIG_SCHED_HMP */
+
/*
* sched_balance_self: balance the current task (running on cpu) in domains
* that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
@@ -2807,8 +3269,52 @@ select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
unlock:
rcu_read_unlock();
+#ifdef CONFIG_SCHED_HMP
+ if (hmp_up_migration(new_cpu, &p->se)) {
+ cpu = hmp_select_fast_cpu(p);
+ if (cpu < nr_cpu_ids)
+ return cpu;
+ }
+ if (hmp_down_migration(new_cpu, &p->se)) {
+ cpu = hmp_select_slow_cpu(p);
+ if (cpu < nr_cpu_ids)
+ return cpu;
+ }
+#endif
+
return new_cpu;
}
+
+/*
+ * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
+ * removed when useful for applications beyond shares distribution (e.g.
+ * load-balance).
+ */
+#ifdef CONFIG_FAIR_GROUP_SCHED
+/*
+ * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
+ * cfs_rq_of(p) references at time of call are still valid and identify the
+ * previous cpu. However, the caller only guarantees p->pi_lock is held; no
+ * other assumptions, including rq->lock state, should be made.
+ * Caller guarantees p->pi_lock held, but nothing else.
+ */
+static void
+migrate_task_rq_fair(struct task_struct *p, int next_cpu) {
+ struct sched_entity *se = &p->se;
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+ /*
+ * Load tracking: accumulate removed load so that it can be processed
+ * when we next update owning cfs_rq under rq->lock. Tasks contribute
+ * to blocked load iff they have a non-zero decay-count.
+ */
+ if (se->avg.decay_count) {
+ se->avg.decay_count = -__synchronize_entity_decay(se);
+ atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
+ }
+}
+#endif
+
#endif /* CONFIG_SMP */
static unsigned long
@@ -3300,51 +3806,65 @@ next:
/*
* update tg->load_weight by folding this cpu's load_avg
*/
-static int update_shares_cpu(struct task_group *tg, int cpu)
+static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
{
- struct cfs_rq *cfs_rq;
- unsigned long flags;
- struct rq *rq;
-
- if (!tg->se[cpu])
- return 0;
-
- rq = cpu_rq(cpu);
- cfs_rq = tg->cfs_rq[cpu];
-
- raw_spin_lock_irqsave(&rq->lock, flags);
-
- update_rq_clock(rq);
- update_cfs_load(cfs_rq, 1);
+ struct sched_entity *se = tg->se[cpu];
+ struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
- /*
- * We need to update shares after updating tg->load_weight in
- * order to adjust the weight of groups with long running tasks.
- */
- update_cfs_shares(cfs_rq);
+ /* throttled entities do not contribute to load */
+ if (throttled_hierarchy(cfs_rq))
+ return;
- raw_spin_unlock_irqrestore(&rq->lock, flags);
+ update_cfs_rq_blocked_load(cfs_rq, 1);
+ if (se)
+ update_entity_load_avg(se, 1);
+ else
+ update_rq_runnable_avg(rq_of(cfs_rq), 1);
- return 0;
+ if (se) {
+ /*
+ * We can pivot on the runnable average decaying to zero for
+ * list removal since the parent average will always be >=
+ * child.
+ */
+ if (se->avg.runnable_avg_sum)
+ update_cfs_shares(cfs_rq);
+ else
+ list_del_leaf_cfs_rq(cfs_rq);
+ }
}
-static void update_shares(int cpu)
+static void update_blocked_averages(int cpu)
{
- struct cfs_rq *cfs_rq;
struct rq *rq = cpu_rq(cpu);
+ struct cfs_rq *cfs_rq;
+
+ unsigned long flags;
+ int num_updates = 0;
rcu_read_lock();
+ raw_spin_lock_irqsave(&rq->lock, flags);
+ update_rq_clock(rq);
/*
* Iterates the task_group tree in a bottom up fashion, see
* list_add_leaf_cfs_rq() for details.
*/
for_each_leaf_cfs_rq(rq, cfs_rq) {
- /* throttled entities do not contribute to load */
- if (throttled_hierarchy(cfs_rq))
- continue;
+ __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
- update_shares_cpu(cfs_rq->tg, cpu);
+ /*
+ * Periodically release the lock so that a cfs_rq with many
+ * children cannot hold it for an arbitrary period of time.
+ */
+ if (num_updates++ % 20 == 0) {
+ raw_spin_unlock_irqrestore(&rq->lock, flags);
+ cpu_relax();
+ raw_spin_lock_irqsave(&rq->lock, flags);
+ update_rq_clock(rq);
+ }
}
+
+ raw_spin_unlock_irqrestore(&rq->lock, flags);
rcu_read_unlock();
}
@@ -3389,7 +3909,7 @@ static unsigned long task_h_load(struct task_struct *p)
return load;
}
#else
-static inline void update_shares(int cpu)
+static inline void update_blocked_averages(int cpu)
{
}
@@ -4409,12 +4929,14 @@ void idle_balance(int this_cpu, struct rq *this_rq)
if (this_rq->avg_idle < sysctl_sched_migration_cost)
return;
+ update_rq_runnable_avg(this_rq, 1);
+
/*
* Drop the rq->lock, but keep IRQ/preempt disabled.
*/
raw_spin_unlock(&this_rq->lock);
- update_shares(this_cpu);
+ update_blocked_averages(this_cpu);
rcu_read_lock();
for_each_domain(this_cpu, sd) {
unsigned long interval;
@@ -4674,7 +5196,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
int update_next_balance = 0;
int need_serialize;
- update_shares(cpu);
+ update_blocked_averages(cpu);
rcu_read_lock();
for_each_domain(cpu, sd) {
@@ -4842,6 +5364,223 @@ need_kick:
static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
#endif
+#ifdef CONFIG_SCHED_HMP
+/* Check if task should migrate to a faster core */
+static unsigned int hmp_up_migration(int cpu, struct sched_entity *se)
+{
+ struct task_struct *p = task_of(se);
+ if (p->prio < hmp_up_prio && p->prio > 100
+ && hmp_cpu_is_slow(cpu)
+ && se->avg.load_avg_ratio > hmp_up_threshold) {
+ return 1;
+ }
+ return 0;
+}
+
+/* Check if task should migrate to a slower core */
+static unsigned int hmp_down_migration(int cpu, struct sched_entity *se)
+{
+ struct task_struct *p = task_of(se);
+ if (p->prio >= hmp_up_prio || (hmp_cpu_is_fast(cpu)
+ && se->avg.load_avg_ratio < hmp_down_threshold)) {
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * hmp_can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
+ * Ideally this function should be merged with can_migrate_task() to avoid
+ * redundant code.
+ */
+static int hmp_can_migrate_task(struct task_struct *p, struct lb_env *env)
+{
+ int tsk_cache_hot = 0;
+ /*
+ * We do not migrate tasks that are:
+ * 1) running (obviously), or
+ * 2) cannot be migrated to this CPU due to cpus_allowed
+ */
+ if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
+ schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
+ return 0;
+ }
+ env->flags &= ~LBF_ALL_PINNED;
+
+ if (task_running(env->src_rq, p)) {
+ schedstat_inc(p, se.statistics.nr_failed_migrations_running);
+ return 0;
+ }
+
+ /*
+ * Aggressive migration if:
+ * 1) task is cache cold, or
+ * 2) too many balance attempts have failed.
+ */
+
+ tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
+ if (!tsk_cache_hot ||
+ env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
+#ifdef CONFIG_SCHEDSTATS
+ if (tsk_cache_hot) {
+ schedstat_inc(env->sd, lb_hot_gained[env->idle]);
+ schedstat_inc(p, se.statistics.nr_forced_migrations);
+ }
+#endif
+ return 1;
+ }
+
+ return 1;
+}
+
+/*
+ * move_specific_task tries to move a specific task.
+ * Returns 1 if successful and 0 otherwise.
+ * Called with both runqueues locked.
+ */
+static int move_specific_task(struct lb_env *env, struct task_struct *pm)
+{
+ struct task_struct *p, *n;
+
+ list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
+ if (throttled_lb_pair(task_group(p), env->src_rq->cpu,
+ env->dst_cpu))
+ continue;
+
+ if (!hmp_can_migrate_task(p, env))
+ continue;
+ /* Check if we found the right task */
+ if (p != pm)
+ continue;
+
+ move_task(p, env);
+ /*
+ * Right now, this is only the third place move_task()
+ * is called, so we can safely collect move_task()
+ * stats here rather than inside move_task().
+ */
+ schedstat_inc(env->sd, lb_gained[env->idle]);
+ return 1;
+ }
+ return 0;
+}
+
+/*
+ * hmp_active_task_migration_cpu_stop is run by cpu stopper and used to
+ * migrate a specific task from one runqueue to another.
+ * hmp_force_up_migration uses this to push a currently running task
+ * off a runqueue.
+ * Based on active_load_balance_stop_cpu and can potentially be merged.
+ */
+static int hmp_active_task_migration_cpu_stop(void *data)
+{
+ struct rq *busiest_rq = data;
+ struct task_struct *p = busiest_rq->migrate_task;
+ int busiest_cpu = cpu_of(busiest_rq);
+ int target_cpu = busiest_rq->push_cpu;
+ struct rq *target_rq = cpu_rq(target_cpu);
+ struct sched_domain *sd;
+
+ raw_spin_lock_irq(&busiest_rq->lock);
+ /* make sure the requested cpu hasn't gone down in the meantime */
+ if (unlikely(busiest_cpu != smp_processor_id() ||
+ !busiest_rq->active_balance)) {
+ goto out_unlock;
+ }
+ /* Is there any task to move? */
+ if (busiest_rq->nr_running <= 1)
+ goto out_unlock;
+ /* Task has migrated meanwhile, abort forced migration */
+ if (task_rq(p) != busiest_rq)
+ goto out_unlock;
+ /*
+ * This condition is "impossible", if it occurs
+ * we need to fix it. Originally reported by
+ * Bjorn Helgaas on a 128-cpu setup.
+ */
+ BUG_ON(busiest_rq == target_rq);
+
+ /* move a task from busiest_rq to target_rq */
+ double_lock_balance(busiest_rq, target_rq);
+
+ /* Search for an sd spanning us and the target CPU. */
+ rcu_read_lock();
+ for_each_domain(target_cpu, sd) {
+ if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
+ break;
+ }
+
+ if (likely(sd)) {
+ struct lb_env env = {
+ .sd = sd,
+ .dst_cpu = target_cpu,
+ .dst_rq = target_rq,
+ .src_cpu = busiest_rq->cpu,
+ .src_rq = busiest_rq,
+ .idle = CPU_IDLE,
+ };
+
+ schedstat_inc(sd, alb_count);
+
+ if (move_specific_task(&env, p))
+ schedstat_inc(sd, alb_pushed);
+ else
+ schedstat_inc(sd, alb_failed);
+ }
+ rcu_read_unlock();
+ double_unlock_balance(busiest_rq, target_rq);
+out_unlock:
+ busiest_rq->active_balance = 0;
+ raw_spin_unlock_irq(&busiest_rq->lock);
+ return 0;
+}
+
+static DEFINE_SPINLOCK(hmp_force_migration);
+
+/* hmp_force_up_migration checks runqueues for tasks that need to
+ * be actively migrated to a faster cpu. */
+static void hmp_force_up_migration(int this_cpu)
+{
+ int i;
+ struct sched_entity *curr;
+ struct rq *target;
+ unsigned long flags;
+ unsigned int force;
+ struct task_struct *p;
+
+ if (!spin_trylock(&hmp_force_migration))
+ return;
+ for_each_cpu(i, &hmp_slow_cpu_mask) {
+ force = 0;
+ target = cpu_rq(i);
+ raw_spin_lock_irqsave(&target->lock, flags);
+ curr = target->cfs.curr;
+ if (!curr || !entity_is_task(curr)) {
+ raw_spin_unlock_irqrestore(&target->lock, flags);
+ continue;
+ }
+ p = task_of(curr);
+ if (hmp_up_migration(i, curr)) {
+ if (!target->active_balance) {
+ target->active_balance = 1;
+ target->push_cpu = hmp_select_fast_cpu(p);
+ target->migrate_task = p;
+ force = 1;
+ trace_sched_hmp_migrate(p, 1);
+ }
+ }
+ raw_spin_unlock_irqrestore(&target->lock, flags);
+ if (force)
+ stop_one_cpu_nowait(cpu_of(target),
+ hmp_active_task_migration_cpu_stop,
+ target, &target->active_balance_work);
+ }
+ spin_unlock(&hmp_force_migration);
+}
+#else
+static void hmp_force_up_migration(int this_cpu) { }
+#endif /* CONFIG_SCHED_HMP */
+
/*
* run_rebalance_domains is triggered when needed from the scheduler tick.
* Also triggered for nohz idle balancing (with nohz_balancing_kick set).
@@ -4853,6 +5592,8 @@ static void run_rebalance_domains(struct softirq_action *h)
enum cpu_idle_type idle = this_rq->idle_balance ?
CPU_IDLE : CPU_NOT_IDLE;
+ hmp_force_up_migration(this_cpu);
+
rebalance_domains(this_cpu, idle);
/*
@@ -4907,6 +5648,8 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
cfs_rq = cfs_rq_of(se);
entity_tick(cfs_rq, se, queued);
}
+
+ update_rq_runnable_avg(rq, 1);
}
/*
@@ -4999,6 +5742,21 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p)
place_entity(cfs_rq, se, 0);
se->vruntime -= cfs_rq->min_vruntime;
}
+
+#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
+ /*
+ * Remove our load from contribution when we leave sched_fair
+ * and ensure we don't carry in an old decay_count if we
+ * switch back.
+ */
+ if (p->se.avg.decay_count) {
+ struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
+ __synchronize_entity_decay(&p->se);
+ subtract_blocked_load_contrib(cfs_rq,
+ p->se.avg.load_avg_contrib);
+ p->se.avg.decay_count = 0;
+ }
+#endif
}
/*
@@ -5045,11 +5803,16 @@ void init_cfs_rq(struct cfs_rq *cfs_rq)
#ifndef CONFIG_64BIT
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
+#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
+ atomic64_set(&cfs_rq->decay_counter, 1);
+ atomic64_set(&cfs_rq->removed_load, 0);
+#endif
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static void task_move_group_fair(struct task_struct *p, int on_rq)
{
+ struct cfs_rq *cfs_rq;
/*
* If the task was not on the rq at the time of this cgroup movement
* it must have been asleep, sleeping tasks keep their ->vruntime
@@ -5081,8 +5844,19 @@ static void task_move_group_fair(struct task_struct *p, int on_rq)
if (!on_rq)
p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
set_task_rq(p, task_cpu(p));
- if (!on_rq)
- p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
+ if (!on_rq) {
+ cfs_rq = cfs_rq_of(&p->se);
+ p->se.vruntime += cfs_rq->min_vruntime;
+#ifdef CONFIG_SMP
+ /*
+ * set_task_rq will() have removed our previous contribution,
+ * but we must synchronize explicitly against further decay
+ * here.
+ */
+ p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
+ cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
+#endif
+ }
}
void free_fair_sched_group(struct task_group *tg)
@@ -5167,10 +5941,6 @@ void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
cfs_rq->tg = tg;
cfs_rq->rq = rq;
-#ifdef CONFIG_SMP
- /* allow initial update_cfs_load() to truncate */
- cfs_rq->load_stamp = 1;
-#endif
init_cfs_rq_runtime(cfs_rq);
tg->cfs_rq[cpu] = cfs_rq;
@@ -5217,8 +5987,11 @@ int sched_group_set_shares(struct task_group *tg, unsigned long shares)
se = tg->se[i];
/* Propagate contribution to hierarchy */
raw_spin_lock_irqsave(&rq->lock, flags);
- for_each_sched_entity(se)
+ for_each_sched_entity(se) {
update_cfs_shares(group_cfs_rq(se));
+ /* update contribution to parent */
+ update_entity_load_avg(se, 1);
+ }
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
@@ -5272,7 +6045,9 @@ const struct sched_class fair_sched_class = {
#ifdef CONFIG_SMP
.select_task_rq = select_task_rq_fair,
-
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ .migrate_task_rq = migrate_task_rq_fair,
+#endif
.rq_online = rq_online_fair,
.rq_offline = rq_offline_fair,
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
index de00a486c5c..d98ae909e32 100644
--- a/kernel/sched/features.h
+++ b/kernel/sched/features.h
@@ -42,7 +42,7 @@ SCHED_FEAT(CACHE_HOT_BUDDY, true)
/*
* Use arch dependent cpu power functions
*/
-SCHED_FEAT(ARCH_POWER, false)
+SCHED_FEAT(ARCH_POWER, true)
SCHED_FEAT(HRTICK, false)
SCHED_FEAT(DOUBLE_TICK, false)
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 55844f24435..0dc9bd108f5 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -112,6 +112,8 @@ struct task_group {
unsigned long shares;
atomic_t load_weight;
+ atomic64_t load_avg;
+ atomic_t runnable_avg, usage_avg;
#endif
#ifdef CONFIG_RT_GROUP_SCHED
@@ -222,22 +224,29 @@ struct cfs_rq {
unsigned int nr_spread_over;
#endif
+#ifdef CONFIG_SMP
+/*
+ * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
+ * removed when useful for applications beyond shares distribution (e.g.
+ * load-balance).
+ */
#ifdef CONFIG_FAIR_GROUP_SCHED
- struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
-
/*
- * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
- * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
- * (like users, containers etc.)
- *
- * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
- * list is used during load balance.
+ * CFS Load tracking
+ * Under CFS, load is tracked on a per-entity basis and aggregated up.
+ * This allows for the description of both thread and group usage (in
+ * the FAIR_GROUP_SCHED case).
*/
- int on_list;
- struct list_head leaf_cfs_rq_list;
- struct task_group *tg; /* group that "owns" this runqueue */
+ u64 runnable_load_avg, blocked_load_avg;
+ atomic64_t decay_counter, removed_load;
+ u64 last_decay;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+/* These always depend on CONFIG_FAIR_GROUP_SCHED */
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ u32 tg_runnable_contrib, tg_usage_contrib;
+ u64 tg_load_contrib;
+#endif /* CONFIG_FAIR_GROUP_SCHED */
-#ifdef CONFIG_SMP
/*
* h_load = weight * f(tg)
*
@@ -245,26 +254,30 @@ struct cfs_rq {
* this group.
*/
unsigned long h_load;
+#endif /* CONFIG_SMP */
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+ struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
/*
- * Maintaining per-cpu shares distribution for group scheduling
+ * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
+ * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
+ * (like users, containers etc.)
*
- * load_stamp is the last time we updated the load average
- * load_last is the last time we updated the load average and saw load
- * load_unacc_exec_time is currently unaccounted execution time
+ * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
+ * list is used during load balance.
*/
- u64 load_avg;
- u64 load_period;
- u64 load_stamp, load_last, load_unacc_exec_time;
+ int on_list;
+ struct list_head leaf_cfs_rq_list;
+ struct task_group *tg; /* group that "owns" this runqueue */
- unsigned long load_contribution;
-#endif /* CONFIG_SMP */
#ifdef CONFIG_CFS_BANDWIDTH
int runtime_enabled;
u64 runtime_expires;
s64 runtime_remaining;
- u64 throttled_timestamp;
+ u64 throttled_clock, throttled_clock_task;
+ u64 throttled_clock_task_time;
int throttled, throttle_count;
struct list_head throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
@@ -408,6 +421,7 @@ struct rq {
int active_balance;
int push_cpu;
struct cpu_stop_work active_balance_work;
+ struct task_struct *migrate_task;
/* cpu of this runqueue: */
int cpu;
int online;
@@ -463,6 +477,8 @@ struct rq {
#ifdef CONFIG_SMP
struct llist_head wake_list;
#endif
+
+ struct sched_avg avg;
};
static inline int cpu_of(struct rq *rq)
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index 9a3128dc67d..692d97628a1 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -45,32 +45,41 @@
#include "workqueue_sched.h"
enum {
- /* global_cwq flags */
- GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
- GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
- GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
- GCWQ_FREEZING = 1 << 3, /* freeze in progress */
- GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
+ /*
+ * global_cwq flags
+ *
+ * A bound gcwq is either associated or disassociated with its CPU.
+ * While associated (!DISASSOCIATED), all workers are bound to the
+ * CPU and none has %WORKER_UNBOUND set and concurrency management
+ * is in effect.
+ *
+ * While DISASSOCIATED, the cpu may be offline and all workers have
+ * %WORKER_UNBOUND set and concurrency management disabled, and may
+ * be executing on any CPU. The gcwq behaves as an unbound one.
+ *
+ * Note that DISASSOCIATED can be flipped only while holding
+ * managership of all pools on the gcwq to avoid changing binding
+ * state while create_worker() is in progress.
+ */
+ GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
+ GCWQ_FREEZING = 1 << 1, /* freeze in progress */
+
+ /* pool flags */
+ POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
/* worker flags */
WORKER_STARTED = 1 << 0, /* started */
WORKER_DIE = 1 << 1, /* die die die */
WORKER_IDLE = 1 << 2, /* is idle */
WORKER_PREP = 1 << 3, /* preparing to run works */
- WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
WORKER_REBIND = 1 << 5, /* mom is home, come back */
WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
WORKER_UNBOUND = 1 << 7, /* worker is unbound */
- WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
- WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
+ WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
+ WORKER_CPU_INTENSIVE,
- /* gcwq->trustee_state */
- TRUSTEE_START = 0, /* start */
- TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
- TRUSTEE_BUTCHER = 2, /* butcher workers */
- TRUSTEE_RELEASE = 3, /* release workers */
- TRUSTEE_DONE = 4, /* trustee is done */
+ NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
@@ -84,13 +93,13 @@ enum {
(min two ticks) */
MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
CREATE_COOLDOWN = HZ, /* time to breath after fail */
- TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
/*
* Rescue workers are used only on emergencies and shared by
* all cpus. Give -20.
*/
RESCUER_NICE_LEVEL = -20,
+ HIGHPRI_NICE_LEVEL = -20,
};
/*
@@ -115,6 +124,8 @@ enum {
*/
struct global_cwq;
+struct worker_pool;
+struct idle_rebind;
/*
* The poor guys doing the actual heavy lifting. All on-duty workers
@@ -131,12 +142,31 @@ struct worker {
struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
struct list_head scheduled; /* L: scheduled works */
struct task_struct *task; /* I: worker task */
- struct global_cwq *gcwq; /* I: the associated gcwq */
+ struct worker_pool *pool; /* I: the associated pool */
/* 64 bytes boundary on 64bit, 32 on 32bit */
unsigned long last_active; /* L: last active timestamp */
unsigned int flags; /* X: flags */
int id; /* I: worker id */
- struct work_struct rebind_work; /* L: rebind worker to cpu */
+
+ /* for rebinding worker to CPU */
+ struct idle_rebind *idle_rebind; /* L: for idle worker */
+ struct work_struct rebind_work; /* L: for busy worker */
+};
+
+struct worker_pool {
+ struct global_cwq *gcwq; /* I: the owning gcwq */
+ unsigned int flags; /* X: flags */
+
+ struct list_head worklist; /* L: list of pending works */
+ int nr_workers; /* L: total number of workers */
+ int nr_idle; /* L: currently idle ones */
+
+ struct list_head idle_list; /* X: list of idle workers */
+ struct timer_list idle_timer; /* L: worker idle timeout */
+ struct timer_list mayday_timer; /* L: SOS timer for workers */
+
+ struct mutex manager_mutex; /* mutex manager should hold */
+ struct ida worker_ida; /* L: for worker IDs */
};
/*
@@ -146,27 +176,16 @@ struct worker {
*/
struct global_cwq {
spinlock_t lock; /* the gcwq lock */
- struct list_head worklist; /* L: list of pending works */
unsigned int cpu; /* I: the associated cpu */
unsigned int flags; /* L: GCWQ_* flags */
- int nr_workers; /* L: total number of workers */
- int nr_idle; /* L: currently idle ones */
-
- /* workers are chained either in the idle_list or busy_hash */
- struct list_head idle_list; /* X: list of idle workers */
+ /* workers are chained either in busy_hash or pool idle_list */
struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
/* L: hash of busy workers */
- struct timer_list idle_timer; /* L: worker idle timeout */
- struct timer_list mayday_timer; /* L: SOS timer for dworkers */
-
- struct ida worker_ida; /* L: for worker IDs */
+ struct worker_pool pools[2]; /* normal and highpri pools */
- struct task_struct *trustee; /* L: for gcwq shutdown */
- unsigned int trustee_state; /* L: trustee state */
- wait_queue_head_t trustee_wait; /* trustee wait */
- struct worker *first_idle; /* L: first idle worker */
+ wait_queue_head_t rebind_hold; /* rebind hold wait */
} ____cacheline_aligned_in_smp;
/*
@@ -175,7 +194,7 @@ struct global_cwq {
* aligned at two's power of the number of flag bits.
*/
struct cpu_workqueue_struct {
- struct global_cwq *gcwq; /* I: the associated gcwq */
+ struct worker_pool *pool; /* I: the associated pool */
struct workqueue_struct *wq; /* I: the owning workqueue */
int work_color; /* L: current color */
int flush_color; /* L: flushing color */
@@ -264,6 +283,10 @@ EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
#define CREATE_TRACE_POINTS
#include <trace/events/workqueue.h>
+#define for_each_worker_pool(pool, gcwq) \
+ for ((pool) = &(gcwq)->pools[0]; \
+ (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
+
#define for_each_busy_worker(worker, i, pos, gcwq) \
for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
@@ -444,7 +467,7 @@ static bool workqueue_freezing; /* W: have wqs started freezing? */
* try_to_wake_up(). Put it in a separate cacheline.
*/
static DEFINE_PER_CPU(struct global_cwq, global_cwq);
-static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
+static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
/*
* Global cpu workqueue and nr_running counter for unbound gcwq. The
@@ -452,10 +475,17 @@ static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
* workers have WORKER_UNBOUND set.
*/
static struct global_cwq unbound_global_cwq;
-static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
+static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
+ [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
+};
static int worker_thread(void *__worker);
+static int worker_pool_pri(struct worker_pool *pool)
+{
+ return pool - pool->gcwq->pools;
+}
+
static struct global_cwq *get_gcwq(unsigned int cpu)
{
if (cpu != WORK_CPU_UNBOUND)
@@ -464,12 +494,15 @@ static struct global_cwq *get_gcwq(unsigned int cpu)
return &unbound_global_cwq;
}
-static atomic_t *get_gcwq_nr_running(unsigned int cpu)
+static atomic_t *get_pool_nr_running(struct worker_pool *pool)
{
+ int cpu = pool->gcwq->cpu;
+ int idx = worker_pool_pri(pool);
+
if (cpu != WORK_CPU_UNBOUND)
- return &per_cpu(gcwq_nr_running, cpu);
+ return &per_cpu(pool_nr_running, cpu)[idx];
else
- return &unbound_gcwq_nr_running;
+ return &unbound_pool_nr_running[idx];
}
static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
@@ -555,7 +588,7 @@ static struct global_cwq *get_work_gcwq(struct work_struct *work)
if (data & WORK_STRUCT_CWQ)
return ((struct cpu_workqueue_struct *)
- (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
+ (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
cpu = data >> WORK_STRUCT_FLAG_BITS;
if (cpu == WORK_CPU_NONE)
@@ -566,60 +599,62 @@ static struct global_cwq *get_work_gcwq(struct work_struct *work)
}
/*
- * Policy functions. These define the policies on how the global
- * worker pool is managed. Unless noted otherwise, these functions
- * assume that they're being called with gcwq->lock held.
+ * Policy functions. These define the policies on how the global worker
+ * pools are managed. Unless noted otherwise, these functions assume that
+ * they're being called with gcwq->lock held.
*/
-static bool __need_more_worker(struct global_cwq *gcwq)
+static bool __need_more_worker(struct worker_pool *pool)
{
- return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
- gcwq->flags & GCWQ_HIGHPRI_PENDING;
+ return !atomic_read(get_pool_nr_running(pool));
}
/*
* Need to wake up a worker? Called from anything but currently
* running workers.
+ *
+ * Note that, because unbound workers never contribute to nr_running, this
+ * function will always return %true for unbound gcwq as long as the
+ * worklist isn't empty.
*/
-static bool need_more_worker(struct global_cwq *gcwq)
+static bool need_more_worker(struct worker_pool *pool)
{
- return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
+ return !list_empty(&pool->worklist) && __need_more_worker(pool);
}
/* Can I start working? Called from busy but !running workers. */
-static bool may_start_working(struct global_cwq *gcwq)
+static bool may_start_working(struct worker_pool *pool)
{
- return gcwq->nr_idle;
+ return pool->nr_idle;
}
/* Do I need to keep working? Called from currently running workers. */
-static bool keep_working(struct global_cwq *gcwq)
+static bool keep_working(struct worker_pool *pool)
{
- atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
+ atomic_t *nr_running = get_pool_nr_running(pool);
- return !list_empty(&gcwq->worklist) &&
- (atomic_read(nr_running) <= 1 ||
- gcwq->flags & GCWQ_HIGHPRI_PENDING);
+ return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
}
/* Do we need a new worker? Called from manager. */
-static bool need_to_create_worker(struct global_cwq *gcwq)
+static bool need_to_create_worker(struct worker_pool *pool)
{
- return need_more_worker(gcwq) && !may_start_working(gcwq);
+ return need_more_worker(pool) && !may_start_working(pool);
}
/* Do I need to be the manager? */
-static bool need_to_manage_workers(struct global_cwq *gcwq)
+static bool need_to_manage_workers(struct worker_pool *pool)
{
- return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
+ return need_to_create_worker(pool) ||
+ (pool->flags & POOL_MANAGE_WORKERS);
}
/* Do we have too many workers and should some go away? */
-static bool too_many_workers(struct global_cwq *gcwq)
+static bool too_many_workers(struct worker_pool *pool)
{
- bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
- int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
- int nr_busy = gcwq->nr_workers - nr_idle;
+ bool managing = mutex_is_locked(&pool->manager_mutex);
+ int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
+ int nr_busy = pool->nr_workers - nr_idle;
return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
}
@@ -629,26 +664,26 @@ static bool too_many_workers(struct global_cwq *gcwq)
*/
/* Return the first worker. Safe with preemption disabled */
-static struct worker *first_worker(struct global_cwq *gcwq)
+static struct worker *first_worker(struct worker_pool *pool)
{
- if (unlikely(list_empty(&gcwq->idle_list)))
+ if (unlikely(list_empty(&pool->idle_list)))
return NULL;
- return list_first_entry(&gcwq->idle_list, struct worker, entry);
+ return list_first_entry(&pool->idle_list, struct worker, entry);
}
/**
* wake_up_worker - wake up an idle worker
- * @gcwq: gcwq to wake worker for
+ * @pool: worker pool to wake worker from
*
- * Wake up the first idle worker of @gcwq.
+ * Wake up the first idle worker of @pool.
*
* CONTEXT:
* spin_lock_irq(gcwq->lock).
*/
-static void wake_up_worker(struct global_cwq *gcwq)
+static void wake_up_worker(struct worker_pool *pool)
{
- struct worker *worker = first_worker(gcwq);
+ struct worker *worker = first_worker(pool);
if (likely(worker))
wake_up_process(worker->task);
@@ -670,7 +705,7 @@ void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
struct worker *worker = kthread_data(task);
if (!(worker->flags & WORKER_NOT_RUNNING))
- atomic_inc(get_gcwq_nr_running(cpu));
+ atomic_inc(get_pool_nr_running(worker->pool));
}
/**
@@ -692,8 +727,8 @@ struct task_struct *wq_worker_sleeping(struct task_struct *task,
unsigned int cpu)
{
struct worker *worker = kthread_data(task), *to_wakeup = NULL;
- struct global_cwq *gcwq = get_gcwq(cpu);
- atomic_t *nr_running = get_gcwq_nr_running(cpu);
+ struct worker_pool *pool = worker->pool;
+ atomic_t *nr_running = get_pool_nr_running(pool);
if (worker->flags & WORKER_NOT_RUNNING)
return NULL;
@@ -706,14 +741,14 @@ struct task_struct *wq_worker_sleeping(struct task_struct *task,
* worklist not empty test sequence is in insert_work().
* Please read comment there.
*
- * NOT_RUNNING is clear. This means that trustee is not in
- * charge and we're running on the local cpu w/ rq lock held
- * and preemption disabled, which in turn means that none else
- * could be manipulating idle_list, so dereferencing idle_list
- * without gcwq lock is safe.
+ * NOT_RUNNING is clear. This means that we're bound to and
+ * running on the local cpu w/ rq lock held and preemption
+ * disabled, which in turn means that none else could be
+ * manipulating idle_list, so dereferencing idle_list without gcwq
+ * lock is safe.
*/
- if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
- to_wakeup = first_worker(gcwq);
+ if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
+ to_wakeup = first_worker(pool);
return to_wakeup ? to_wakeup->task : NULL;
}
@@ -733,7 +768,7 @@ struct task_struct *wq_worker_sleeping(struct task_struct *task,
static inline void worker_set_flags(struct worker *worker, unsigned int flags,
bool wakeup)
{
- struct global_cwq *gcwq = worker->gcwq;
+ struct worker_pool *pool = worker->pool;
WARN_ON_ONCE(worker->task != current);
@@ -744,12 +779,12 @@ static inline void worker_set_flags(struct worker *worker, unsigned int flags,
*/
if ((flags & WORKER_NOT_RUNNING) &&
!(worker->flags & WORKER_NOT_RUNNING)) {
- atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
+ atomic_t *nr_running = get_pool_nr_running(pool);
if (wakeup) {
if (atomic_dec_and_test(nr_running) &&
- !list_empty(&gcwq->worklist))
- wake_up_worker(gcwq);
+ !list_empty(&pool->worklist))
+ wake_up_worker(pool);
} else
atomic_dec(nr_running);
}
@@ -769,7 +804,7 @@ static inline void worker_set_flags(struct worker *worker, unsigned int flags,
*/
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
- struct global_cwq *gcwq = worker->gcwq;
+ struct worker_pool *pool = worker->pool;
unsigned int oflags = worker->flags;
WARN_ON_ONCE(worker->task != current);
@@ -783,7 +818,7 @@ static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
*/
if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
if (!(worker->flags & WORKER_NOT_RUNNING))
- atomic_inc(get_gcwq_nr_running(gcwq->cpu));
+ atomic_inc(get_pool_nr_running(pool));
}
/**
@@ -867,43 +902,6 @@ static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
}
/**
- * gcwq_determine_ins_pos - find insertion position
- * @gcwq: gcwq of interest
- * @cwq: cwq a work is being queued for
- *
- * A work for @cwq is about to be queued on @gcwq, determine insertion
- * position for the work. If @cwq is for HIGHPRI wq, the work is
- * queued at the head of the queue but in FIFO order with respect to
- * other HIGHPRI works; otherwise, at the end of the queue. This
- * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
- * there are HIGHPRI works pending.
- *
- * CONTEXT:
- * spin_lock_irq(gcwq->lock).
- *
- * RETURNS:
- * Pointer to inserstion position.
- */
-static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
- struct cpu_workqueue_struct *cwq)
-{
- struct work_struct *twork;
-
- if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
- return &gcwq->worklist;
-
- list_for_each_entry(twork, &gcwq->worklist, entry) {
- struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
-
- if (!(tcwq->wq->flags & WQ_HIGHPRI))
- break;
- }
-
- gcwq->flags |= GCWQ_HIGHPRI_PENDING;
- return &twork->entry;
-}
-
-/**
* insert_work - insert a work into gcwq
* @cwq: cwq @work belongs to
* @work: work to insert
@@ -920,7 +918,7 @@ static void insert_work(struct cpu_workqueue_struct *cwq,
struct work_struct *work, struct list_head *head,
unsigned int extra_flags)
{
- struct global_cwq *gcwq = cwq->gcwq;
+ struct worker_pool *pool = cwq->pool;
/* we own @work, set data and link */
set_work_cwq(work, cwq, extra_flags);
@@ -940,8 +938,8 @@ static void insert_work(struct cpu_workqueue_struct *cwq,
*/
smp_mb();
- if (__need_more_worker(gcwq))
- wake_up_worker(gcwq);
+ if (__need_more_worker(pool))
+ wake_up_worker(pool);
}
/*
@@ -1043,7 +1041,7 @@ static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
if (likely(cwq->nr_active < cwq->max_active)) {
trace_workqueue_activate_work(work);
cwq->nr_active++;
- worklist = gcwq_determine_ins_pos(gcwq, cwq);
+ worklist = &cwq->pool->worklist;
} else {
work_flags |= WORK_STRUCT_DELAYED;
worklist = &cwq->delayed_works;
@@ -1192,7 +1190,8 @@ EXPORT_SYMBOL_GPL(queue_delayed_work_on);
*/
static void worker_enter_idle(struct worker *worker)
{
- struct global_cwq *gcwq = worker->gcwq;
+ struct worker_pool *pool = worker->pool;
+ struct global_cwq *gcwq = pool->gcwq;
BUG_ON(worker->flags & WORKER_IDLE);
BUG_ON(!list_empty(&worker->entry) &&
@@ -1200,27 +1199,24 @@ static void worker_enter_idle(struct worker *worker)
/* can't use worker_set_flags(), also called from start_worker() */
worker->flags |= WORKER_IDLE;
- gcwq->nr_idle++;
+ pool->nr_idle++;
worker->last_active = jiffies;
/* idle_list is LIFO */
- list_add(&worker->entry, &gcwq->idle_list);
+ list_add(&worker->entry, &pool->idle_list);
- if (likely(!(worker->flags & WORKER_ROGUE))) {
- if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
- mod_timer(&gcwq->idle_timer,
- jiffies + IDLE_WORKER_TIMEOUT);
- } else
- wake_up_all(&gcwq->trustee_wait);
+ if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
+ mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
/*
- * Sanity check nr_running. Because trustee releases gcwq->lock
- * between setting %WORKER_ROGUE and zapping nr_running, the
- * warning may trigger spuriously. Check iff trustee is idle.
+ * Sanity check nr_running. Because gcwq_unbind_fn() releases
+ * gcwq->lock between setting %WORKER_UNBOUND and zapping
+ * nr_running, the warning may trigger spuriously. Check iff
+ * unbind is not in progress.
*/
- WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
- gcwq->nr_workers == gcwq->nr_idle &&
- atomic_read(get_gcwq_nr_running(gcwq->cpu)));
+ WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
+ pool->nr_workers == pool->nr_idle &&
+ atomic_read(get_pool_nr_running(pool)));
}
/**
@@ -1234,11 +1230,11 @@ static void worker_enter_idle(struct worker *worker)
*/
static void worker_leave_idle(struct worker *worker)
{
- struct global_cwq *gcwq = worker->gcwq;
+ struct worker_pool *pool = worker->pool;
BUG_ON(!(worker->flags & WORKER_IDLE));
worker_clr_flags(worker, WORKER_IDLE);
- gcwq->nr_idle--;
+ pool->nr_idle--;
list_del_init(&worker->entry);
}
@@ -1258,11 +1254,11 @@ static void worker_leave_idle(struct worker *worker)
* verbatim as it's best effort and blocking and gcwq may be
* [dis]associated in the meantime.
*
- * This function tries set_cpus_allowed() and locks gcwq and verifies
- * the binding against GCWQ_DISASSOCIATED which is set during
- * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
- * idle state or fetches works without dropping lock, it can guarantee
- * the scheduling requirement described in the first paragraph.
+ * This function tries set_cpus_allowed() and locks gcwq and verifies the
+ * binding against %GCWQ_DISASSOCIATED which is set during
+ * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
+ * enters idle state or fetches works without dropping lock, it can
+ * guarantee the scheduling requirement described in the first paragraph.
*
* CONTEXT:
* Might sleep. Called without any lock but returns with gcwq->lock
@@ -1275,7 +1271,7 @@ static void worker_leave_idle(struct worker *worker)
static bool worker_maybe_bind_and_lock(struct worker *worker)
__acquires(&gcwq->lock)
{
- struct global_cwq *gcwq = worker->gcwq;
+ struct global_cwq *gcwq = worker->pool->gcwq;
struct task_struct *task = worker->task;
while (true) {
@@ -1308,16 +1304,40 @@ __acquires(&gcwq->lock)
}
}
+struct idle_rebind {
+ int cnt; /* # workers to be rebound */
+ struct completion done; /* all workers rebound */
+};
+
+/*
+ * Rebind an idle @worker to its CPU. During CPU onlining, this has to
+ * happen synchronously for idle workers. worker_thread() will test
+ * %WORKER_REBIND before leaving idle and call this function.
+ */
+static void idle_worker_rebind(struct worker *worker)
+{
+ struct global_cwq *gcwq = worker->pool->gcwq;
+
+ /* CPU must be online at this point */
+ WARN_ON(!worker_maybe_bind_and_lock(worker));
+ if (!--worker->idle_rebind->cnt)
+ complete(&worker->idle_rebind->done);
+ spin_unlock_irq(&worker->pool->gcwq->lock);
+
+ /* we did our part, wait for rebind_workers() to finish up */
+ wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
+}
+
/*
- * Function for worker->rebind_work used to rebind rogue busy workers
- * to the associated cpu which is coming back online. This is
- * scheduled by cpu up but can race with other cpu hotplug operations
- * and may be executed twice without intervening cpu down.
+ * Function for @worker->rebind.work used to rebind unbound busy workers to
+ * the associated cpu which is coming back online. This is scheduled by
+ * cpu up but can race with other cpu hotplug operations and may be
+ * executed twice without intervening cpu down.
*/
-static void worker_rebind_fn(struct work_struct *work)
+static void busy_worker_rebind_fn(struct work_struct *work)
{
struct worker *worker = container_of(work, struct worker, rebind_work);
- struct global_cwq *gcwq = worker->gcwq;
+ struct global_cwq *gcwq = worker->pool->gcwq;
if (worker_maybe_bind_and_lock(worker))
worker_clr_flags(worker, WORKER_REBIND);
@@ -1325,6 +1345,112 @@ static void worker_rebind_fn(struct work_struct *work)
spin_unlock_irq(&gcwq->lock);
}
+/**
+ * rebind_workers - rebind all workers of a gcwq to the associated CPU
+ * @gcwq: gcwq of interest
+ *
+ * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
+ * is different for idle and busy ones.
+ *
+ * The idle ones should be rebound synchronously and idle rebinding should
+ * be complete before any worker starts executing work items with
+ * concurrency management enabled; otherwise, scheduler may oops trying to
+ * wake up non-local idle worker from wq_worker_sleeping().
+ *
+ * This is achieved by repeatedly requesting rebinding until all idle
+ * workers are known to have been rebound under @gcwq->lock and holding all
+ * idle workers from becoming busy until idle rebinding is complete.
+ *
+ * Once idle workers are rebound, busy workers can be rebound as they
+ * finish executing their current work items. Queueing the rebind work at
+ * the head of their scheduled lists is enough. Note that nr_running will
+ * be properbly bumped as busy workers rebind.
+ *
+ * On return, all workers are guaranteed to either be bound or have rebind
+ * work item scheduled.
+ */
+static void rebind_workers(struct global_cwq *gcwq)
+ __releases(&gcwq->lock) __acquires(&gcwq->lock)
+{
+ struct idle_rebind idle_rebind;
+ struct worker_pool *pool;
+ struct worker *worker;
+ struct hlist_node *pos;
+ int i;
+
+ lockdep_assert_held(&gcwq->lock);
+
+ for_each_worker_pool(pool, gcwq)
+ lockdep_assert_held(&pool->manager_mutex);
+
+ /*
+ * Rebind idle workers. Interlocked both ways. We wait for
+ * workers to rebind via @idle_rebind.done. Workers will wait for
+ * us to finish up by watching %WORKER_REBIND.
+ */
+ init_completion(&idle_rebind.done);
+retry:
+ idle_rebind.cnt = 1;
+ INIT_COMPLETION(idle_rebind.done);
+
+ /* set REBIND and kick idle ones, we'll wait for these later */
+ for_each_worker_pool(pool, gcwq) {
+ list_for_each_entry(worker, &pool->idle_list, entry) {
+ if (worker->flags & WORKER_REBIND)
+ continue;
+
+ /* morph UNBOUND to REBIND */
+ worker->flags &= ~WORKER_UNBOUND;
+ worker->flags |= WORKER_REBIND;
+
+ idle_rebind.cnt++;
+ worker->idle_rebind = &idle_rebind;
+
+ /* worker_thread() will call idle_worker_rebind() */
+ wake_up_process(worker->task);
+ }
+ }
+
+ if (--idle_rebind.cnt) {
+ spin_unlock_irq(&gcwq->lock);
+ wait_for_completion(&idle_rebind.done);
+ spin_lock_irq(&gcwq->lock);
+ /* busy ones might have become idle while waiting, retry */
+ goto retry;
+ }
+
+ /*
+ * All idle workers are rebound and waiting for %WORKER_REBIND to
+ * be cleared inside idle_worker_rebind(). Clear and release.
+ * Clearing %WORKER_REBIND from this foreign context is safe
+ * because these workers are still guaranteed to be idle.
+ */
+ for_each_worker_pool(pool, gcwq)
+ list_for_each_entry(worker, &pool->idle_list, entry)
+ worker->flags &= ~WORKER_REBIND;
+
+ wake_up_all(&gcwq->rebind_hold);
+
+ /* rebind busy workers */
+ for_each_busy_worker(worker, i, pos, gcwq) {
+ struct work_struct *rebind_work = &worker->rebind_work;
+
+ /* morph UNBOUND to REBIND */
+ worker->flags &= ~WORKER_UNBOUND;
+ worker->flags |= WORKER_REBIND;
+
+ if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
+ work_data_bits(rebind_work)))
+ continue;
+
+ /* wq doesn't matter, use the default one */
+ debug_work_activate(rebind_work);
+ insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
+ worker->scheduled.next,
+ work_color_to_flags(WORK_NO_COLOR));
+ }
+}
+
static struct worker *alloc_worker(void)
{
struct worker *worker;
@@ -1333,7 +1459,7 @@ static struct worker *alloc_worker(void)
if (worker) {
INIT_LIST_HEAD(&worker->entry);
INIT_LIST_HEAD(&worker->scheduled);
- INIT_WORK(&worker->rebind_work, worker_rebind_fn);
+ INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
/* on creation a worker is in !idle && prep state */
worker->flags = WORKER_PREP;
}
@@ -1342,10 +1468,9 @@ static struct worker *alloc_worker(void)
/**
* create_worker - create a new workqueue worker
- * @gcwq: gcwq the new worker will belong to
- * @bind: whether to set affinity to @cpu or not
+ * @pool: pool the new worker will belong to
*
- * Create a new worker which is bound to @gcwq. The returned worker
+ * Create a new worker which is bound to @pool. The returned worker
* can be started by calling start_worker() or destroyed using
* destroy_worker().
*
@@ -1355,16 +1480,17 @@ static struct worker *alloc_worker(void)
* RETURNS:
* Pointer to the newly created worker.
*/
-static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
+static struct worker *create_worker(struct worker_pool *pool)
{
- bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
+ struct global_cwq *gcwq = pool->gcwq;
+ const char *pri = worker_pool_pri(pool) ? "H" : "";
struct worker *worker = NULL;
int id = -1;
spin_lock_irq(&gcwq->lock);
- while (ida_get_new(&gcwq->worker_ida, &id)) {
+ while (ida_get_new(&pool->worker_ida, &id)) {
spin_unlock_irq(&gcwq->lock);
- if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
+ if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
goto fail;
spin_lock_irq(&gcwq->lock);
}
@@ -1374,38 +1500,43 @@ static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
if (!worker)
goto fail;
- worker->gcwq = gcwq;
+ worker->pool = pool;
worker->id = id;
- if (!on_unbound_cpu)
+ if (gcwq->cpu != WORK_CPU_UNBOUND)
worker->task = kthread_create_on_node(worker_thread,
- worker,
- cpu_to_node(gcwq->cpu),
- "kworker/%u:%d", gcwq->cpu, id);
+ worker, cpu_to_node(gcwq->cpu),
+ "kworker/%u:%d%s", gcwq->cpu, id, pri);
else
worker->task = kthread_create(worker_thread, worker,
- "kworker/u:%d", id);
+ "kworker/u:%d%s", id, pri);
if (IS_ERR(worker->task))
goto fail;
+ if (worker_pool_pri(pool))
+ set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
+
/*
- * A rogue worker will become a regular one if CPU comes
- * online later on. Make sure every worker has
- * PF_THREAD_BOUND set.
+ * Determine CPU binding of the new worker depending on
+ * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
+ * flag remains stable across this function. See the comments
+ * above the flag definition for details.
+ *
+ * As an unbound worker may later become a regular one if CPU comes
+ * online, make sure every worker has %PF_THREAD_BOUND set.
*/
- if (bind && !on_unbound_cpu)
+ if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
kthread_bind(worker->task, gcwq->cpu);
- else {
+ } else {
worker->task->flags |= PF_THREAD_BOUND;
- if (on_unbound_cpu)
- worker->flags |= WORKER_UNBOUND;
+ worker->flags |= WORKER_UNBOUND;
}
return worker;
fail:
if (id >= 0) {
spin_lock_irq(&gcwq->lock);
- ida_remove(&gcwq->worker_ida, id);
+ ida_remove(&pool->worker_ida, id);
spin_unlock_irq(&gcwq->lock);
}
kfree(worker);
@@ -1424,7 +1555,7 @@ fail:
static void start_worker(struct worker *worker)
{
worker->flags |= WORKER_STARTED;
- worker->gcwq->nr_workers++;
+ worker->pool->nr_workers++;
worker_enter_idle(worker);
wake_up_process(worker->task);
}
@@ -1440,7 +1571,8 @@ static void start_worker(struct worker *worker)
*/
static void destroy_worker(struct worker *worker)
{
- struct global_cwq *gcwq = worker->gcwq;
+ struct worker_pool *pool = worker->pool;
+ struct global_cwq *gcwq = pool->gcwq;
int id = worker->id;
/* sanity check frenzy */
@@ -1448,9 +1580,9 @@ static void destroy_worker(struct worker *worker)
BUG_ON(!list_empty(&worker->scheduled));
if (worker->flags & WORKER_STARTED)
- gcwq->nr_workers--;
+ pool->nr_workers--;
if (worker->flags & WORKER_IDLE)
- gcwq->nr_idle--;
+ pool->nr_idle--;
list_del_init(&worker->entry);
worker->flags |= WORKER_DIE;
@@ -1461,29 +1593,30 @@ static void destroy_worker(struct worker *worker)
kfree(worker);
spin_lock_irq(&gcwq->lock);
- ida_remove(&gcwq->worker_ida, id);
+ ida_remove(&pool->worker_ida, id);
}
-static void idle_worker_timeout(unsigned long __gcwq)
+static void idle_worker_timeout(unsigned long __pool)
{
- struct global_cwq *gcwq = (void *)__gcwq;
+ struct worker_pool *pool = (void *)__pool;
+ struct global_cwq *gcwq = pool->gcwq;
spin_lock_irq(&gcwq->lock);
- if (too_many_workers(gcwq)) {
+ if (too_many_workers(pool)) {
struct worker *worker;
unsigned long expires;
/* idle_list is kept in LIFO order, check the last one */
- worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
+ worker = list_entry(pool->idle_list.prev, struct worker, entry);
expires = worker->last_active + IDLE_WORKER_TIMEOUT;
if (time_before(jiffies, expires))
- mod_timer(&gcwq->idle_timer, expires);
+ mod_timer(&pool->idle_timer, expires);
else {
/* it's been idle for too long, wake up manager */
- gcwq->flags |= GCWQ_MANAGE_WORKERS;
- wake_up_worker(gcwq);
+ pool->flags |= POOL_MANAGE_WORKERS;
+ wake_up_worker(pool);
}
}
@@ -1500,7 +1633,7 @@ static bool send_mayday(struct work_struct *work)
return false;
/* mayday mayday mayday */
- cpu = cwq->gcwq->cpu;
+ cpu = cwq->pool->gcwq->cpu;
/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
if (cpu == WORK_CPU_UNBOUND)
cpu = 0;
@@ -1509,37 +1642,38 @@ static bool send_mayday(struct work_struct *work)
return true;
}
-static void gcwq_mayday_timeout(unsigned long __gcwq)
+static void gcwq_mayday_timeout(unsigned long __pool)
{
- struct global_cwq *gcwq = (void *)__gcwq;
+ struct worker_pool *pool = (void *)__pool;
+ struct global_cwq *gcwq = pool->gcwq;
struct work_struct *work;
spin_lock_irq(&gcwq->lock);
- if (need_to_create_worker(gcwq)) {
+ if (need_to_create_worker(pool)) {
/*
* We've been trying to create a new worker but
* haven't been successful. We might be hitting an
* allocation deadlock. Send distress signals to
* rescuers.
*/
- list_for_each_entry(work, &gcwq->worklist, entry)
+ list_for_each_entry(work, &pool->worklist, entry)
send_mayday(work);
}
spin_unlock_irq(&gcwq->lock);
- mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
+ mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
}
/**
* maybe_create_worker - create a new worker if necessary
- * @gcwq: gcwq to create a new worker for
+ * @pool: pool to create a new worker for
*
- * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
+ * Create a new worker for @pool if necessary. @pool is guaranteed to
* have at least one idle worker on return from this function. If
* creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
- * sent to all rescuers with works scheduled on @gcwq to resolve
+ * sent to all rescuers with works scheduled on @pool to resolve
* possible allocation deadlock.
*
* On return, need_to_create_worker() is guaranteed to be false and
@@ -1554,52 +1688,54 @@ static void gcwq_mayday_timeout(unsigned long __gcwq)
* false if no action was taken and gcwq->lock stayed locked, true
* otherwise.
*/
-static bool maybe_create_worker(struct global_cwq *gcwq)
+static bool maybe_create_worker(struct worker_pool *pool)
__releases(&gcwq->lock)
__acquires(&gcwq->lock)
{
- if (!need_to_create_worker(gcwq))
+ struct global_cwq *gcwq = pool->gcwq;
+
+ if (!need_to_create_worker(pool))
return false;
restart:
spin_unlock_irq(&gcwq->lock);
/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
- mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
+ mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
while (true) {
struct worker *worker;
- worker = create_worker(gcwq, true);
+ worker = create_worker(pool);
if (worker) {
- del_timer_sync(&gcwq->mayday_timer);
+ del_timer_sync(&pool->mayday_timer);
spin_lock_irq(&gcwq->lock);
start_worker(worker);
- BUG_ON(need_to_create_worker(gcwq));
+ BUG_ON(need_to_create_worker(pool));
return true;
}
- if (!need_to_create_worker(gcwq))
+ if (!need_to_create_worker(pool))
break;
__set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(CREATE_COOLDOWN);
- if (!need_to_create_worker(gcwq))
+ if (!need_to_create_worker(pool))
break;
}
- del_timer_sync(&gcwq->mayday_timer);
+ del_timer_sync(&pool->mayday_timer);
spin_lock_irq(&gcwq->lock);
- if (need_to_create_worker(gcwq))
+ if (need_to_create_worker(pool))
goto restart;
return true;
}
/**
* maybe_destroy_worker - destroy workers which have been idle for a while
- * @gcwq: gcwq to destroy workers for
+ * @pool: pool to destroy workers for
*
- * Destroy @gcwq workers which have been idle for longer than
+ * Destroy @pool workers which have been idle for longer than
* IDLE_WORKER_TIMEOUT.
*
* LOCKING:
@@ -1610,19 +1746,19 @@ restart:
* false if no action was taken and gcwq->lock stayed locked, true
* otherwise.
*/
-static bool maybe_destroy_workers(struct global_cwq *gcwq)
+static bool maybe_destroy_workers(struct worker_pool *pool)
{
bool ret = false;
- while (too_many_workers(gcwq)) {
+ while (too_many_workers(pool)) {
struct worker *worker;
unsigned long expires;
- worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
+ worker = list_entry(pool->idle_list.prev, struct worker, entry);
expires = worker->last_active + IDLE_WORKER_TIMEOUT;
if (time_before(jiffies, expires)) {
- mod_timer(&gcwq->idle_timer, expires);
+ mod_timer(&pool->idle_timer, expires);
break;
}
@@ -1655,31 +1791,22 @@ static bool maybe_destroy_workers(struct global_cwq *gcwq)
*/
static bool manage_workers(struct worker *worker)
{
- struct global_cwq *gcwq = worker->gcwq;
+ struct worker_pool *pool = worker->pool;
bool ret = false;
- if (gcwq->flags & GCWQ_MANAGING_WORKERS)
+ if (!mutex_trylock(&pool->manager_mutex))
return ret;
- gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
- gcwq->flags |= GCWQ_MANAGING_WORKERS;
+ pool->flags &= ~POOL_MANAGE_WORKERS;
/*
* Destroy and then create so that may_start_working() is true
* on return.
*/
- ret |= maybe_destroy_workers(gcwq);
- ret |= maybe_create_worker(gcwq);
-
- gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
-
- /*
- * The trustee might be waiting to take over the manager
- * position, tell it we're done.
- */
- if (unlikely(gcwq->trustee))
- wake_up_all(&gcwq->trustee_wait);
+ ret |= maybe_destroy_workers(pool);
+ ret |= maybe_create_worker(pool);
+ mutex_unlock(&pool->manager_mutex);
return ret;
}
@@ -1728,10 +1855,9 @@ static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
{
struct work_struct *work = list_first_entry(&cwq->delayed_works,
struct work_struct, entry);
- struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
trace_workqueue_activate_work(work);
- move_linked_works(work, pos, NULL);
+ move_linked_works(work, &cwq->pool->worklist, NULL);
__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
cwq->nr_active++;
}
@@ -1804,7 +1930,8 @@ __releases(&gcwq->lock)
__acquires(&gcwq->lock)
{
struct cpu_workqueue_struct *cwq = get_work_cwq(work);
- struct global_cwq *gcwq = cwq->gcwq;
+ struct worker_pool *pool = worker->pool;
+ struct global_cwq *gcwq = pool->gcwq;
struct hlist_head *bwh = busy_worker_head(gcwq, work);
bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
work_func_t f = work->func;
@@ -1823,6 +1950,15 @@ __acquires(&gcwq->lock)
lockdep_copy_map(&lockdep_map, &work->lockdep_map);
#endif
/*
+ * Ensure we're on the correct CPU. DISASSOCIATED test is
+ * necessary to avoid spurious warnings from rescuers servicing the
+ * unbound or a disassociated gcwq.
+ */
+ WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
+ !(gcwq->flags & GCWQ_DISASSOCIATED) &&
+ raw_smp_processor_id() != gcwq->cpu);
+
+ /*
* A single work shouldn't be executed concurrently by
* multiple workers on a single cpu. Check whether anyone is
* already processing the work. If so, defer the work to the
@@ -1846,27 +1982,19 @@ __acquires(&gcwq->lock)
list_del_init(&work->entry);
/*
- * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
- * wake up another worker; otherwise, clear HIGHPRI_PENDING.
- */
- if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
- struct work_struct *nwork = list_first_entry(&gcwq->worklist,
- struct work_struct, entry);
-
- if (!list_empty(&gcwq->worklist) &&
- get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
- wake_up_worker(gcwq);
- else
- gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
- }
-
- /*
* CPU intensive works don't participate in concurrency
* management. They're the scheduler's responsibility.
*/
if (unlikely(cpu_intensive))
worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
+ /*
+ * Unbound gcwq isn't concurrency managed and work items should be
+ * executed ASAP. Wake up another worker if necessary.
+ */
+ if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
+ wake_up_worker(pool);
+
spin_unlock_irq(&gcwq->lock);
work_clear_pending(work);
@@ -1939,28 +2067,38 @@ static void process_scheduled_works(struct worker *worker)
static int worker_thread(void *__worker)
{
struct worker *worker = __worker;
- struct global_cwq *gcwq = worker->gcwq;
+ struct worker_pool *pool = worker->pool;
+ struct global_cwq *gcwq = pool->gcwq;
/* tell the scheduler that this is a workqueue worker */
worker->task->flags |= PF_WQ_WORKER;
woke_up:
spin_lock_irq(&gcwq->lock);
- /* DIE can be set only while we're idle, checking here is enough */
- if (worker->flags & WORKER_DIE) {
+ /*
+ * DIE can be set only while idle and REBIND set while busy has
+ * @worker->rebind_work scheduled. Checking here is enough.
+ */
+ if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
spin_unlock_irq(&gcwq->lock);
- worker->task->flags &= ~PF_WQ_WORKER;
- return 0;
+
+ if (worker->flags & WORKER_DIE) {
+ worker->task->flags &= ~PF_WQ_WORKER;
+ return 0;
+ }
+
+ idle_worker_rebind(worker);
+ goto woke_up;
}
worker_leave_idle(worker);
recheck:
/* no more worker necessary? */
- if (!need_more_worker(gcwq))
+ if (!need_more_worker(pool))
goto sleep;
/* do we need to manage? */
- if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
+ if (unlikely(!may_start_working(pool)) && manage_workers(worker))
goto recheck;
/*
@@ -1979,7 +2117,7 @@ recheck:
do {
struct work_struct *work =
- list_first_entry(&gcwq->worklist,
+ list_first_entry(&pool->worklist,
struct work_struct, entry);
if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
@@ -1991,11 +2129,11 @@ recheck:
move_linked_works(work, &worker->scheduled, NULL);
process_scheduled_works(worker);
}
- } while (keep_working(gcwq));
+ } while (keep_working(pool));
worker_set_flags(worker, WORKER_PREP, false);
sleep:
- if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
+ if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
goto recheck;
/*
@@ -2053,14 +2191,15 @@ repeat:
for_each_mayday_cpu(cpu, wq->mayday_mask) {
unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
- struct global_cwq *gcwq = cwq->gcwq;
+ struct worker_pool *pool = cwq->pool;
+ struct global_cwq *gcwq = pool->gcwq;
struct work_struct *work, *n;
__set_current_state(TASK_RUNNING);
mayday_clear_cpu(cpu, wq->mayday_mask);
/* migrate to the target cpu if possible */
- rescuer->gcwq = gcwq;
+ rescuer->pool = pool;
worker_maybe_bind_and_lock(rescuer);
/*
@@ -2068,7 +2207,7 @@ repeat:
* process'em.
*/
BUG_ON(!list_empty(&rescuer->scheduled));
- list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
+ list_for_each_entry_safe(work, n, &pool->worklist, entry)
if (get_work_cwq(work) == cwq)
move_linked_works(work, scheduled, &n);
@@ -2079,8 +2218,8 @@ repeat:
* regular worker; otherwise, we end up with 0 concurrency
* and stalling the execution.
*/
- if (keep_working(gcwq))
- wake_up_worker(gcwq);
+ if (keep_working(pool))
+ wake_up_worker(pool);
spin_unlock_irq(&gcwq->lock);
}
@@ -2205,7 +2344,7 @@ static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
for_each_cwq_cpu(cpu, wq) {
struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
- struct global_cwq *gcwq = cwq->gcwq;
+ struct global_cwq *gcwq = cwq->pool->gcwq;
spin_lock_irq(&gcwq->lock);
@@ -2421,9 +2560,9 @@ reflush:
struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bool drained;
- spin_lock_irq(&cwq->gcwq->lock);
+ spin_lock_irq(&cwq->pool->gcwq->lock);
drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
- spin_unlock_irq(&cwq->gcwq->lock);
+ spin_unlock_irq(&cwq->pool->gcwq->lock);
if (drained)
continue;
@@ -2463,7 +2602,7 @@ static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
*/
smp_rmb();
cwq = get_work_cwq(work);
- if (unlikely(!cwq || gcwq != cwq->gcwq))
+ if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
goto already_gone;
} else if (wait_executing) {
worker = find_worker_executing_work(gcwq, work);
@@ -2984,13 +3123,6 @@ struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
if (flags & WQ_MEM_RECLAIM)
flags |= WQ_RESCUER;
- /*
- * Unbound workqueues aren't concurrency managed and should be
- * dispatched to workers immediately.
- */
- if (flags & WQ_UNBOUND)
- flags |= WQ_HIGHPRI;
-
max_active = max_active ?: WQ_DFL_ACTIVE;
max_active = wq_clamp_max_active(max_active, flags, wq->name);
@@ -3011,9 +3143,10 @@ struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
for_each_cwq_cpu(cpu, wq) {
struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
struct global_cwq *gcwq = get_gcwq(cpu);
+ int pool_idx = (bool)(flags & WQ_HIGHPRI);
BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
- cwq->gcwq = gcwq;
+ cwq->pool = &gcwq->pools[pool_idx];
cwq->wq = wq;
cwq->flush_color = -1;
cwq->max_active = max_active;
@@ -3225,369 +3358,143 @@ EXPORT_SYMBOL_GPL(work_busy);
* gcwqs serve mix of short, long and very long running works making
* blocked draining impractical.
*
- * This is solved by allowing a gcwq to be detached from CPU, running
- * it with unbound (rogue) workers and allowing it to be reattached
- * later if the cpu comes back online. A separate thread is created
- * to govern a gcwq in such state and is called the trustee of the
- * gcwq.
- *
- * Trustee states and their descriptions.
- *
- * START Command state used on startup. On CPU_DOWN_PREPARE, a
- * new trustee is started with this state.
- *
- * IN_CHARGE Once started, trustee will enter this state after
- * assuming the manager role and making all existing
- * workers rogue. DOWN_PREPARE waits for trustee to
- * enter this state. After reaching IN_CHARGE, trustee
- * tries to execute the pending worklist until it's empty
- * and the state is set to BUTCHER, or the state is set
- * to RELEASE.
- *
- * BUTCHER Command state which is set by the cpu callback after
- * the cpu has went down. Once this state is set trustee
- * knows that there will be no new works on the worklist
- * and once the worklist is empty it can proceed to
- * killing idle workers.
- *
- * RELEASE Command state which is set by the cpu callback if the
- * cpu down has been canceled or it has come online
- * again. After recognizing this state, trustee stops
- * trying to drain or butcher and clears ROGUE, rebinds
- * all remaining workers back to the cpu and releases
- * manager role.
- *
- * DONE Trustee will enter this state after BUTCHER or RELEASE
- * is complete.
- *
- * trustee CPU draining
- * took over down complete
- * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
- * | | ^
- * | CPU is back online v return workers |
- * ----------------> RELEASE --------------
+ * This is solved by allowing a gcwq to be disassociated from the CPU
+ * running as an unbound one and allowing it to be reattached later if the
+ * cpu comes back online.
*/
-/**
- * trustee_wait_event_timeout - timed event wait for trustee
- * @cond: condition to wait for
- * @timeout: timeout in jiffies
- *
- * wait_event_timeout() for trustee to use. Handles locking and
- * checks for RELEASE request.
- *
- * CONTEXT:
- * spin_lock_irq(gcwq->lock) which may be released and regrabbed
- * multiple times. To be used by trustee.
- *
- * RETURNS:
- * Positive indicating left time if @cond is satisfied, 0 if timed
- * out, -1 if canceled.
- */
-#define trustee_wait_event_timeout(cond, timeout) ({ \
- long __ret = (timeout); \
- while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
- __ret) { \
- spin_unlock_irq(&gcwq->lock); \
- __wait_event_timeout(gcwq->trustee_wait, (cond) || \
- (gcwq->trustee_state == TRUSTEE_RELEASE), \
- __ret); \
- spin_lock_irq(&gcwq->lock); \
- } \
- gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
-})
-
-/**
- * trustee_wait_event - event wait for trustee
- * @cond: condition to wait for
- *
- * wait_event() for trustee to use. Automatically handles locking and
- * checks for CANCEL request.
- *
- * CONTEXT:
- * spin_lock_irq(gcwq->lock) which may be released and regrabbed
- * multiple times. To be used by trustee.
- *
- * RETURNS:
- * 0 if @cond is satisfied, -1 if canceled.
- */
-#define trustee_wait_event(cond) ({ \
- long __ret1; \
- __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
- __ret1 < 0 ? -1 : 0; \
-})
-
-static int __cpuinit trustee_thread(void *__gcwq)
+/* claim manager positions of all pools */
+static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
{
- struct global_cwq *gcwq = __gcwq;
- struct worker *worker;
- struct work_struct *work;
- struct hlist_node *pos;
- long rc;
- int i;
-
- BUG_ON(gcwq->cpu != smp_processor_id());
+ struct worker_pool *pool;
+ for_each_worker_pool(pool, gcwq)
+ mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
spin_lock_irq(&gcwq->lock);
- /*
- * Claim the manager position and make all workers rogue.
- * Trustee must be bound to the target cpu and can't be
- * cancelled.
- */
- BUG_ON(gcwq->cpu != smp_processor_id());
- rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
- BUG_ON(rc < 0);
-
- gcwq->flags |= GCWQ_MANAGING_WORKERS;
-
- list_for_each_entry(worker, &gcwq->idle_list, entry)
- worker->flags |= WORKER_ROGUE;
+}
- for_each_busy_worker(worker, i, pos, gcwq)
- worker->flags |= WORKER_ROGUE;
+/* release manager positions */
+static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
+{
+ struct worker_pool *pool;
- /*
- * Call schedule() so that we cross rq->lock and thus can
- * guarantee sched callbacks see the rogue flag. This is
- * necessary as scheduler callbacks may be invoked from other
- * cpus.
- */
spin_unlock_irq(&gcwq->lock);
- schedule();
- spin_lock_irq(&gcwq->lock);
+ for_each_worker_pool(pool, gcwq)
+ mutex_unlock(&pool->manager_mutex);
+}
- /*
- * Sched callbacks are disabled now. Zap nr_running. After
- * this, nr_running stays zero and need_more_worker() and
- * keep_working() are always true as long as the worklist is
- * not empty.
- */
- atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
+static void gcwq_unbind_fn(struct work_struct *work)
+{
+ struct global_cwq *gcwq = get_gcwq(smp_processor_id());
+ struct worker_pool *pool;
+ struct worker *worker;
+ struct hlist_node *pos;
+ int i;
- spin_unlock_irq(&gcwq->lock);
- del_timer_sync(&gcwq->idle_timer);
- spin_lock_irq(&gcwq->lock);
+ BUG_ON(gcwq->cpu != smp_processor_id());
- /*
- * We're now in charge. Notify and proceed to drain. We need
- * to keep the gcwq running during the whole CPU down
- * procedure as other cpu hotunplug callbacks may need to
- * flush currently running tasks.
- */
- gcwq->trustee_state = TRUSTEE_IN_CHARGE;
- wake_up_all(&gcwq->trustee_wait);
+ gcwq_claim_management_and_lock(gcwq);
/*
- * The original cpu is in the process of dying and may go away
- * anytime now. When that happens, we and all workers would
- * be migrated to other cpus. Try draining any left work. We
- * want to get it over with ASAP - spam rescuers, wake up as
- * many idlers as necessary and create new ones till the
- * worklist is empty. Note that if the gcwq is frozen, there
- * may be frozen works in freezable cwqs. Don't declare
- * completion while frozen.
+ * We've claimed all manager positions. Make all workers unbound
+ * and set DISASSOCIATED. Before this, all workers except for the
+ * ones which are still executing works from before the last CPU
+ * down must be on the cpu. After this, they may become diasporas.
*/
- while (gcwq->nr_workers != gcwq->nr_idle ||
- gcwq->flags & GCWQ_FREEZING ||
- gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
- int nr_works = 0;
-
- list_for_each_entry(work, &gcwq->worklist, entry) {
- send_mayday(work);
- nr_works++;
- }
+ for_each_worker_pool(pool, gcwq)
+ list_for_each_entry(worker, &pool->idle_list, entry)
+ worker->flags |= WORKER_UNBOUND;
- list_for_each_entry(worker, &gcwq->idle_list, entry) {
- if (!nr_works--)
- break;
- wake_up_process(worker->task);
- }
+ for_each_busy_worker(worker, i, pos, gcwq)
+ worker->flags |= WORKER_UNBOUND;
- if (need_to_create_worker(gcwq)) {
- spin_unlock_irq(&gcwq->lock);
- worker = create_worker(gcwq, false);
- spin_lock_irq(&gcwq->lock);
- if (worker) {
- worker->flags |= WORKER_ROGUE;
- start_worker(worker);
- }
- }
+ gcwq->flags |= GCWQ_DISASSOCIATED;
- /* give a breather */
- if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
- break;
- }
+ gcwq_release_management_and_unlock(gcwq);
/*
- * Either all works have been scheduled and cpu is down, or
- * cpu down has already been canceled. Wait for and butcher
- * all workers till we're canceled.
+ * Call schedule() so that we cross rq->lock and thus can guarantee
+ * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
+ * as scheduler callbacks may be invoked from other cpus.
*/
- do {
- rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
- while (!list_empty(&gcwq->idle_list))
- destroy_worker(list_first_entry(&gcwq->idle_list,
- struct worker, entry));
- } while (gcwq->nr_workers && rc >= 0);
+ schedule();
/*
- * At this point, either draining has completed and no worker
- * is left, or cpu down has been canceled or the cpu is being
- * brought back up. There shouldn't be any idle one left.
- * Tell the remaining busy ones to rebind once it finishes the
- * currently scheduled works by scheduling the rebind_work.
+ * Sched callbacks are disabled now. Zap nr_running. After this,
+ * nr_running stays zero and need_more_worker() and keep_working()
+ * are always true as long as the worklist is not empty. @gcwq now
+ * behaves as unbound (in terms of concurrency management) gcwq
+ * which is served by workers tied to the CPU.
+ *
+ * On return from this function, the current worker would trigger
+ * unbound chain execution of pending work items if other workers
+ * didn't already.
*/
- WARN_ON(!list_empty(&gcwq->idle_list));
-
- for_each_busy_worker(worker, i, pos, gcwq) {
- struct work_struct *rebind_work = &worker->rebind_work;
-
- /*
- * Rebind_work may race with future cpu hotplug
- * operations. Use a separate flag to mark that
- * rebinding is scheduled.
- */
- worker->flags |= WORKER_REBIND;
- worker->flags &= ~WORKER_ROGUE;
-
- /* queue rebind_work, wq doesn't matter, use the default one */
- if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
- work_data_bits(rebind_work)))
- continue;
-
- debug_work_activate(rebind_work);
- insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
- worker->scheduled.next,
- work_color_to_flags(WORK_NO_COLOR));
- }
-
- /* relinquish manager role */
- gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
-
- /* notify completion */
- gcwq->trustee = NULL;
- gcwq->trustee_state = TRUSTEE_DONE;
- wake_up_all(&gcwq->trustee_wait);
- spin_unlock_irq(&gcwq->lock);
- return 0;
+ for_each_worker_pool(pool, gcwq)
+ atomic_set(get_pool_nr_running(pool), 0);
}
-/**
- * wait_trustee_state - wait for trustee to enter the specified state
- * @gcwq: gcwq the trustee of interest belongs to
- * @state: target state to wait for
- *
- * Wait for the trustee to reach @state. DONE is already matched.
- *
- * CONTEXT:
- * spin_lock_irq(gcwq->lock) which may be released and regrabbed
- * multiple times. To be used by cpu_callback.
+/*
+ * Workqueues should be brought up before normal priority CPU notifiers.
+ * This will be registered high priority CPU notifier.
*/
-static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
-__releases(&gcwq->lock)
-__acquires(&gcwq->lock)
-{
- if (!(gcwq->trustee_state == state ||
- gcwq->trustee_state == TRUSTEE_DONE)) {
- spin_unlock_irq(&gcwq->lock);
- __wait_event(gcwq->trustee_wait,
- gcwq->trustee_state == state ||
- gcwq->trustee_state == TRUSTEE_DONE);
- spin_lock_irq(&gcwq->lock);
- }
-}
-
-static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
- unsigned long action,
- void *hcpu)
+static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
+ unsigned long action,
+ void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct global_cwq *gcwq = get_gcwq(cpu);
- struct task_struct *new_trustee = NULL;
- struct worker *uninitialized_var(new_worker);
- unsigned long flags;
-
- action &= ~CPU_TASKS_FROZEN;
+ struct worker_pool *pool;
- switch (action) {
- case CPU_DOWN_PREPARE:
- new_trustee = kthread_create(trustee_thread, gcwq,
- "workqueue_trustee/%d\n", cpu);
- if (IS_ERR(new_trustee))
- return notifier_from_errno(PTR_ERR(new_trustee));
- kthread_bind(new_trustee, cpu);
- /* fall through */
+ switch (action & ~CPU_TASKS_FROZEN) {
case CPU_UP_PREPARE:
- BUG_ON(gcwq->first_idle);
- new_worker = create_worker(gcwq, false);
- if (!new_worker) {
- if (new_trustee)
- kthread_stop(new_trustee);
- return NOTIFY_BAD;
- }
- }
-
- /* some are called w/ irq disabled, don't disturb irq status */
- spin_lock_irqsave(&gcwq->lock, flags);
+ for_each_worker_pool(pool, gcwq) {
+ struct worker *worker;
- switch (action) {
- case CPU_DOWN_PREPARE:
- /* initialize trustee and tell it to acquire the gcwq */
- BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
- gcwq->trustee = new_trustee;
- gcwq->trustee_state = TRUSTEE_START;
- wake_up_process(gcwq->trustee);
- wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
- /* fall through */
- case CPU_UP_PREPARE:
- BUG_ON(gcwq->first_idle);
- gcwq->first_idle = new_worker;
- break;
+ if (pool->nr_workers)
+ continue;
- case CPU_DYING:
- /*
- * Before this, the trustee and all workers except for
- * the ones which are still executing works from
- * before the last CPU down must be on the cpu. After
- * this, they'll all be diasporas.
- */
- gcwq->flags |= GCWQ_DISASSOCIATED;
- break;
+ worker = create_worker(pool);
+ if (!worker)
+ return NOTIFY_BAD;
- case CPU_POST_DEAD:
- gcwq->trustee_state = TRUSTEE_BUTCHER;
- /* fall through */
- case CPU_UP_CANCELED:
- destroy_worker(gcwq->first_idle);
- gcwq->first_idle = NULL;
+ spin_lock_irq(&gcwq->lock);
+ start_worker(worker);
+ spin_unlock_irq(&gcwq->lock);
+ }
break;
case CPU_DOWN_FAILED:
case CPU_ONLINE:
+ gcwq_claim_management_and_lock(gcwq);
gcwq->flags &= ~GCWQ_DISASSOCIATED;
- if (gcwq->trustee_state != TRUSTEE_DONE) {
- gcwq->trustee_state = TRUSTEE_RELEASE;
- wake_up_process(gcwq->trustee);
- wait_trustee_state(gcwq, TRUSTEE_DONE);
- }
-
- /*
- * Trustee is done and there might be no worker left.
- * Put the first_idle in and request a real manager to
- * take a look.
- */
- spin_unlock_irq(&gcwq->lock);
- kthread_bind(gcwq->first_idle->task, cpu);
- spin_lock_irq(&gcwq->lock);
- gcwq->flags |= GCWQ_MANAGE_WORKERS;
- start_worker(gcwq->first_idle);
- gcwq->first_idle = NULL;
+ rebind_workers(gcwq);
+ gcwq_release_management_and_unlock(gcwq);
break;
}
+ return NOTIFY_OK;
+}
- spin_unlock_irqrestore(&gcwq->lock, flags);
+/*
+ * Workqueues should be brought down after normal priority CPU notifiers.
+ * This will be registered as low priority CPU notifier.
+ */
+static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
+ unsigned long action,
+ void *hcpu)
+{
+ unsigned int cpu = (unsigned long)hcpu;
+ struct work_struct unbind_work;
- return notifier_from_errno(0);
+ switch (action & ~CPU_TASKS_FROZEN) {
+ case CPU_DOWN_PREPARE:
+ /* unbinding should happen on the local CPU */
+ INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
+ schedule_work_on(cpu, &unbind_work);
+ flush_work(&unbind_work);
+ break;
+ }
+ return NOTIFY_OK;
}
#ifdef CONFIG_SMP
@@ -3746,6 +3653,7 @@ void thaw_workqueues(void)
for_each_gcwq_cpu(cpu) {
struct global_cwq *gcwq = get_gcwq(cpu);
+ struct worker_pool *pool;
struct workqueue_struct *wq;
spin_lock_irq(&gcwq->lock);
@@ -3767,7 +3675,8 @@ void thaw_workqueues(void)
cwq_activate_first_delayed(cwq);
}
- wake_up_worker(gcwq);
+ for_each_worker_pool(pool, gcwq)
+ wake_up_worker(pool);
spin_unlock_irq(&gcwq->lock);
}
@@ -3783,46 +3692,57 @@ static int __init init_workqueues(void)
unsigned int cpu;
int i;
- cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
+ cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
+ cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
/* initialize gcwqs */
for_each_gcwq_cpu(cpu) {
struct global_cwq *gcwq = get_gcwq(cpu);
+ struct worker_pool *pool;
spin_lock_init(&gcwq->lock);
- INIT_LIST_HEAD(&gcwq->worklist);
gcwq->cpu = cpu;
gcwq->flags |= GCWQ_DISASSOCIATED;
- INIT_LIST_HEAD(&gcwq->idle_list);
for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
- init_timer_deferrable(&gcwq->idle_timer);
- gcwq->idle_timer.function = idle_worker_timeout;
- gcwq->idle_timer.data = (unsigned long)gcwq;
+ for_each_worker_pool(pool, gcwq) {
+ pool->gcwq = gcwq;
+ INIT_LIST_HEAD(&pool->worklist);
+ INIT_LIST_HEAD(&pool->idle_list);
+
+ init_timer_deferrable(&pool->idle_timer);
+ pool->idle_timer.function = idle_worker_timeout;
+ pool->idle_timer.data = (unsigned long)pool;
- setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
- (unsigned long)gcwq);
+ setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
+ (unsigned long)pool);
- ida_init(&gcwq->worker_ida);
+ mutex_init(&pool->manager_mutex);
+ ida_init(&pool->worker_ida);
+ }
- gcwq->trustee_state = TRUSTEE_DONE;
- init_waitqueue_head(&gcwq->trustee_wait);
+ init_waitqueue_head(&gcwq->rebind_hold);
}
/* create the initial worker */
for_each_online_gcwq_cpu(cpu) {
struct global_cwq *gcwq = get_gcwq(cpu);
- struct worker *worker;
+ struct worker_pool *pool;
if (cpu != WORK_CPU_UNBOUND)
gcwq->flags &= ~GCWQ_DISASSOCIATED;
- worker = create_worker(gcwq, true);
- BUG_ON(!worker);
- spin_lock_irq(&gcwq->lock);
- start_worker(worker);
- spin_unlock_irq(&gcwq->lock);
+
+ for_each_worker_pool(pool, gcwq) {
+ struct worker *worker;
+
+ worker = create_worker(pool);
+ BUG_ON(!worker);
+ spin_lock_irq(&gcwq->lock);
+ start_worker(worker);
+ spin_unlock_irq(&gcwq->lock);
+ }
}
system_wq = alloc_workqueue("events", 0, 0);
diff --git a/linaro/configs/android.conf b/linaro/configs/android.conf
new file mode 100644
index 00000000000..ed2a8d86ee5
--- /dev/null
+++ b/linaro/configs/android.conf
@@ -0,0 +1,30 @@
+# CONFIG_THUMB2_KERNEL is not set
+CONFIG_IPV6=y
+# CONFIG_IPV6_SIT is not set
+CONFIG_PANIC_TIMEOUT=0
+CONFIG_HAS_WAKELOCK=y
+CONFIG_WAKELOCK=y
+CONFIG_USER_WAKELOCK=y
+CONFIG_BLK_DEV_LOOP=y
+CONFIG_DM_CRYPT=y
+CONFIG_AEABI=y
+CONFIG_POWER_SUPPLY=y
+CONFIG_ANDROID_PARANOID_NETWORK=y
+CONFIG_NET_ACTIVITY_STATS=y
+CONFIG_INPUT_GPIO=y
+CONFIG_USB_G_ANDROID=y
+CONFIG_SWITCH=y
+CONFIG_STAGING=y
+CONFIG_ANDROID=y
+CONFIG_ANDROID_BINDER_IPC=y
+CONFIG_ASHMEM=y
+CONFIG_ANDROID_LOGGER=y
+CONFIG_ANDROID_RAM_CONSOLE=y
+CONFIG_ANDROID_TIMED_OUTPUT=y
+CONFIG_ANDROID_TIMED_GPIO=y
+CONFIG_ANDROID_LOW_MEMORY_KILLER=y
+CONFIG_ANDROID_INTF_ALARM_DEV=y
+CONFIG_CRYPTO_TWOFISH=y
+CONFIG_BLK_DEV_RAM=y
+CONFIG_BLK_DEV_RAM_COUNT=16
+CONFIG_BLK_DEV_RAM_SIZE=16384
diff --git a/linaro/configs/big-LITTLE-MP.conf b/linaro/configs/big-LITTLE-MP.conf
new file mode 100644
index 00000000000..df35474eff1
--- /dev/null
+++ b/linaro/configs/big-LITTLE-MP.conf
@@ -0,0 +1,9 @@
+CONFIG_CGROUPS=y
+CONFIG_CGROUP_SCHED=y
+CONFIG_FAIR_GROUP_SCHED=y
+CONFIG_NO_HZ=y
+CONFIG_SCHED_MC=y
+CONFIG_DISABLE_CPU_SCHED_DOMAIN_BALANCE=y
+CONFIG_SCHED_HMP=y
+CONFIG_HMP_FAST_CPU_MASK="0-1"
+CONFIG_HMP_SLOW_CPU_MASK="2-3"
diff --git a/linaro/configs/linaro-base.conf b/linaro/configs/linaro-base.conf
new file mode 100644
index 00000000000..a0fa9d59c20
--- /dev/null
+++ b/linaro/configs/linaro-base.conf
@@ -0,0 +1,84 @@
+CONFIG_EXPERIMENTAL=y
+CONFIG_SYSVIPC=y
+CONFIG_POSIX_MQUEUE=y
+CONFIG_BSD_PROCESS_ACCT=y
+CONFIG_IKCONFIG=y
+CONFIG_IKCONFIG_PROC=y
+CONFIG_LOG_BUF_SHIFT=16
+CONFIG_BLK_DEV_INITRD=y
+CONFIG_EMBEDDED=y
+CONFIG_PERF_EVENTS=y
+CONFIG_SLAB=y
+CONFIG_PROFILING=y
+CONFIG_OPROFILE=y
+CONFIG_MODULES=y
+CONFIG_MODULE_UNLOAD=y
+CONFIG_NO_HZ=y
+CONFIG_HIGH_RES_TIMERS=y
+CONFIG_SMP=y
+CONFIG_SCHED_MC=y
+CONFIG_SCHED_SMT=y
+CONFIG_THUMB2_KERNEL=y
+CONFIG_CPU_FREQ=y
+CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND=y
+CONFIG_CPU_IDLE=y
+CONFIG_BINFMT_MISC=y
+CONFIG_MD=y
+CONFIG_BLK_DEV_DM=y
+CONFIG_NET=y
+CONFIG_PACKET=y
+CONFIG_UNIX=y
+CONFIG_XFRM_USER=y
+CONFIG_NET_KEY=y
+CONFIG_NET_KEY_MIGRATE=y
+CONFIG_INET=y
+CONFIG_IP_MULTICAST=y
+CONFIG_IP_PNP=y
+CONFIG_IP_PNP_DHCP=y
+CONFIG_IP_PNP_BOOTP=y
+CONFIG_IP_PNP_RARP=y
+# CONFIG_INET_LRO is not set
+CONFIG_NETFILTER=y
+CONFIG_UEVENT_HELPER_PATH="/sbin/hotplug"
+CONFIG_CONNECTOR=y
+CONFIG_MTD=y
+CONFIG_MTD_CMDLINE_PARTS=y
+CONFIG_MTD_CHAR=y
+CONFIG_MTD_BLOCK=y
+CONFIG_MTD_OOPS=y
+CONFIG_MTD_CFI=y
+CONFIG_MTD_CFI_INTELEXT=y
+CONFIG_MTD_NAND=y
+CONFIG_NETDEVICES=y
+CONFIG_EXT2_FS=y
+CONFIG_EXT3_FS=y
+CONFIG_EXT4_FS=y
+CONFIG_BTRFS_FS=y
+CONFIG_QUOTA=y
+CONFIG_QFMT_V2=y
+CONFIG_MSDOS_FS=y
+CONFIG_VFAT_FS=y
+CONFIG_TMPFS=y
+CONFIG_ECRYPT_FS=y
+CONFIG_JFFS2_FS=y
+CONFIG_JFFS2_SUMMARY=y
+CONFIG_JFFS2_FS_XATTR=y
+CONFIG_JFFS2_COMPRESSION_OPTIONS=y
+CONFIG_JFFS2_LZO=y
+CONFIG_JFFS2_RUBIN=y
+CONFIG_CRAMFS=y
+CONFIG_NLS_CODEPAGE_437=y
+CONFIG_NLS_ISO8859_1=y
+CONFIG_PRINTK_TIME=y
+CONFIG_MAGIC_SYSRQ=y
+CONFIG_SCHEDSTATS=y
+CONFIG_TIMER_STATS=y
+CONFIG_PROVE_LOCKING=y
+CONFIG_KEYS=y
+CONFIG_CRYPTO_MICHAEL_MIC=y
+CONFIG_CRC_CCITT=y
+CONFIG_CRC_T10DIF=y
+CONFIG_CRC_ITU_T=y
+CONFIG_CRC7=y
+CONFIG_HW_PERF_EVENTS=y
+CONFIG_ENABLE_DEFAULT_TRACERS=y
diff --git a/linaro/configs/ubuntu-minimal.conf b/linaro/configs/ubuntu-minimal.conf
new file mode 100644
index 00000000000..2c6a13eb46c
--- /dev/null
+++ b/linaro/configs/ubuntu-minimal.conf
@@ -0,0 +1,24 @@
+# CONFIG_LOCALVERSION_AUTO is not set
+# CONFIG_COMPAT_BRK is not set
+CONFIG_DEFAULT_MMAP_MIN_ADDR=32768
+CONFIG_SECCOMP=y
+CONFIG_CC_STACKPROTECTOR=y
+CONFIG_SYN_COOKIES=y
+CONFIG_IPV6=y
+CONFIG_NETLABEL=y
+CONFIG_DEVTMPFS=y
+CONFIG_DEVTMPFS_MOUNT=y
+CONFIG_BLK_DEV_RAM=y
+CONFIG_BLK_DEV_RAM_SIZE=65536
+CONFIG_INPUT_MISC=y
+CONFIG_INPUT_UINPUT=y
+# CONFIG_DEVKMEM is not set
+CONFIG_FRAMEBUFFER_CONSOLE=y
+CONFIG_TMPFS_POSIX_ACL=y
+CONFIG_STRICT_DEVMEM=y
+CONFIG_SECURITY=y
+CONFIG_LSM_MMAP_MIN_ADDR=0
+CONFIG_SECURITY_SELINUX=y
+CONFIG_SECURITY_SMACK=y
+CONFIG_SECURITY_APPARMOR=y
+CONFIG_DEFAULT_SECURITY_APPARMOR=y
diff --git a/linaro/configs/ubuntu.conf b/linaro/configs/ubuntu.conf
new file mode 100644
index 00000000000..5d0a3729671
--- /dev/null
+++ b/linaro/configs/ubuntu.conf
@@ -0,0 +1,2133 @@
+# CONFIG_COMPAT_BRK is not set
+# CONFIG_DEVKMEM is not set
+# CONFIG_LOCALVERSION_AUTO is not set
+CONFIG_INIT_PASS_ALL_PARAMS=y
+CONFIG_DEBUG_RODATA=y
+CONFIG_INIT_ENV_ARG_LIMIT=32
+CONFIG_KERNEL_GZIP=y
+CONFIG_SWAP=y
+CONFIG_SYSVIPC_SYSCTL=y
+CONFIG_POSIX_MQUEUE_SYSCTL=y
+CONFIG_BSD_PROCESS_ACCT_V3=y
+CONFIG_FHANDLE=y
+CONFIG_TASKSTATS=y
+CONFIG_TASK_DELAY_ACCT=y
+CONFIG_TASK_XACCT=y
+CONFIG_TASK_IO_ACCOUNTING=y
+CONFIG_AUDIT=y
+CONFIG_AUDITSYSCALL=y
+CONFIG_AUDIT_WATCH=y
+CONFIG_AUDIT_TREE=y
+# CONFIG_AUDIT_LOGINUID_IMMUTABLE is not set
+CONFIG_GENERIC_HARDIRQS=y
+CONFIG_GENERIC_IRQ_CHIP=y
+CONFIG_IRQ_DOMAIN=y
+# CONFIG_CGROUPS is not set
+CONFIG_CHECKPOINT_RESTORE=y
+CONFIG_NAMESPACES=y
+CONFIG_UTS_NS=y
+CONFIG_IPC_NS=y
+CONFIG_USER_NS=y
+CONFIG_PID_NS=y
+CONFIG_NET_NS=y
+# CONFIG_SCHED_AUTOGROUP is not set
+CONFIG_RELAY=y
+CONFIG_INITRAMFS_SOURCE=""
+CONFIG_RD_GZIP=y
+CONFIG_RD_BZIP2=y
+CONFIG_RD_LZMA=y
+CONFIG_RD_XZ=y
+CONFIG_RD_LZO=y
+CONFIG_SYSCTL=y
+CONFIG_ANON_INODES=y
+CONFIG_EXPERT=y
+CONFIG_UID16=y
+CONFIG_SYSCTL_SYSCALL=y
+CONFIG_KALLSYMS=y
+CONFIG_KALLSYMS_ALL=y
+CONFIG_HOTPLUG=y
+CONFIG_PRINTK=y
+CONFIG_BUG=y
+CONFIG_ELF_CORE=y
+CONFIG_BASE_FULL=y
+CONFIG_FUTEX=y
+CONFIG_EPOLL=y
+CONFIG_SIGNALFD=y
+CONFIG_TIMERFD=y
+CONFIG_EVENTFD=y
+CONFIG_SHMEM=y
+CONFIG_AIO=y
+CONFIG_PERF_EVENTS=y
+CONFIG_VM_EVENT_COUNTERS=y
+CONFIG_TRACEPOINTS=y
+CONFIG_KPROBES=y
+CONFIG_JUMP_LABEL=y
+CONFIG_KRETPROBES=y
+CONFIG_SLABINFO=y
+CONFIG_RT_MUTEXES=y
+CONFIG_BASE_SMALL=0
+CONFIG_MODULES=y
+CONFIG_MODULE_UNLOAD=y
+CONFIG_MODVERSIONS=y
+CONFIG_MODULE_SRCVERSION_ALL=y
+CONFIG_BLOCK=y
+CONFIG_LBDAF=y
+CONFIG_BLK_DEV_BSG=y
+CONFIG_BLK_DEV_BSGLIB=y
+CONFIG_BLK_DEV_INTEGRITY=y
+CONFIG_PARTITION_ADVANCED=y
+CONFIG_MSDOS_PARTITION=y
+CONFIG_BSD_DISKLABEL=y
+CONFIG_MINIX_SUBPARTITION=y
+CONFIG_UNIXWARE_DISKLABEL=y
+CONFIG_LDM_PARTITION=y
+CONFIG_EFI_PARTITION=y
+CONFIG_IOSCHED_NOOP=y
+CONFIG_IOSCHED_DEADLINE=y
+CONFIG_IOSCHED_CFQ=y
+CONFIG_DEFAULT_CFQ=y
+CONFIG_DEFAULT_IOSCHED="cfq"
+CONFIG_FREEZER=y
+CONFIG_TICK_ONESHOT=y
+CONFIG_VMSPLIT_3G=y
+CONFIG_PAGE_OFFSET=0xC0000000
+CONFIG_PREEMPT_VOLUNTARY=y
+CONFIG_HZ=128
+CONFIG_AEABI=y
+CONFIG_SELECT_MEMORY_MODEL=y
+CONFIG_FLAT_NODE_MEM_MAP=y
+CONFIG_PAGEFLAGS_EXTENDED=y
+CONFIG_ZONE_DMA_FLAG=0
+CONFIG_VIRT_TO_BUS=y
+CONFIG_DEFAULT_MMAP_MIN_ADDR=32768
+CONFIG_CLEANCACHE=y
+CONFIG_FORCE_MAX_ZONEORDER=11
+CONFIG_LEDS=y
+CONFIG_ALIGNMENT_TRAP=y
+CONFIG_SECCOMP=y
+CONFIG_CC_STACKPROTECTOR=y
+CONFIG_USE_OF=y
+CONFIG_ZBOOT_ROM_TEXT=0x0
+CONFIG_ZBOOT_ROM_BSS=0x0
+CONFIG_KEXEC=y
+CONFIG_ATAGS_PROC=y
+CONFIG_CRASH_DUMP=y
+CONFIG_CPU_FREQ_TABLE=y
+CONFIG_CPU_FREQ_STAT=y
+CONFIG_CPU_FREQ_STAT_DETAILS=y
+CONFIG_CPU_FREQ_GOV_PERFORMANCE=y
+CONFIG_CPU_FREQ_GOV_POWERSAVE=y
+CONFIG_CPU_FREQ_GOV_USERSPACE=y
+CONFIG_CPU_FREQ_GOV_ONDEMAND=y
+CONFIG_CPU_FREQ_GOV_CONSERVATIVE=y
+CONFIG_CPU_IDLE_GOV_LADDER=y
+CONFIG_CPU_IDLE_GOV_MENU=y
+CONFIG_BINFMT_ELF=y
+CONFIG_BINFMT_AOUT=m
+CONFIG_SUSPEND=y
+CONFIG_SUSPEND_FREEZER=y
+CONFIG_PM_SLEEP=y
+CONFIG_PM_RUNTIME=y
+CONFIG_PM=y
+CONFIG_PM_OPP=y
+CONFIG_PM_CLK=y
+CONFIG_UNIX_DIAG=m
+CONFIG_XFRM=y
+CONFIG_XFRM_IPCOMP=m
+CONFIG_IP_ADVANCED_ROUTER=y
+CONFIG_IP_FIB_TRIE_STATS=y
+CONFIG_IP_MULTIPLE_TABLES=y
+CONFIG_IP_ROUTE_MULTIPATH=y
+CONFIG_IP_ROUTE_VERBOSE=y
+CONFIG_IP_ROUTE_CLASSID=y
+CONFIG_NET_IPIP=m
+CONFIG_NET_IPGRE_DEMUX=m
+CONFIG_NET_IPGRE=m
+CONFIG_NET_IPGRE_BROADCAST=y
+CONFIG_IP_MROUTE=y
+CONFIG_IP_PIMSM_V1=y
+CONFIG_IP_PIMSM_V2=y
+CONFIG_SYN_COOKIES=y
+CONFIG_INET_AH=m
+CONFIG_INET_ESP=m
+CONFIG_INET_IPCOMP=m
+CONFIG_INET_XFRM_TUNNEL=m
+CONFIG_INET_TUNNEL=m
+CONFIG_INET_XFRM_MODE_TRANSPORT=m
+CONFIG_INET_XFRM_MODE_TUNNEL=m
+CONFIG_INET_XFRM_MODE_BEET=m
+CONFIG_INET_DIAG=m
+CONFIG_INET_TCP_DIAG=m
+CONFIG_INET_UDP_DIAG=m
+CONFIG_TCP_CONG_ADVANCED=y
+CONFIG_TCP_CONG_BIC=m
+CONFIG_TCP_CONG_CUBIC=y
+CONFIG_TCP_CONG_WESTWOOD=m
+CONFIG_TCP_CONG_HTCP=m
+CONFIG_TCP_CONG_HSTCP=m
+CONFIG_TCP_CONG_HYBLA=m
+CONFIG_TCP_CONG_VEGAS=m
+CONFIG_TCP_CONG_SCALABLE=m
+CONFIG_TCP_CONG_LP=m
+CONFIG_TCP_CONG_VENO=m
+CONFIG_TCP_CONG_YEAH=m
+CONFIG_TCP_CONG_ILLINOIS=m
+CONFIG_DEFAULT_CUBIC=y
+CONFIG_DEFAULT_TCP_CONG="cubic"
+CONFIG_TCP_MD5SIG=y
+CONFIG_IPV6=y
+CONFIG_IPV6_PRIVACY=y
+CONFIG_IPV6_ROUTER_PREF=y
+CONFIG_IPV6_ROUTE_INFO=y
+CONFIG_INET6_AH=m
+CONFIG_INET6_ESP=m
+CONFIG_INET6_IPCOMP=m
+CONFIG_IPV6_MIP6=m
+CONFIG_INET6_XFRM_TUNNEL=m
+CONFIG_INET6_TUNNEL=m
+CONFIG_INET6_XFRM_MODE_TRANSPORT=m
+CONFIG_INET6_XFRM_MODE_TUNNEL=m
+CONFIG_INET6_XFRM_MODE_BEET=m
+CONFIG_INET6_XFRM_MODE_ROUTEOPTIMIZATION=m
+CONFIG_IPV6_SIT=m
+CONFIG_IPV6_SIT_6RD=y
+CONFIG_IPV6_NDISC_NODETYPE=y
+CONFIG_IPV6_TUNNEL=m
+CONFIG_IPV6_MULTIPLE_TABLES=y
+CONFIG_IPV6_SUBTREES=y
+CONFIG_IPV6_MROUTE=y
+CONFIG_IPV6_MROUTE_MULTIPLE_TABLES=y
+CONFIG_IPV6_PIMSM_V2=y
+CONFIG_NETLABEL=y
+CONFIG_NETWORK_SECMARK=y
+CONFIG_NETFILTER_ADVANCED=y
+CONFIG_BRIDGE_NETFILTER=y
+CONFIG_NETFILTER_NETLINK=m
+CONFIG_NETFILTER_NETLINK_ACCT=m
+CONFIG_NETFILTER_NETLINK_QUEUE=m
+CONFIG_NETFILTER_NETLINK_LOG=m
+CONFIG_NF_CONNTRACK=m
+CONFIG_NF_CONNTRACK_MARK=y
+CONFIG_NF_CONNTRACK_SECMARK=y
+CONFIG_NF_CONNTRACK_ZONES=y
+CONFIG_NF_CONNTRACK_EVENTS=y
+CONFIG_NF_CONNTRACK_TIMEOUT=y
+CONFIG_NF_CONNTRACK_TIMESTAMP=y
+CONFIG_NF_CT_PROTO_DCCP=m
+CONFIG_NF_CT_PROTO_GRE=m
+CONFIG_NF_CT_PROTO_SCTP=m
+CONFIG_NF_CT_PROTO_UDPLITE=m
+CONFIG_NF_CONNTRACK_AMANDA=m
+CONFIG_NF_CONNTRACK_FTP=m
+CONFIG_NF_CONNTRACK_H323=m
+CONFIG_NF_CONNTRACK_IRC=m
+CONFIG_NF_CONNTRACK_BROADCAST=m
+CONFIG_NF_CONNTRACK_NETBIOS_NS=m
+CONFIG_NF_CONNTRACK_SNMP=m
+CONFIG_NF_CONNTRACK_PPTP=m
+CONFIG_NF_CONNTRACK_SANE=m
+CONFIG_NF_CONNTRACK_SIP=m
+CONFIG_NF_CONNTRACK_TFTP=m
+CONFIG_NF_CT_NETLINK=m
+CONFIG_NF_CT_NETLINK_TIMEOUT=m
+CONFIG_NETFILTER_TPROXY=m
+CONFIG_NETFILTER_XTABLES=m
+CONFIG_NETFILTER_XT_MARK=m
+CONFIG_NETFILTER_XT_CONNMARK=m
+CONFIG_NETFILTER_XT_SET=m
+CONFIG_NETFILTER_XT_TARGET_AUDIT=m
+CONFIG_NETFILTER_XT_TARGET_CHECKSUM=m
+CONFIG_NETFILTER_XT_TARGET_CLASSIFY=m
+CONFIG_NETFILTER_XT_TARGET_CONNMARK=m
+CONFIG_NETFILTER_XT_TARGET_CONNSECMARK=m
+CONFIG_NETFILTER_XT_TARGET_CT=m
+CONFIG_NETFILTER_XT_TARGET_DSCP=m
+CONFIG_NETFILTER_XT_TARGET_HL=m
+CONFIG_NETFILTER_XT_TARGET_IDLETIMER=m
+CONFIG_NETFILTER_XT_TARGET_LED=m
+CONFIG_NETFILTER_XT_TARGET_LOG=m
+CONFIG_NETFILTER_XT_TARGET_MARK=m
+CONFIG_NETFILTER_XT_TARGET_NFLOG=m
+CONFIG_NETFILTER_XT_TARGET_NFQUEUE=m
+CONFIG_NETFILTER_XT_TARGET_NOTRACK=m
+CONFIG_NETFILTER_XT_TARGET_RATEEST=m
+CONFIG_NETFILTER_XT_TARGET_TEE=m
+CONFIG_NETFILTER_XT_TARGET_TPROXY=m
+CONFIG_NETFILTER_XT_TARGET_TRACE=m
+CONFIG_NETFILTER_XT_TARGET_SECMARK=m
+CONFIG_NETFILTER_XT_TARGET_TCPMSS=m
+CONFIG_NETFILTER_XT_TARGET_TCPOPTSTRIP=m
+CONFIG_NETFILTER_XT_MATCH_ADDRTYPE=m
+CONFIG_NETFILTER_XT_MATCH_CLUSTER=m
+CONFIG_NETFILTER_XT_MATCH_COMMENT=m
+CONFIG_NETFILTER_XT_MATCH_CONNBYTES=m
+CONFIG_NETFILTER_XT_MATCH_CONNLIMIT=m
+CONFIG_NETFILTER_XT_MATCH_CONNMARK=m
+CONFIG_NETFILTER_XT_MATCH_CONNTRACK=m
+CONFIG_NETFILTER_XT_MATCH_CPU=m
+CONFIG_NETFILTER_XT_MATCH_DCCP=m
+CONFIG_NETFILTER_XT_MATCH_DEVGROUP=m
+CONFIG_NETFILTER_XT_MATCH_DSCP=m
+CONFIG_NETFILTER_XT_MATCH_ECN=m
+CONFIG_NETFILTER_XT_MATCH_ESP=m
+CONFIG_NETFILTER_XT_MATCH_HASHLIMIT=m
+CONFIG_NETFILTER_XT_MATCH_HELPER=m
+CONFIG_NETFILTER_XT_MATCH_HL=m
+CONFIG_NETFILTER_XT_MATCH_IPRANGE=m
+CONFIG_NETFILTER_XT_MATCH_IPVS=m
+CONFIG_NETFILTER_XT_MATCH_LENGTH=m
+CONFIG_NETFILTER_XT_MATCH_LIMIT=m
+CONFIG_NETFILTER_XT_MATCH_MAC=m
+CONFIG_NETFILTER_XT_MATCH_MARK=m
+CONFIG_NETFILTER_XT_MATCH_MULTIPORT=m
+CONFIG_NETFILTER_XT_MATCH_NFACCT=m
+CONFIG_NETFILTER_XT_MATCH_OSF=m
+CONFIG_NETFILTER_XT_MATCH_OWNER=m
+CONFIG_NETFILTER_XT_MATCH_POLICY=m
+CONFIG_NETFILTER_XT_MATCH_PHYSDEV=m
+CONFIG_NETFILTER_XT_MATCH_PKTTYPE=m
+CONFIG_NETFILTER_XT_MATCH_QUOTA=m
+CONFIG_NETFILTER_XT_MATCH_RATEEST=m
+CONFIG_NETFILTER_XT_MATCH_REALM=m
+CONFIG_NETFILTER_XT_MATCH_RECENT=m
+CONFIG_NETFILTER_XT_MATCH_SCTP=m
+CONFIG_NETFILTER_XT_MATCH_SOCKET=m
+CONFIG_NETFILTER_XT_MATCH_STATE=m
+CONFIG_NETFILTER_XT_MATCH_STATISTIC=m
+CONFIG_NETFILTER_XT_MATCH_STRING=m
+CONFIG_NETFILTER_XT_MATCH_TCPMSS=m
+CONFIG_NETFILTER_XT_MATCH_TIME=m
+CONFIG_NETFILTER_XT_MATCH_U32=m
+CONFIG_IP_SET=m
+CONFIG_IP_SET_MAX=256
+CONFIG_IP_SET_BITMAP_IP=m
+CONFIG_IP_SET_BITMAP_IPMAC=m
+CONFIG_IP_SET_BITMAP_PORT=m
+CONFIG_IP_SET_HASH_IP=m
+CONFIG_IP_SET_HASH_IPPORT=m
+CONFIG_IP_SET_HASH_IPPORTIP=m
+CONFIG_IP_SET_HASH_IPPORTNET=m
+CONFIG_IP_SET_HASH_NET=m
+CONFIG_IP_SET_HASH_NETPORT=m
+CONFIG_IP_SET_HASH_NETIFACE=m
+CONFIG_IP_SET_LIST_SET=m
+CONFIG_IP_VS=m
+CONFIG_IP_VS_IPV6=y
+CONFIG_IP_VS_TAB_BITS=12
+CONFIG_IP_VS_PROTO_TCP=y
+CONFIG_IP_VS_PROTO_UDP=y
+CONFIG_IP_VS_PROTO_AH_ESP=y
+CONFIG_IP_VS_PROTO_ESP=y
+CONFIG_IP_VS_PROTO_AH=y
+CONFIG_IP_VS_PROTO_SCTP=y
+CONFIG_IP_VS_RR=m
+CONFIG_IP_VS_WRR=m
+CONFIG_IP_VS_LC=m
+CONFIG_IP_VS_WLC=m
+CONFIG_IP_VS_LBLC=m
+CONFIG_IP_VS_LBLCR=m
+CONFIG_IP_VS_DH=m
+CONFIG_IP_VS_SH=m
+CONFIG_IP_VS_SED=m
+CONFIG_IP_VS_NQ=m
+CONFIG_IP_VS_SH_TAB_BITS=8
+CONFIG_IP_VS_FTP=m
+CONFIG_IP_VS_NFCT=y
+CONFIG_IP_VS_PE_SIP=m
+CONFIG_NF_DEFRAG_IPV4=m
+CONFIG_NF_CONNTRACK_IPV4=m
+CONFIG_IP_NF_QUEUE=m
+CONFIG_IP_NF_IPTABLES=m
+CONFIG_IP_NF_MATCH_AH=m
+CONFIG_IP_NF_MATCH_ECN=m
+CONFIG_IP_NF_MATCH_RPFILTER=m
+CONFIG_IP_NF_MATCH_TTL=m
+CONFIG_IP_NF_FILTER=m
+CONFIG_IP_NF_TARGET_REJECT=m
+CONFIG_IP_NF_TARGET_ULOG=m
+CONFIG_NF_NAT=m
+CONFIG_NF_NAT_NEEDED=y
+CONFIG_IP_NF_TARGET_MASQUERADE=m
+CONFIG_IP_NF_TARGET_NETMAP=m
+CONFIG_IP_NF_TARGET_REDIRECT=m
+CONFIG_NF_NAT_SNMP_BASIC=m
+CONFIG_NF_NAT_PROTO_DCCP=m
+CONFIG_NF_NAT_PROTO_GRE=m
+CONFIG_NF_NAT_PROTO_UDPLITE=m
+CONFIG_NF_NAT_PROTO_SCTP=m
+CONFIG_NF_NAT_FTP=m
+CONFIG_NF_NAT_IRC=m
+CONFIG_NF_NAT_TFTP=m
+CONFIG_NF_NAT_AMANDA=m
+CONFIG_NF_NAT_PPTP=m
+CONFIG_NF_NAT_H323=m
+CONFIG_NF_NAT_SIP=m
+CONFIG_IP_NF_MANGLE=m
+CONFIG_IP_NF_TARGET_CLUSTERIP=m
+CONFIG_IP_NF_TARGET_ECN=m
+CONFIG_IP_NF_TARGET_TTL=m
+CONFIG_IP_NF_RAW=m
+CONFIG_IP_NF_SECURITY=m
+CONFIG_IP_NF_ARPTABLES=m
+CONFIG_IP_NF_ARPFILTER=m
+CONFIG_IP_NF_ARP_MANGLE=m
+CONFIG_NF_DEFRAG_IPV6=m
+CONFIG_NF_CONNTRACK_IPV6=m
+CONFIG_IP6_NF_QUEUE=m
+CONFIG_IP6_NF_IPTABLES=m
+CONFIG_IP6_NF_MATCH_AH=m
+CONFIG_IP6_NF_MATCH_EUI64=m
+CONFIG_IP6_NF_MATCH_FRAG=m
+CONFIG_IP6_NF_MATCH_OPTS=m
+CONFIG_IP6_NF_MATCH_HL=m
+CONFIG_IP6_NF_MATCH_IPV6HEADER=m
+CONFIG_IP6_NF_MATCH_MH=m
+CONFIG_IP6_NF_MATCH_RPFILTER=m
+CONFIG_IP6_NF_MATCH_RT=m
+CONFIG_IP6_NF_TARGET_HL=m
+CONFIG_IP6_NF_FILTER=m
+CONFIG_IP6_NF_TARGET_REJECT=m
+CONFIG_IP6_NF_MANGLE=m
+CONFIG_IP6_NF_RAW=m
+CONFIG_IP6_NF_SECURITY=m
+CONFIG_DECNET_NF_GRABULATOR=m
+CONFIG_BRIDGE_NF_EBTABLES=m
+CONFIG_BRIDGE_EBT_BROUTE=m
+CONFIG_BRIDGE_EBT_T_FILTER=m
+CONFIG_BRIDGE_EBT_T_NAT=m
+CONFIG_BRIDGE_EBT_802_3=m
+CONFIG_BRIDGE_EBT_AMONG=m
+CONFIG_BRIDGE_EBT_ARP=m
+CONFIG_BRIDGE_EBT_IP=m
+CONFIG_BRIDGE_EBT_IP6=m
+CONFIG_BRIDGE_EBT_LIMIT=m
+CONFIG_BRIDGE_EBT_MARK=m
+CONFIG_BRIDGE_EBT_PKTTYPE=m
+CONFIG_BRIDGE_EBT_STP=m
+CONFIG_BRIDGE_EBT_VLAN=m
+CONFIG_BRIDGE_EBT_ARPREPLY=m
+CONFIG_BRIDGE_EBT_DNAT=m
+CONFIG_BRIDGE_EBT_MARK_T=m
+CONFIG_BRIDGE_EBT_REDIRECT=m
+CONFIG_BRIDGE_EBT_SNAT=m
+CONFIG_BRIDGE_EBT_LOG=m
+CONFIG_BRIDGE_EBT_ULOG=m
+CONFIG_BRIDGE_EBT_NFLOG=m
+CONFIG_IP_DCCP=m
+CONFIG_INET_DCCP_DIAG=m
+CONFIG_IP_DCCP_CCID3=y
+CONFIG_IP_DCCP_TFRC_LIB=y
+CONFIG_NET_DCCPPROBE=m
+CONFIG_IP_SCTP=m
+CONFIG_NET_SCTPPROBE=m
+CONFIG_SCTP_HMAC_MD5=y
+CONFIG_RDS=m
+CONFIG_RDS_TCP=m
+CONFIG_TIPC=m
+CONFIG_ATM=m
+CONFIG_ATM_CLIP=m
+CONFIG_ATM_LANE=m
+CONFIG_ATM_MPOA=m
+CONFIG_ATM_BR2684=m
+CONFIG_ATM_BR2684_IPFILTER=y
+CONFIG_L2TP=m
+CONFIG_L2TP_DEBUGFS=m
+CONFIG_STP=m
+CONFIG_GARP=m
+CONFIG_BRIDGE=m
+CONFIG_BRIDGE_IGMP_SNOOPING=y
+CONFIG_NET_DSA=y
+CONFIG_NET_DSA_TAG_DSA=y
+CONFIG_NET_DSA_TAG_EDSA=y
+CONFIG_NET_DSA_TAG_TRAILER=y
+CONFIG_VLAN_8021Q=m
+CONFIG_VLAN_8021Q_GVRP=y
+CONFIG_DECNET=m
+CONFIG_LLC=m
+CONFIG_LLC2=m
+CONFIG_IPX=m
+CONFIG_ATALK=m
+CONFIG_DEV_APPLETALK=m
+CONFIG_IPDDP=m
+CONFIG_IPDDP_ENCAP=y
+CONFIG_IPDDP_DECAP=y
+CONFIG_X25=m
+CONFIG_LAPB=m
+CONFIG_WAN_ROUTER=m
+CONFIG_PHONET=m
+CONFIG_IEEE802154=m
+CONFIG_IEEE802154_6LOWPAN=m
+CONFIG_NET_SCHED=y
+CONFIG_NET_SCH_CBQ=m
+CONFIG_NET_SCH_HTB=m
+CONFIG_NET_SCH_HFSC=m
+CONFIG_NET_SCH_ATM=m
+CONFIG_NET_SCH_PRIO=m
+CONFIG_NET_SCH_MULTIQ=m
+CONFIG_NET_SCH_RED=m
+CONFIG_NET_SCH_SFB=m
+CONFIG_NET_SCH_SFQ=m
+CONFIG_NET_SCH_TEQL=m
+CONFIG_NET_SCH_TBF=m
+CONFIG_NET_SCH_GRED=m
+CONFIG_NET_SCH_DSMARK=m
+CONFIG_NET_SCH_NETEM=m
+CONFIG_NET_SCH_DRR=m
+CONFIG_NET_SCH_MQPRIO=m
+CONFIG_NET_SCH_CHOKE=m
+CONFIG_NET_SCH_QFQ=m
+CONFIG_NET_SCH_INGRESS=m
+CONFIG_NET_SCH_PLUG=m
+CONFIG_NET_CLS=y
+CONFIG_NET_CLS_BASIC=m
+CONFIG_NET_CLS_TCINDEX=m
+CONFIG_NET_CLS_ROUTE4=m
+CONFIG_NET_CLS_FW=m
+CONFIG_NET_CLS_U32=m
+CONFIG_CLS_U32_MARK=y
+CONFIG_NET_CLS_RSVP=m
+CONFIG_NET_CLS_RSVP6=m
+CONFIG_NET_CLS_FLOW=m
+CONFIG_NET_EMATCH=y
+CONFIG_NET_EMATCH_STACK=32
+CONFIG_NET_EMATCH_CMP=m
+CONFIG_NET_EMATCH_NBYTE=m
+CONFIG_NET_EMATCH_U32=m
+CONFIG_NET_EMATCH_META=m
+CONFIG_NET_EMATCH_TEXT=m
+CONFIG_NET_CLS_ACT=y
+CONFIG_NET_ACT_POLICE=m
+CONFIG_NET_ACT_GACT=m
+CONFIG_GACT_PROB=y
+CONFIG_NET_ACT_MIRRED=m
+CONFIG_NET_ACT_IPT=m
+CONFIG_NET_ACT_NAT=m
+CONFIG_NET_ACT_PEDIT=m
+CONFIG_NET_ACT_SIMP=m
+CONFIG_NET_ACT_SKBEDIT=m
+CONFIG_NET_ACT_CSUM=m
+CONFIG_NET_SCH_FIFO=y
+CONFIG_DCB=y
+CONFIG_DNS_RESOLVER=y
+CONFIG_BATMAN_ADV=m
+CONFIG_OPENVSWITCH=m
+CONFIG_BQL=y
+CONFIG_BPF_JIT=y
+CONFIG_NET_PKTGEN=m
+CONFIG_NET_TCPPROBE=m
+CONFIG_HAMRADIO=y
+CONFIG_AX25=m
+CONFIG_AX25_DAMA_SLAVE=y
+CONFIG_NETROM=m
+CONFIG_ROSE=m
+CONFIG_MKISS=m
+CONFIG_6PACK=m
+CONFIG_BPQETHER=m
+CONFIG_BAYCOM_SER_FDX=m
+CONFIG_BAYCOM_SER_HDX=m
+CONFIG_BAYCOM_PAR=m
+CONFIG_BAYCOM_EPP=m
+CONFIG_YAM=m
+CONFIG_CAN=m
+CONFIG_CAN_RAW=m
+CONFIG_CAN_BCM=m
+CONFIG_CAN_GW=m
+CONFIG_CAN_VCAN=m
+CONFIG_CAN_SLCAN=m
+CONFIG_CAN_DEV=m
+CONFIG_CAN_CALC_BITTIMING=y
+CONFIG_CAN_MCP251X=m
+CONFIG_CAN_SJA1000=m
+CONFIG_CAN_SJA1000_ISA=m
+CONFIG_CAN_SJA1000_PLATFORM=m
+CONFIG_CAN_C_CAN=m
+CONFIG_CAN_C_CAN_PLATFORM=m
+CONFIG_CAN_CC770=m
+CONFIG_CAN_CC770_ISA=m
+CONFIG_CAN_CC770_PLATFORM=m
+CONFIG_CAN_EMS_USB=m
+CONFIG_CAN_ESD_USB2=m
+CONFIG_CAN_PEAK_USB=m
+CONFIG_CAN_SOFTING=m
+CONFIG_IRDA=m
+CONFIG_IRLAN=m
+CONFIG_IRNET=m
+CONFIG_IRCOMM=m
+CONFIG_IRDA_ULTRA=y
+CONFIG_IRDA_CACHE_LAST_LSAP=y
+CONFIG_IRDA_FAST_RR=y
+CONFIG_IRDA_DEBUG=y
+CONFIG_IRTTY_SIR=m
+CONFIG_DONGLE=y
+CONFIG_ESI_DONGLE=m
+CONFIG_ACTISYS_DONGLE=m
+CONFIG_TEKRAM_DONGLE=m
+CONFIG_TOIM3232_DONGLE=m
+CONFIG_LITELINK_DONGLE=m
+CONFIG_MA600_DONGLE=m
+CONFIG_GIRBIL_DONGLE=m
+CONFIG_MCP2120_DONGLE=m
+CONFIG_OLD_BELKIN_DONGLE=m
+CONFIG_ACT200L_DONGLE=m
+CONFIG_KINGSUN_DONGLE=m
+CONFIG_KSDAZZLE_DONGLE=m
+CONFIG_KS959_DONGLE=m
+CONFIG_USB_IRDA=m
+CONFIG_SIGMATEL_FIR=m
+CONFIG_MCS_FIR=m
+CONFIG_BT=m
+CONFIG_BT_RFCOMM=m
+CONFIG_BT_RFCOMM_TTY=y
+CONFIG_BT_BNEP=m
+CONFIG_BT_BNEP_MC_FILTER=y
+CONFIG_BT_BNEP_PROTO_FILTER=y
+CONFIG_BT_CMTP=m
+CONFIG_BT_HIDP=m
+CONFIG_BT_HCIBTUSB=m
+CONFIG_BT_HCIBTSDIO=m
+CONFIG_BT_HCIUART=m
+CONFIG_BT_HCIUART_H4=y
+CONFIG_BT_HCIUART_BCSP=y
+CONFIG_BT_HCIUART_ATH3K=y
+CONFIG_BT_HCIUART_LL=y
+CONFIG_BT_HCIBCM203X=m
+CONFIG_BT_HCIBPA10X=m
+CONFIG_BT_HCIBFUSB=m
+CONFIG_BT_HCIVHCI=m
+CONFIG_BT_MRVL=m
+CONFIG_BT_MRVL_SDIO=m
+CONFIG_BT_ATH3K=m
+CONFIG_BT_WILINK=m
+CONFIG_AF_RXRPC=m
+CONFIG_RXKAD=m
+CONFIG_FIB_RULES=y
+CONFIG_WIRELESS=y
+CONFIG_WIRELESS_EXT=y
+CONFIG_WEXT_CORE=y
+CONFIG_WEXT_PROC=y
+CONFIG_WEXT_SPY=y
+CONFIG_WEXT_PRIV=y
+CONFIG_CFG80211_REG_DEBUG=y
+CONFIG_CFG80211_DEFAULT_PS=y
+CONFIG_CFG80211_DEBUGFS=y
+CONFIG_CFG80211_WEXT=y
+CONFIG_WIRELESS_EXT_SYSFS=y
+CONFIG_LIB80211_CRYPT_WEP=m
+CONFIG_LIB80211_CRYPT_CCMP=m
+CONFIG_LIB80211_CRYPT_TKIP=m
+CONFIG_MAC80211=m
+CONFIG_MAC80211_MESH=y
+CONFIG_MAC80211_LEDS=y
+CONFIG_MAC80211_DEBUGFS=y
+CONFIG_MAC80211_DEBUG_MENU=y
+CONFIG_WIMAX=m
+CONFIG_WIMAX_DEBUG_LEVEL=8
+CONFIG_RFKILL=y
+CONFIG_RFKILL_LEDS=y
+CONFIG_RFKILL_INPUT=y
+CONFIG_RFKILL_REGULATOR=m
+CONFIG_RFKILL_GPIO=m
+CONFIG_NET_9P=m
+CONFIG_CAIF=m
+CONFIG_CAIF_NETDEV=m
+CONFIG_CAIF_USB=m
+CONFIG_CEPH_LIB=m
+CONFIG_CEPH_LIB_USE_DNS_RESOLVER=y
+CONFIG_NFC=m
+CONFIG_NFC_NCI=m
+CONFIG_PN544_NFC=m
+CONFIG_NFC_PN533=m
+CONFIG_NFC_WILINK=m
+CONFIG_DEVTMPFS=y
+CONFIG_DEVTMPFS_MOUNT=y
+CONFIG_STANDALONE=y
+CONFIG_PREVENT_FIRMWARE_BUILD=y
+CONFIG_FW_LOADER=y
+CONFIG_FIRMWARE_IN_KERNEL=y
+CONFIG_EXTRA_FIRMWARE=""
+CONFIG_REGMAP=y
+CONFIG_REGMAP_I2C=y
+CONFIG_REGMAP_SPI=y
+CONFIG_SPI=y
+CONFIG_DMA_SHARED_BUFFER=y
+CONFIG_PROC_EVENTS=y
+CONFIG_MTD_REDBOOT_PARTS=m
+CONFIG_MTD_REDBOOT_DIRECTORY_BLOCK=-1
+CONFIG_MTD_AFS_PARTS=m
+CONFIG_MTD_OF_PARTS=y
+CONFIG_MTD_AR7_PARTS=m
+CONFIG_HAVE_MTD_OTP=y
+CONFIG_MTD_BLKDEVS=y
+CONFIG_FTL=m
+CONFIG_NFTL=m
+CONFIG_NFTL_RW=y
+CONFIG_INFTL=m
+CONFIG_RFD_FTL=m
+CONFIG_SSFDC=m
+CONFIG_SM_FTL=m
+CONFIG_MTD_SWAP=m
+CONFIG_MTD_JEDECPROBE=m
+CONFIG_MTD_MAP_BANK_WIDTH_1=y
+CONFIG_MTD_MAP_BANK_WIDTH_2=y
+CONFIG_MTD_MAP_BANK_WIDTH_4=y
+CONFIG_MTD_CFI_I1=y
+CONFIG_MTD_CFI_I2=y
+CONFIG_MTD_CFI_AMDSTD=m
+CONFIG_MTD_CFI_STAA=m
+CONFIG_MTD_RAM=m
+CONFIG_MTD_ROM=m
+CONFIG_MTD_ABSENT=m
+CONFIG_MTD_COMPLEX_MAPPINGS=y
+CONFIG_MTD_PHYSMAP=m
+CONFIG_MTD_PHYSMAP_OF=m
+CONFIG_MTD_IMPA7=m
+CONFIG_MTD_GPIO_ADDR=m
+CONFIG_MTD_PLATRAM=m
+CONFIG_MTD_LATCH_ADDR=m
+CONFIG_MTD_DATAFLASH=m
+CONFIG_MTD_DATAFLASH_OTP=y
+CONFIG_MTD_M25P80=m
+CONFIG_M25PXX_USE_FAST_READ=y
+CONFIG_MTD_SST25L=m
+CONFIG_MTD_SLRAM=m
+CONFIG_MTD_PHRAM=m
+CONFIG_MTD_MTDRAM=m
+CONFIG_MTDRAM_TOTAL_SIZE=4096
+CONFIG_MTDRAM_ERASE_SIZE=128
+CONFIG_MTD_BLOCK2MTD=m
+CONFIG_MTD_DOC2000=m
+CONFIG_MTD_DOC2001=m
+CONFIG_MTD_DOC2001PLUS=m
+CONFIG_MTD_DOCG3=m
+CONFIG_BCH_CONST_M=14
+CONFIG_BCH_CONST_T=4
+CONFIG_MTD_ONENAND=m
+CONFIG_MTD_DOCPROBE=m
+CONFIG_MTD_DOCECC=m
+CONFIG_MTD_DOCPROBE_ADDRESS=0x0
+CONFIG_MTD_NAND_ECC=y
+CONFIG_MTD_NAND_BCH=y
+CONFIG_MTD_NAND_ECC_BCH=y
+CONFIG_MTD_NAND_GPIO=m
+CONFIG_MTD_NAND_IDS=y
+CONFIG_MTD_NAND_DISKONCHIP=m
+CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS=0
+CONFIG_MTD_NAND_DOCG4=m
+CONFIG_MTD_NAND_PLATFORM=m
+CONFIG_MTD_ALAUDA=m
+CONFIG_MTD_ONENAND_GENERIC=m
+CONFIG_MTD_ONENAND_2X_PROGRAM=y
+CONFIG_MTD_ONENAND_SIM=m
+CONFIG_MTD_LPDDR=m
+CONFIG_MTD_QINFO_PROBE=m
+CONFIG_DTC=y
+CONFIG_OF=y
+CONFIG_PROC_DEVICETREE=y
+CONFIG_OF_FLATTREE=y
+CONFIG_OF_EARLY_FLATTREE=y
+CONFIG_OF_ADDRESS=y
+CONFIG_OF_IRQ=y
+CONFIG_OF_DEVICE=y
+CONFIG_OF_GPIO=y
+CONFIG_OF_I2C=y
+CONFIG_OF_NET=y
+CONFIG_OF_SPI=y
+CONFIG_OF_MDIO=y
+CONFIG_OF_MTD=y
+CONFIG_PARPORT=m
+CONFIG_PARPORT_AX88796=m
+CONFIG_PARPORT_1284=y
+CONFIG_PARPORT_NOT_PC=y
+CONFIG_BLK_DEV=y
+CONFIG_BLK_DEV_LOOP=y
+CONFIG_BLK_DEV_LOOP_MIN_COUNT=8
+CONFIG_BLK_DEV_CRYPTOLOOP=m
+CONFIG_BLK_DEV_DRBD=m
+CONFIG_BLK_DEV_NBD=m
+CONFIG_BLK_DEV_UB=m
+CONFIG_BLK_DEV_RAM=y
+CONFIG_BLK_DEV_RAM_COUNT=16
+CONFIG_BLK_DEV_RAM_SIZE=65536
+CONFIG_CDROM_PKTCDVD=m
+CONFIG_CDROM_PKTCDVD_BUFFERS=8
+CONFIG_ATA_OVER_ETH=m
+CONFIG_MG_DISK=m
+CONFIG_MG_DISK_RES=0
+CONFIG_BLK_DEV_RBD=m
+CONFIG_SENSORS_LIS3LV02D=m
+CONFIG_AD525X_DPOT=m
+CONFIG_AD525X_DPOT_I2C=m
+CONFIG_AD525X_DPOT_SPI=m
+CONFIG_ICS932S401=m
+CONFIG_ENCLOSURE_SERVICES=m
+CONFIG_APDS9802ALS=m
+CONFIG_ISL29003=m
+CONFIG_ISL29020=m
+CONFIG_SENSORS_TSL2550=m
+CONFIG_SENSORS_BH1780=m
+CONFIG_SENSORS_BH1770=m
+CONFIG_SENSORS_APDS990X=m
+CONFIG_HMC6352=m
+CONFIG_DS1682=m
+CONFIG_USB_SWITCH_FSA9480=m
+CONFIG_C2PORT=m
+CONFIG_EEPROM_AT24=m
+CONFIG_EEPROM_AT25=m
+CONFIG_EEPROM_LEGACY=m
+CONFIG_EEPROM_MAX6875=m
+CONFIG_EEPROM_93XX46=m
+CONFIG_IWMC3200TOP=m
+CONFIG_SENSORS_LIS3_SPI=m
+CONFIG_SENSORS_LIS3_I2C=m
+CONFIG_SCSI_MOD=y
+CONFIG_RAID_ATTRS=m
+CONFIG_SCSI_DMA=y
+CONFIG_SCSI_TGT=m
+CONFIG_SCSI_NETLINK=y
+CONFIG_SCSI_PROC_FS=y
+CONFIG_CHR_DEV_ST=m
+CONFIG_CHR_DEV_OSST=m
+CONFIG_BLK_DEV_SR=y
+CONFIG_CHR_DEV_SG=y
+CONFIG_CHR_DEV_SCH=m
+CONFIG_SCSI_ENCLOSURE=m
+CONFIG_SCSI_CONSTANTS=y
+CONFIG_SCSI_LOGGING=y
+CONFIG_SCSI_WAIT_SCAN=m
+CONFIG_SCSI_FC_ATTRS=m
+CONFIG_SCSI_FC_TGT_ATTRS=y
+CONFIG_SCSI_ISCSI_ATTRS=m
+CONFIG_SCSI_SAS_ATTRS=m
+CONFIG_SCSI_SAS_LIBSAS=m
+CONFIG_SCSI_SAS_ATA=y
+CONFIG_SCSI_SAS_HOST_SMP=y
+CONFIG_SCSI_SRP_ATTRS=m
+CONFIG_SCSI_SRP_TGT_ATTRS=y
+CONFIG_SCSI_LOWLEVEL=y
+CONFIG_ISCSI_TCP=m
+CONFIG_ISCSI_BOOT_SYSFS=m
+CONFIG_LIBFC=m
+CONFIG_LIBFCOE=m
+CONFIG_SCSI_DEBUG=m
+CONFIG_SCSI_DH=y
+CONFIG_SCSI_DH_RDAC=m
+CONFIG_SCSI_DH_HP_SW=m
+CONFIG_SCSI_DH_EMC=m
+CONFIG_SCSI_DH_ALUA=m
+CONFIG_BLK_DEV_MD=y
+CONFIG_MD_AUTODETECT=y
+CONFIG_MD_LINEAR=m
+CONFIG_MD_RAID0=m
+CONFIG_MD_RAID1=m
+CONFIG_MD_RAID10=m
+CONFIG_MD_RAID456=m
+CONFIG_MD_MULTIPATH=m
+CONFIG_MD_FAULTY=m
+CONFIG_DM_BUFIO=m
+CONFIG_DM_PERSISTENT_DATA=m
+CONFIG_DM_CRYPT=m
+CONFIG_DM_SNAPSHOT=m
+CONFIG_DM_THIN_PROVISIONING=m
+CONFIG_DM_MIRROR=m
+CONFIG_DM_RAID=m
+CONFIG_DM_ZERO=m
+CONFIG_DM_MULTIPATH=m
+CONFIG_DM_MULTIPATH_QL=m
+CONFIG_DM_MULTIPATH_ST=m
+CONFIG_DM_UEVENT=y
+CONFIG_TARGET_CORE=m
+CONFIG_TCM_IBLOCK=m
+CONFIG_TCM_FILEIO=m
+CONFIG_TCM_PSCSI=m
+CONFIG_LOOPBACK_TARGET=m
+CONFIG_TCM_FC=m
+CONFIG_ISCSI_TARGET=m
+CONFIG_NET_CORE=y
+CONFIG_BONDING=m
+CONFIG_DUMMY=m
+CONFIG_EQUALIZER=m
+CONFIG_MII=y
+CONFIG_IEEE802154_DRIVERS=m
+CONFIG_IFB=m
+CONFIG_MACVLAN=m
+CONFIG_MACVTAP=m
+CONFIG_NETCONSOLE=m
+CONFIG_NETCONSOLE_DYNAMIC=y
+CONFIG_NETPOLL=y
+CONFIG_NET_POLL_CONTROLLER=y
+CONFIG_TUN=y
+CONFIG_VETH=m
+CONFIG_ATM_DRIVERS=y
+CONFIG_ATM_DUMMY=m
+CONFIG_ATM_TCP=m
+CONFIG_CAIF_TTY=m
+CONFIG_CAIF_SPI_SLAVE=m
+CONFIG_CAIF_HSI=m
+CONFIG_ETHERNET=y
+CONFIG_B44=m
+CONFIG_CS89x0=m
+CONFIG_CS89x0_PLATFORM=y
+CONFIG_DM9000=m
+CONFIG_DNET=m
+CONFIG_MDIO_BITBANG=m
+CONFIG_MDIO_GPIO=m
+CONFIG_PLIP=m
+CONFIG_PPP=y
+CONFIG_PPP_BSDCOMP=m
+CONFIG_PPP_DEFLATE=m
+CONFIG_PPP_FILTER=y
+CONFIG_PPP_MPPE=m
+CONFIG_PPP_MULTILINK=y
+CONFIG_PPPOATM=m
+CONFIG_PPPOE=m
+CONFIG_PPTP=m
+CONFIG_PPPOL2TP=m
+CONFIG_PPP_ASYNC=m
+CONFIG_PPP_SYNC_TTY=m
+CONFIG_SLIP=m
+CONFIG_SLHC=y
+CONFIG_SLIP_COMPRESSED=y
+CONFIG_SLIP_SMART=y
+CONFIG_SLIP_MODE_SLIP6=y
+CONFIG_USB_CATC=m
+CONFIG_USB_KAWETH=m
+CONFIG_USB_PEGASUS=m
+CONFIG_USB_RTL8150=m
+CONFIG_USB_NET_AX8817X=m
+CONFIG_USB_NET_CDCETHER=m
+CONFIG_USB_NET_CDC_EEM=m
+CONFIG_USB_NET_CDC_NCM=m
+CONFIG_USB_NET_DM9601=m
+CONFIG_USB_NET_GL620A=m
+CONFIG_USB_NET_NET1080=m
+CONFIG_USB_NET_PLUSB=m
+CONFIG_USB_NET_MCS7830=m
+CONFIG_USB_NET_RNDIS_HOST=m
+CONFIG_USB_NET_CDC_SUBSET=m
+CONFIG_USB_BELKIN=y
+CONFIG_USB_ARMLINUX=y
+CONFIG_USB_NET_ZAURUS=m
+CONFIG_USB_NET_CX82310_ETH=m
+CONFIG_USB_NET_KALMIA=m
+CONFIG_USB_NET_QMI_WWAN=m
+CONFIG_USB_HSO=m
+CONFIG_USB_NET_INT51X1=m
+CONFIG_USB_CDC_PHONET=m
+CONFIG_USB_IPHETH=m
+CONFIG_USB_SIERRA_NET=m
+CONFIG_USB_VL600=m
+CONFIG_WLAN=y
+CONFIG_LIBERTAS=m
+CONFIG_LIBERTAS_THINFIRM=m
+CONFIG_LIBERTAS_THINFIRM_USB=m
+CONFIG_AT76C50X_USB=m
+CONFIG_USB_ZD1201=m
+CONFIG_USB_NET_RNDIS_WLAN=m
+CONFIG_RTL8187=m
+CONFIG_RTL8187_LEDS=y
+CONFIG_ATH_COMMON=m
+CONFIG_ATH9K_HW=m
+CONFIG_ATH9K_COMMON=m
+CONFIG_ATH9K_BTCOEX_SUPPORT=y
+CONFIG_ATH9K=m
+CONFIG_ATH9K_AHB=y
+CONFIG_ATH9K_DEBUGFS=y
+CONFIG_ATH9K_RATE_CONTROL=y
+CONFIG_ATH9K_HTC=m
+CONFIG_ATH9K_HTC_DEBUGFS=y
+CONFIG_CARL9170=m
+CONFIG_CARL9170_LEDS=y
+CONFIG_CARL9170_WPC=y
+CONFIG_CARL9170_HWRNG=y
+CONFIG_B43=m
+CONFIG_B43_BCMA=y
+# CONFIG_B43_BCMA_EXTRA is not set
+CONFIG_B43_SSB=y
+CONFIG_B43_BCMA_PIO=y
+CONFIG_B43_PIO=y
+CONFIG_B43_PHY_N=y
+CONFIG_B43_PHY_LP=y
+CONFIG_B43_PHY_HT=y
+CONFIG_B43_LEDS=y
+CONFIG_B43_HWRNG=y
+CONFIG_B43LEGACY=m
+CONFIG_B43LEGACY_LEDS=y
+CONFIG_B43LEGACY_HWRNG=y
+CONFIG_B43LEGACY_DEBUG=y
+CONFIG_B43LEGACY_DMA=y
+CONFIG_B43LEGACY_PIO=y
+CONFIG_B43LEGACY_DMA_AND_PIO_MODE=y
+CONFIG_BRCMUTIL=m
+CONFIG_BRCMSMAC=m
+CONFIG_BRCMFMAC=m
+CONFIG_BRCMFMAC_SDIO=y
+CONFIG_BRCMFMAC_USB=y
+CONFIG_HOSTAP=m
+CONFIG_HOSTAP_FIRMWARE=y
+CONFIG_HOSTAP_FIRMWARE_NVRAM=y
+CONFIG_IWM=m
+CONFIG_IWM_TRACING=y
+CONFIG_LIBERTAS_SPI=m
+CONFIG_P54_COMMON=m
+CONFIG_P54_USB=m
+CONFIG_P54_SPI=m
+CONFIG_P54_LEDS=y
+CONFIG_RT2X00=m
+CONFIG_RT2500USB=m
+CONFIG_RT73USB=m
+CONFIG_RT2800USB=m
+CONFIG_RT2800USB_RT33XX=y
+CONFIG_RT2800_LIB=m
+CONFIG_RT2X00_LIB_USB=m
+CONFIG_RT2X00_LIB=m
+CONFIG_RT2X00_LIB_FIRMWARE=y
+CONFIG_RT2X00_LIB_CRYPTO=y
+CONFIG_RT2X00_LIB_LEDS=y
+CONFIG_RT2X00_LIB_DEBUGFS=y
+CONFIG_RTL8192CU=m
+CONFIG_RTLWIFI=m
+CONFIG_RTL8192C_COMMON=m
+CONFIG_WL1251=m
+CONFIG_WL1251_SPI=m
+CONFIG_WL1251_SDIO=m
+CONFIG_WL12XX_MENU=m
+CONFIG_WL12XX=m
+CONFIG_WL12XX_SPI=m
+CONFIG_WL12XX_SDIO=m
+CONFIG_WL12XX_PLATFORM_DATA=y
+CONFIG_ZD1211RW=m
+CONFIG_MWIFIEX=m
+CONFIG_MWIFIEX_SDIO=m
+CONFIG_WAN=y
+CONFIG_HDLC=m
+CONFIG_HDLC_RAW=m
+CONFIG_HDLC_RAW_ETH=m
+CONFIG_HDLC_CISCO=m
+CONFIG_HDLC_FR=m
+CONFIG_HDLC_PPP=m
+CONFIG_HDLC_X25=m
+CONFIG_DLCI=m
+CONFIG_DLCI_MAX=8
+CONFIG_WAN_ROUTER_DRIVERS=m
+CONFIG_LAPBETHER=m
+CONFIG_ISDN=y
+CONFIG_ISDN_I4L=m
+CONFIG_ISDN_PPP=y
+CONFIG_ISDN_PPP_VJ=y
+CONFIG_ISDN_MPP=y
+CONFIG_IPPP_FILTER=y
+CONFIG_ISDN_PPP_BSDCOMP=m
+CONFIG_ISDN_AUDIO=y
+CONFIG_ISDN_TTY_FAX=y
+CONFIG_ISDN_X25=y
+CONFIG_ISDN_DIVERSION=m
+CONFIG_ISDN_DRV_HISAX=m
+CONFIG_ISDN_CAPI=m
+CONFIG_ISDN_DRV_AVMB1_VERBOSE_REASON=y
+CONFIG_CAPI_TRACE=y
+CONFIG_ISDN_CAPI_MIDDLEWARE=y
+CONFIG_ISDN_CAPI_CAPI20=m
+CONFIG_ISDN_CAPI_CAPIDRV=m
+CONFIG_CAPI_AVM=y
+CONFIG_CAPI_EICON=y
+CONFIG_ISDN_DRV_GIGASET=m
+CONFIG_GIGASET_I4L=y
+CONFIG_GIGASET_BASE=m
+CONFIG_GIGASET_M105=m
+CONFIG_GIGASET_M101=m
+CONFIG_MISDN=m
+CONFIG_MISDN_DSP=m
+CONFIG_MISDN_L1OIP=m
+CONFIG_MISDN_HFCUSB=m
+CONFIG_INPUT=y
+CONFIG_INPUT_FF_MEMLESS=m
+CONFIG_INPUT_POLLDEV=m
+CONFIG_INPUT_SPARSEKMAP=m
+CONFIG_INPUT_MOUSEDEV=y
+CONFIG_INPUT_MOUSEDEV_PSAUX=y
+CONFIG_INPUT_MOUSEDEV_SCREEN_X=1024
+CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768
+CONFIG_INPUT_EVBUG=m
+CONFIG_INPUT_KEYBOARD=y
+CONFIG_KEYBOARD_ADP5588=m
+CONFIG_KEYBOARD_ADP5589=m
+CONFIG_KEYBOARD_ATKBD=y
+CONFIG_KEYBOARD_QT1070=m
+CONFIG_KEYBOARD_LKKBD=m
+CONFIG_KEYBOARD_TCA6416=m
+CONFIG_KEYBOARD_TCA8418=m
+CONFIG_KEYBOARD_MATRIX=m
+CONFIG_KEYBOARD_LM8323=m
+CONFIG_KEYBOARD_MAX7359=m
+CONFIG_KEYBOARD_MCS=m
+CONFIG_KEYBOARD_MPR121=m
+CONFIG_KEYBOARD_NEWTON=m
+CONFIG_KEYBOARD_OPENCORES=m
+CONFIG_KEYBOARD_SAMSUNG=m
+CONFIG_KEYBOARD_STOWAWAY=m
+CONFIG_KEYBOARD_SUNKBD=m
+CONFIG_KEYBOARD_STMPE=m
+CONFIG_KEYBOARD_XTKBD=m
+CONFIG_INPUT_MOUSE=y
+CONFIG_MOUSE_PS2=m
+CONFIG_MOUSE_PS2_ALPS=y
+CONFIG_MOUSE_PS2_LOGIPS2PP=y
+CONFIG_MOUSE_PS2_SYNAPTICS=y
+CONFIG_MOUSE_PS2_TRACKPOINT=y
+CONFIG_MOUSE_PS2_ELANTECH=y
+CONFIG_MOUSE_PS2_SENTELIC=y
+CONFIG_MOUSE_SERIAL=m
+CONFIG_MOUSE_APPLETOUCH=m
+CONFIG_MOUSE_BCM5974=m
+CONFIG_MOUSE_VSXXXAA=m
+CONFIG_MOUSE_GPIO=m
+CONFIG_MOUSE_SYNAPTICS_I2C=m
+CONFIG_MOUSE_SYNAPTICS_USB=m
+CONFIG_INPUT_JOYSTICK=y
+CONFIG_JOYSTICK_ANALOG=m
+CONFIG_JOYSTICK_INTERACT=m
+CONFIG_JOYSTICK_SIDEWINDER=m
+CONFIG_JOYSTICK_WARRIOR=m
+CONFIG_JOYSTICK_MAGELLAN=m
+CONFIG_JOYSTICK_GAMECON=m
+CONFIG_JOYSTICK_TURBOGRAFX=m
+CONFIG_JOYSTICK_JOYDUMP=m
+CONFIG_JOYSTICK_XPAD=m
+CONFIG_JOYSTICK_XPAD_FF=y
+CONFIG_JOYSTICK_XPAD_LEDS=y
+CONFIG_JOYSTICK_WALKERA0701=m
+CONFIG_INPUT_TABLET=y
+CONFIG_TABLET_USB_ACECAD=m
+CONFIG_TABLET_USB_AIPTEK=m
+CONFIG_TABLET_USB_GTCO=m
+CONFIG_TABLET_USB_HANWANG=m
+CONFIG_TABLET_USB_KBTAB=m
+CONFIG_TABLET_USB_WACOM=m
+CONFIG_INPUT_MISC=y
+CONFIG_INPUT_88PM860X_ONKEY=m
+CONFIG_INPUT_AD714X=m
+CONFIG_INPUT_AD714X_I2C=m
+CONFIG_INPUT_AD714X_SPI=m
+CONFIG_INPUT_BMA150=m
+CONFIG_INPUT_MMA8450=m
+CONFIG_INPUT_MPU3050=m
+CONFIG_INPUT_GP2A=m
+CONFIG_INPUT_GPIO_TILT_POLLED=m
+CONFIG_INPUT_ATI_REMOTE2=m
+CONFIG_INPUT_KEYSPAN_REMOTE=m
+CONFIG_INPUT_KXTJ9=m
+CONFIG_INPUT_POWERMATE=m
+CONFIG_INPUT_YEALINK=m
+CONFIG_INPUT_CM109=m
+CONFIG_INPUT_TWL4030_VIBRA=m
+CONFIG_INPUT_TWL6040_VIBRA=m
+CONFIG_INPUT_UINPUT=y
+CONFIG_INPUT_PCF8574=m
+CONFIG_INPUT_GPIO_ROTARY_ENCODER=m
+CONFIG_INPUT_ADXL34X=m
+CONFIG_INPUT_ADXL34X_I2C=m
+CONFIG_INPUT_ADXL34X_SPI=m
+CONFIG_INPUT_CMA3000=m
+CONFIG_INPUT_CMA3000_I2C=m
+CONFIG_SERIO=y
+CONFIG_SERIO_SERPORT=m
+CONFIG_SERIO_PARKBD=m
+CONFIG_SERIO_LIBPS2=y
+CONFIG_SERIO_RAW=m
+CONFIG_SERIO_ALTERA_PS2=m
+CONFIG_SERIO_PS2MULT=m
+CONFIG_GAMEPORT=m
+CONFIG_GAMEPORT_NS558=m
+CONFIG_GAMEPORT_L4=m
+CONFIG_VT=y
+CONFIG_CONSOLE_TRANSLATIONS=y
+CONFIG_VT_CONSOLE=y
+CONFIG_VT_CONSOLE_SLEEP=y
+CONFIG_HW_CONSOLE=y
+CONFIG_UNIX98_PTYS=y
+CONFIG_DEVPTS_MULTIPLE_INSTANCES=y
+CONFIG_SERIAL_NONSTANDARD=y
+CONFIG_N_HDLC=m
+CONFIG_TRACE_ROUTER=m
+CONFIG_TRACE_SINK=m
+CONFIG_STALDRV=y
+CONFIG_SERIAL_8250=y
+CONFIG_SERIAL_8250_CONSOLE=y
+CONFIG_SERIAL_8250_RUNTIME_UARTS=32
+CONFIG_SERIAL_8250_DW=m
+CONFIG_SERIAL_MAX3100=m
+CONFIG_SERIAL_MAX3107=m
+CONFIG_SERIAL_CORE=y
+CONFIG_SERIAL_CORE_CONSOLE=y
+CONFIG_CONSOLE_POLL=y
+CONFIG_SERIAL_OF_PLATFORM=m
+CONFIG_SERIAL_TIMBERDALE=m
+CONFIG_SERIAL_ALTERA_JTAGUART=m
+CONFIG_SERIAL_ALTERA_UART=m
+CONFIG_SERIAL_ALTERA_UART_MAXPORTS=4
+CONFIG_SERIAL_ALTERA_UART_BAUDRATE=115200
+CONFIG_SERIAL_XILINX_PS_UART=m
+CONFIG_TTY_PRINTK=y
+CONFIG_PRINTER=m
+CONFIG_PPDEV=m
+CONFIG_HVC_DRIVER=y
+CONFIG_HVC_DCC=y
+CONFIG_IPMI_HANDLER=m
+CONFIG_IPMI_DEVICE_INTERFACE=m
+CONFIG_IPMI_SI=m
+CONFIG_IPMI_WATCHDOG=m
+CONFIG_IPMI_POWEROFF=m
+CONFIG_HW_RANDOM_TIMERIOMEM=m
+CONFIG_NVRAM=m
+CONFIG_RAW_DRIVER=m
+CONFIG_MAX_RAW_DEVS=256
+CONFIG_RAMOOPS=m
+CONFIG_I2C=y
+CONFIG_I2C_BOARDINFO=y
+CONFIG_I2C_COMPAT=y
+CONFIG_I2C_MUX=m
+CONFIG_I2C_MUX_GPIO=m
+CONFIG_I2C_MUX_PCA9541=m
+CONFIG_I2C_MUX_PCA954x=m
+CONFIG_I2C_SMBUS=m
+CONFIG_I2C_ALGOBIT=m
+CONFIG_I2C_ALGOPCF=m
+CONFIG_I2C_ALGOPCA=m
+CONFIG_I2C_DESIGNWARE_PLATFORM=m
+CONFIG_I2C_GPIO=m
+CONFIG_I2C_OCORES=m
+CONFIG_I2C_PCA_PLATFORM=m
+CONFIG_I2C_SIMTEC=m
+CONFIG_I2C_XILINX=m
+CONFIG_I2C_DIOLAN_U2C=m
+CONFIG_I2C_PARPORT=m
+CONFIG_I2C_PARPORT_LIGHT=m
+CONFIG_I2C_TAOS_EVM=m
+CONFIG_I2C_TINY_USB=m
+CONFIG_I2C_STUB=m
+CONFIG_SPI_MASTER=y
+CONFIG_SPI_BITBANG=m
+CONFIG_SPI_BUTTERFLY=m
+CONFIG_SPI_GPIO=m
+CONFIG_SPI_LM70_LLP=m
+CONFIG_SPI_OC_TINY=m
+CONFIG_SPI_DESIGNWARE=m
+CONFIG_SPI_TLE62X0=m
+CONFIG_HSI=m
+CONFIG_HSI_BOARDINFO=y
+CONFIG_HSI_CHAR=m
+CONFIG_PPS=m
+CONFIG_PPS_CLIENT_PARPORT=m
+CONFIG_PPS_CLIENT_GPIO=m
+CONFIG_GPIOLIB=y
+CONFIG_GPIO_GENERIC=m
+CONFIG_GPIO_GENERIC_PLATFORM=m
+CONFIG_POWER_SUPPLY=y
+CONFIG_TEST_POWER=m
+CONFIG_HWMON=y
+CONFIG_HWMON_VID=m
+CONFIG_THERMAL=y
+CONFIG_THERMAL_HWMON=y
+CONFIG_WATCHDOG_CORE=y
+CONFIG_SOFT_WATCHDOG=m
+CONFIG_SSB_POSSIBLE=y
+CONFIG_SSB=m
+CONFIG_SSB_BLOCKIO=y
+CONFIG_SSB_SDIOHOST_POSSIBLE=y
+CONFIG_SSB_SDIOHOST=y
+CONFIG_BCMA_POSSIBLE=y
+CONFIG_BCMA=m
+CONFIG_BCMA_BLOCKIO=y
+CONFIG_MFD_CORE=y
+CONFIG_MFD_88PM860X=y
+CONFIG_MFD_SM501=m
+CONFIG_HTC_EGPIO=y
+CONFIG_HTC_PASIC3=m
+CONFIG_HTC_I2CPLD=y
+CONFIG_MFD_STMPE=y
+CONFIG_STMPE_I2C=y
+CONFIG_STMPE_SPI=y
+CONFIG_MFD_WL1273_CORE=m
+CONFIG_REGULATOR=y
+CONFIG_REGULATOR_FIXED_VOLTAGE=y
+CONFIG_REGULATOR_VIRTUAL_CONSUMER=m
+CONFIG_REGULATOR_USERSPACE_CONSUMER=m
+CONFIG_REGULATOR_GPIO=m
+CONFIG_DVB_CORE=m
+CONFIG_DVB_NET=y
+CONFIG_VIDEO_MEDIA=m
+CONFIG_MEDIA_SUPPORT=m
+CONFIG_VIDEO_DEV=m
+CONFIG_RC_CORE=m
+CONFIG_LIRC=m
+CONFIG_LIRC_SERIAL_TRANSMITTER=y
+CONFIG_RC_MAP=m
+CONFIG_IR_NEC_DECODER=m
+CONFIG_IR_JVC_DECODER=m
+CONFIG_IR_SONY_DECODER=m
+CONFIG_IR_SANYO_DECODER=m
+CONFIG_IR_LIRC_CODEC=m
+CONFIG_RC_ATI_REMOTE=m
+CONFIG_IR_IMON=m
+CONFIG_IR_MCEUSB=m
+CONFIG_IR_REDRAT3=m
+CONFIG_IR_STREAMZAP=m
+CONFIG_RC_LOOPBACK=m
+CONFIG_IR_GPIO_CIR=m
+CONFIG_MEDIA_ATTACH=y
+CONFIG_MEDIA_TUNER=m
+CONFIG_MEDIA_TUNER_SIMPLE=m
+CONFIG_VIDEOBUF_GEN=m
+CONFIG_VIDEOBUF_VMALLOC=m
+CONFIG_VIDEOBUF_DMA_CONTIG=m
+CONFIG_VIDEOBUF_DVB=m
+CONFIG_VIDEO_TVEEPROM=m
+CONFIG_VIDEO_TUNER=m
+CONFIG_V4L2_MEM2MEM_DEV=m
+CONFIG_VIDEOBUF2_DMA_CONTIG=m
+CONFIG_VIDEO_CAPTURE_DRIVERS=y
+CONFIG_VIDEO_IR_I2C=m
+CONFIG_VIDEO_TVAUDIO=m
+CONFIG_V4L_USB_DRIVERS=y
+CONFIG_USB_VIDEO_CLASS_INPUT_EVDEV=y
+CONFIG_USB_GSPCA=m
+CONFIG_USB_M5602=m
+CONFIG_USB_STV06XX=m
+CONFIG_USB_GL860=m
+CONFIG_USB_GSPCA_BENQ=m
+CONFIG_USB_GSPCA_CONEX=m
+CONFIG_USB_GSPCA_CPIA1=m
+CONFIG_USB_GSPCA_ETOMS=m
+CONFIG_USB_GSPCA_FINEPIX=m
+CONFIG_USB_GSPCA_JEILINJ=m
+CONFIG_USB_GSPCA_JL2005BCD=m
+CONFIG_USB_GSPCA_KINECT=m
+CONFIG_USB_GSPCA_KONICA=m
+CONFIG_USB_GSPCA_MARS=m
+CONFIG_USB_GSPCA_MR97310A=m
+CONFIG_USB_GSPCA_NW80X=m
+CONFIG_USB_GSPCA_OV519=m
+CONFIG_USB_GSPCA_OV534=m
+CONFIG_USB_GSPCA_OV534_9=m
+CONFIG_USB_GSPCA_PAC207=m
+CONFIG_USB_GSPCA_PAC7302=m
+CONFIG_USB_GSPCA_PAC7311=m
+CONFIG_USB_GSPCA_SE401=m
+CONFIG_USB_GSPCA_SN9C2028=m
+CONFIG_USB_GSPCA_SN9C20X=m
+CONFIG_USB_GSPCA_SONIXB=m
+CONFIG_USB_GSPCA_SONIXJ=m
+CONFIG_USB_GSPCA_SPCA500=m
+CONFIG_USB_GSPCA_SPCA501=m
+CONFIG_USB_GSPCA_SPCA505=m
+CONFIG_USB_GSPCA_SPCA506=m
+CONFIG_USB_GSPCA_SPCA508=m
+CONFIG_USB_GSPCA_SPCA561=m
+CONFIG_USB_GSPCA_SPCA1528=m
+CONFIG_USB_GSPCA_SQ905=m
+CONFIG_USB_GSPCA_SQ905C=m
+CONFIG_USB_GSPCA_SQ930X=m
+CONFIG_USB_GSPCA_STK014=m
+CONFIG_USB_GSPCA_STV0680=m
+CONFIG_USB_GSPCA_SUNPLUS=m
+CONFIG_USB_GSPCA_T613=m
+CONFIG_USB_GSPCA_TOPRO=m
+CONFIG_USB_GSPCA_TV8532=m
+CONFIG_USB_GSPCA_VC032X=m
+CONFIG_USB_GSPCA_VICAM=m
+CONFIG_USB_GSPCA_XIRLINK_CIT=m
+CONFIG_USB_GSPCA_ZC3XX=m
+CONFIG_VIDEO_PVRUSB2=m
+CONFIG_VIDEO_PVRUSB2_SYSFS=y
+CONFIG_VIDEO_PVRUSB2_DVB=y
+CONFIG_VIDEO_HDPVR=m
+CONFIG_VIDEO_EM28XX=m
+CONFIG_VIDEO_EM28XX_ALSA=m
+CONFIG_VIDEO_EM28XX_DVB=m
+CONFIG_VIDEO_EM28XX_RC=y
+CONFIG_VIDEO_TLG2300=m
+CONFIG_VIDEO_CX231XX=m
+CONFIG_VIDEO_CX231XX_RC=y
+CONFIG_VIDEO_CX231XX_ALSA=m
+CONFIG_VIDEO_CX231XX_DVB=m
+CONFIG_VIDEO_TM6000=m
+CONFIG_VIDEO_TM6000_ALSA=m
+CONFIG_VIDEO_TM6000_DVB=m
+CONFIG_VIDEO_USBVISION=m
+CONFIG_USB_PWC=m
+CONFIG_USB_PWC_INPUT_EVDEV=y
+CONFIG_VIDEO_CPIA2=m
+CONFIG_USB_ZR364XX=m
+CONFIG_USB_STKWEBCAM=m
+CONFIG_USB_S2255=m
+CONFIG_V4L_ISA_PARPORT_DRIVERS=y
+CONFIG_VIDEO_BWQCAM=m
+CONFIG_VIDEO_CQCAM=m
+CONFIG_VIDEO_W9966=m
+CONFIG_V4L_PLATFORM_DRIVERS=y
+CONFIG_VIDEO_TIMBERDALE=m
+CONFIG_SOC_CAMERA=m
+CONFIG_SOC_CAMERA_PLATFORM=m
+CONFIG_VIDEO_SH_MOBILE_CSI2=m
+CONFIG_VIDEO_SH_MOBILE_CEU=m
+CONFIG_V4L_MEM2MEM_DRIVERS=y
+CONFIG_VIDEO_MEM2MEM_TESTDEV=m
+CONFIG_RADIO_ADAPTERS=y
+CONFIG_RADIO_SI470X=y
+CONFIG_USB_SI470X=m
+CONFIG_I2C_SI470X=m
+CONFIG_USB_MR800=m
+CONFIG_USB_DSBR=m
+CONFIG_I2C_SI4713=m
+CONFIG_RADIO_SI4713=m
+CONFIG_USB_KEENE=m
+CONFIG_RADIO_WL1273=m
+CONFIG_RADIO_WL128X=m
+CONFIG_DVB_MAX_ADAPTERS=8
+CONFIG_DVB_DYNAMIC_MINORS=y
+CONFIG_DVB_CAPTURE_DRIVERS=y
+CONFIG_TTPCI_EEPROM=m
+CONFIG_DVB_USB=m
+CONFIG_SMS_SIANO_MDTV=m
+CONFIG_SMS_USB_DRV=m
+CONFIG_SMS_SDIO_DRV=m
+CONFIG_DVB_B2C2_FLEXCOP=m
+CONFIG_DVB_B2C2_FLEXCOP_USB=m
+CONFIG_DVB_FE_CUSTOMISE=y
+CONFIG_DVB_PLL=m
+CONFIG_DRM=m
+CONFIG_DRM_USB=m
+CONFIG_DRM_KMS_HELPER=m
+CONFIG_DRM_LOAD_EDID_FIRMWARE=y
+CONFIG_DRM_I2C_CH7006=m
+CONFIG_DRM_I2C_SIL164=m
+CONFIG_DRM_UDL=m
+CONFIG_VIDEO_OUTPUT_CONTROL=m
+CONFIG_FB_SYS_FILLRECT=m
+CONFIG_FB_SYS_COPYAREA=m
+CONFIG_FB_SYS_IMAGEBLIT=m
+CONFIG_FB_SYS_FOPS=m
+CONFIG_FB_DEFERRED_IO=y
+CONFIG_FB_UVESA=m
+CONFIG_FB_S1D13XXX=m
+CONFIG_FB_TMIO=m
+CONFIG_FB_TMIO_ACCELL=y
+CONFIG_FB_SM501=m
+CONFIG_FB_SMSCUFX=m
+CONFIG_FB_UDL=m
+CONFIG_FB_METRONOME=m
+CONFIG_FB_BROADSHEET=m
+CONFIG_PANEL_LGPHILIPS_LB035Q02=m
+CONFIG_PANEL_SHARP_LS037V7DW01=y
+CONFIG_PANEL_NEC_NL8048HL11_01B=m
+CONFIG_PANEL_PICODLP=m
+CONFIG_PANEL_TPO_TD043MTEA1=y
+CONFIG_LCD_L4F00242T03=m
+CONFIG_LCD_LMS283GF05=m
+CONFIG_LCD_LTV350QV=m
+CONFIG_LCD_ILI9320=m
+CONFIG_LCD_TDO24M=m
+CONFIG_LCD_VGG2432A4=m
+CONFIG_LCD_S6E63M0=m
+CONFIG_LCD_LD9040=m
+CONFIG_LCD_AMS369FG06=m
+CONFIG_BACKLIGHT_CLASS_DEVICE=y
+CONFIG_BACKLIGHT_ATMEL_PWM=m
+CONFIG_BACKLIGHT_GENERIC=m
+CONFIG_BACKLIGHT_PWM=m
+CONFIG_DUMMY_CONSOLE=y
+CONFIG_FRAMEBUFFER_CONSOLE=y
+CONFIG_FRAMEBUFFER_CONSOLE_DETECT_PRIMARY=y
+CONFIG_FONTS=y
+CONFIG_FONT_8x8=y
+CONFIG_FONT_8x16=y
+CONFIG_FONT_ACORN_8x8=y
+CONFIG_SOUND_OSS_CORE=y
+CONFIG_SOUND_OSS_CORE_PRECLAIM=y
+CONFIG_SND_JACK=y
+CONFIG_SND_SEQUENCER=m
+CONFIG_SND_SEQ_DUMMY=m
+CONFIG_SND_OSSEMUL=y
+CONFIG_SND_PCM_OSS_PLUGINS=y
+CONFIG_SND_HRTIMER=m
+CONFIG_SND_SEQ_HRTIMER_DEFAULT=y
+CONFIG_SND_DYNAMIC_MINORS=y
+CONFIG_SND_SUPPORT_OLD_API=y
+CONFIG_SND_VERBOSE_PROCFS=y
+CONFIG_SND_VMASTER=y
+CONFIG_SND_RAWMIDI_SEQ=m
+CONFIG_SND_MPU401_UART=m
+CONFIG_SND_DRIVERS=y
+CONFIG_SND_DUMMY=m
+CONFIG_SND_ALOOP=m
+CONFIG_SND_VIRMIDI=m
+CONFIG_SND_MTPAV=m
+CONFIG_SND_MTS64=m
+CONFIG_SND_SERIAL_U16550=m
+CONFIG_SND_MPU401=m
+CONFIG_SND_PORTMAN2X4=m
+CONFIG_SND_SPI=y
+CONFIG_SND_USB=y
+CONFIG_SND_USB_UA101=m
+CONFIG_SND_USB_CAIAQ=m
+CONFIG_SND_USB_CAIAQ_INPUT=y
+CONFIG_SND_USB_6FIRE=m
+CONFIG_HID_SUPPORT=y
+CONFIG_HID=m
+CONFIG_HIDRAW=y
+CONFIG_USB_HID=m
+CONFIG_HID_PID=y
+CONFIG_USB_HIDDEV=y
+CONFIG_USB_KBD=m
+CONFIG_USB_MOUSE=m
+CONFIG_HID_A4TECH=m
+CONFIG_HID_ACRUX=m
+CONFIG_HID_ACRUX_FF=y
+CONFIG_HID_APPLE=m
+CONFIG_HID_BELKIN=m
+CONFIG_HID_CHERRY=m
+CONFIG_HID_CHICONY=m
+CONFIG_HID_PRODIKEYS=m
+CONFIG_HID_CYPRESS=m
+CONFIG_HID_DRAGONRISE=m
+CONFIG_DRAGONRISE_FF=y
+CONFIG_HID_EMS_FF=m
+CONFIG_HID_ELECOM=m
+CONFIG_HID_EZKEY=m
+CONFIG_HID_HOLTEK=m
+CONFIG_HOLTEK_FF=y
+CONFIG_HID_KEYTOUCH=m
+CONFIG_HID_KYE=m
+CONFIG_HID_UCLOGIC=m
+CONFIG_HID_WALTOP=m
+CONFIG_HID_GYRATION=m
+CONFIG_HID_TWINHAN=m
+CONFIG_HID_KENSINGTON=m
+CONFIG_HID_LCPOWER=m
+CONFIG_HID_LOGITECH=m
+CONFIG_HID_LOGITECH_DJ=m
+CONFIG_LOGITECH_FF=y
+CONFIG_LOGIRUMBLEPAD2_FF=y
+CONFIG_LOGIG940_FF=y
+CONFIG_LOGIWHEELS_FF=y
+CONFIG_HID_MAGICMOUSE=m
+CONFIG_HID_MICROSOFT=m
+CONFIG_HID_MONTEREY=m
+CONFIG_HID_MULTITOUCH=m
+CONFIG_HID_NTRIG=m
+CONFIG_HID_ORTEK=m
+CONFIG_HID_PANTHERLORD=m
+CONFIG_PANTHERLORD_FF=y
+CONFIG_HID_PETALYNX=m
+CONFIG_HID_PICOLCD=m
+CONFIG_HID_PICOLCD_FB=y
+CONFIG_HID_PICOLCD_BACKLIGHT=y
+CONFIG_HID_PICOLCD_LCD=y
+CONFIG_HID_PICOLCD_LEDS=y
+CONFIG_HID_PRIMAX=m
+CONFIG_HID_ROCCAT=m
+CONFIG_HID_SAITEK=m
+CONFIG_HID_SAMSUNG=m
+CONFIG_HID_SONY=m
+CONFIG_HID_SPEEDLINK=m
+CONFIG_HID_SUNPLUS=m
+CONFIG_HID_GREENASIA=m
+CONFIG_GREENASIA_FF=y
+CONFIG_HID_SMARTJOYPLUS=m
+CONFIG_SMARTJOYPLUS_FF=y
+CONFIG_HID_TIVO=m
+CONFIG_HID_TOPSEED=m
+CONFIG_HID_THRUSTMASTER=m
+CONFIG_THRUSTMASTER_FF=y
+CONFIG_HID_WACOM=m
+CONFIG_HID_WACOM_POWER_SUPPLY=y
+CONFIG_HID_WIIMOTE=m
+CONFIG_HID_WIIMOTE_EXT=y
+CONFIG_HID_ZEROPLUS=m
+CONFIG_ZEROPLUS_FF=y
+CONFIG_HID_ZYDACRON=m
+CONFIG_USB_SUPPORT=y
+CONFIG_USB_SUSPEND=y
+CONFIG_USB_COMMON=y
+CONFIG_USB_OTG=y
+CONFIG_USB_WUSB_CBAF=m
+CONFIG_USB_C67X00_HCD=m
+CONFIG_USB_OXU210HP_HCD=m
+CONFIG_USB_ISP116X_HCD=m
+CONFIG_USB_ISP1760_HCD=m
+CONFIG_USB_OHCI_HCD=y
+CONFIG_USB_OHCI_HCD_PLATFORM=y
+CONFIG_USB_OHCI_LITTLE_ENDIAN=y
+CONFIG_USB_U132_HCD=m
+CONFIG_USB_SL811_HCD=m
+CONFIG_USB_SL811_HCD_ISO=y
+CONFIG_USB_R8A66597_HCD=m
+CONFIG_USB_RENESAS_USBHS_HCD=m
+CONFIG_USB_RENESAS_USBHS=m
+CONFIG_USB_ACM=m
+CONFIG_USB_PRINTER=m
+CONFIG_USB_TMC=m
+CONFIG_USB_STORAGE_REALTEK=m
+CONFIG_REALTEK_AUTOPM=y
+CONFIG_USB_STORAGE_DATAFAB=m
+CONFIG_USB_STORAGE_FREECOM=m
+CONFIG_USB_STORAGE_ISD200=m
+CONFIG_USB_STORAGE_USBAT=m
+CONFIG_USB_STORAGE_SDDR09=m
+CONFIG_USB_STORAGE_SDDR55=m
+CONFIG_USB_STORAGE_JUMPSHOT=m
+CONFIG_USB_STORAGE_ALAUDA=m
+CONFIG_USB_STORAGE_ONETOUCH=m
+CONFIG_USB_STORAGE_KARMA=m
+CONFIG_USB_STORAGE_CYPRESS_ATACB=m
+CONFIG_USB_STORAGE_ENE_UB6250=m
+CONFIG_USB_UAS=m
+CONFIG_USB_MDC800=m
+CONFIG_USB_MICROTEK=m
+CONFIG_USB_USS720=m
+CONFIG_USB_SERIAL=m
+CONFIG_USB_EZUSB=y
+CONFIG_USB_SERIAL_GENERIC=y
+CONFIG_USB_SERIAL_CP210X=m
+CONFIG_USB_SERIAL_PL2303=m
+CONFIG_USB_SERIAL_QUALCOMM=m
+CONFIG_USB_SERIAL_SPCP8X5=m
+CONFIG_USB_SERIAL_HP4X=m
+CONFIG_USB_SERIAL_TI=m
+CONFIG_USB_SERIAL_DEBUG=m
+CONFIG_USB_EMI62=m
+CONFIG_USB_EMI26=m
+CONFIG_USB_ADUTUX=m
+CONFIG_USB_SEVSEG=m
+CONFIG_USB_RIO500=m
+CONFIG_USB_LEGOTOWER=m
+CONFIG_USB_LCD=m
+CONFIG_USB_LED=m
+CONFIG_USB_CYPRESS_CY7C63=m
+CONFIG_USB_CYTHERM=m
+CONFIG_USB_IDMOUSE=m
+CONFIG_USB_FTDI_ELAN=m
+CONFIG_USB_APPLEDISPLAY=m
+CONFIG_USB_SISUSBVGA=m
+CONFIG_USB_LD=m
+CONFIG_USB_TRANCEVIBRATOR=m
+CONFIG_USB_IOWARRIOR=m
+CONFIG_USB_ISIGHTFW=m
+CONFIG_USB_YUREX=m
+CONFIG_USB_ATM=m
+CONFIG_USB_SPEEDTOUCH=m
+CONFIG_USB_CXACRU=m
+CONFIG_USB_UEAGLEATM=m
+CONFIG_USB_XUSBATM=m
+CONFIG_USB_GADGET_VBUS_DRAW=2
+CONFIG_USB_GADGET_STORAGE_NUM_BUFFERS=2
+CONFIG_USB_ZERO=m
+CONFIG_USB_AUDIO=m
+CONFIG_GADGET_UAC1=y
+CONFIG_USB_ETH=m
+CONFIG_USB_ETH_RNDIS=y
+CONFIG_USB_G_NCM=m
+CONFIG_USB_GADGETFS=m
+CONFIG_USB_FUNCTIONFS=m
+CONFIG_USB_FUNCTIONFS_ETH=y
+CONFIG_USB_FUNCTIONFS_RNDIS=y
+CONFIG_USB_FUNCTIONFS_GENERIC=y
+CONFIG_USB_MASS_STORAGE=m
+CONFIG_USB_G_SERIAL=m
+CONFIG_USB_MIDI_GADGET=m
+CONFIG_USB_G_PRINTER=m
+CONFIG_USB_CDC_COMPOSITE=m
+CONFIG_USB_G_NOKIA=m
+CONFIG_USB_G_ACM_MS=m
+CONFIG_USB_G_MULTI=m
+CONFIG_USB_G_MULTI_RNDIS=y
+CONFIG_USB_G_MULTI_CDC=y
+CONFIG_USB_G_HID=m
+CONFIG_USB_G_DBGP=m
+CONFIG_USB_G_DBGP_SERIAL=y
+CONFIG_USB_G_WEBCAM=m
+CONFIG_USB_OTG_UTILS=y
+CONFIG_USB_GPIO_VBUS=y
+CONFIG_USB_ULPI=y
+CONFIG_NOP_USB_XCEIV=y
+CONFIG_MMC_BLOCK=y
+CONFIG_MMC_BLOCK_MINORS=8
+CONFIG_MMC_BLOCK_BOUNCE=y
+CONFIG_MMC_SDHCI=y
+CONFIG_MMC_SDHCI_PLTFM=m
+CONFIG_MMC_SDHCI_PXAV3=m
+CONFIG_MMC_SDHCI_PXAV2=m
+CONFIG_MMC_SPI=m
+CONFIG_MMC_TMIO_CORE=m
+CONFIG_MMC_TMIO=m
+CONFIG_MMC_DW=m
+CONFIG_MMC_DW_PLTFM=m
+CONFIG_MMC_VUB300=m
+CONFIG_MMC_USHC=m
+CONFIG_MEMSTICK=m
+CONFIG_MSPRO_BLOCK=m
+CONFIG_NEW_LEDS=y
+CONFIG_LEDS_CLASS=y
+CONFIG_LEDS_PCA9532=m
+CONFIG_LEDS_PCA9532_GPIO=y
+CONFIG_LEDS_GPIO=m
+CONFIG_LEDS_LP3944=m
+CONFIG_LEDS_LP5521=m
+CONFIG_LEDS_LP5523=m
+CONFIG_LEDS_PWM=m
+CONFIG_LEDS_REGULATOR=m
+CONFIG_LEDS_TRIGGERS=y
+CONFIG_LEDS_TRIGGER_TIMER=m
+CONFIG_LEDS_TRIGGER_HEARTBEAT=m
+CONFIG_LEDS_TRIGGER_BACKLIGHT=m
+CONFIG_LEDS_TRIGGER_GPIO=m
+CONFIG_LEDS_TRIGGER_DEFAULT_ON=m
+CONFIG_RTC_DRV_CMOS=y
+CONFIG_RTC_HCTOSYS=y
+CONFIG_RTC_HCTOSYS_DEVICE="rtc0"
+CONFIG_RTC_INTF_SYSFS=y
+CONFIG_RTC_INTF_PROC=y
+CONFIG_RTC_INTF_DEV=y
+CONFIG_DMADEVICES=y
+CONFIG_DW_DMAC=m
+CONFIG_TIMB_DMA=m
+CONFIG_DMA_ENGINE=y
+CONFIG_NET_DMA=y
+CONFIG_ASYNC_TX_DMA=y
+CONFIG_AUXDISPLAY=y
+CONFIG_UIO=m
+CONFIG_UIO_PDRV=m
+CONFIG_UIO_PDRV_GENIRQ=m
+CONFIG_STAGING=y
+CONFIG_USBIP_CORE=m
+CONFIG_USBIP_VHCI_HCD=m
+CONFIG_USBIP_HOST=m
+CONFIG_W35UND=m
+CONFIG_PRISM2_USB=m
+CONFIG_ECHO=m
+CONFIG_ASUS_OLED=m
+CONFIG_PANEL=m
+CONFIG_PANEL_PARPORT=0
+CONFIG_PANEL_PROFILE=5
+CONFIG_RTLLIB=m
+CONFIG_RTLLIB_CRYPTO_CCMP=m
+CONFIG_RTLLIB_CRYPTO_TKIP=m
+CONFIG_RTLLIB_CRYPTO_WEP=m
+CONFIG_R8712U=m
+CONFIG_RTS5139=m
+CONFIG_TRANZPORT=m
+CONFIG_LINE6_USB=m
+CONFIG_USB_SERIAL_QUATECH2=m
+CONFIG_USB_SERIAL_QUATECH_USB2=m
+CONFIG_IIO=m
+CONFIG_IIO_ST_HWMON=m
+CONFIG_IIO_BUFFER=y
+CONFIG_IIO_SW_RING=m
+CONFIG_IIO_KFIFO_BUF=m
+CONFIG_IIO_TRIGGER=y
+CONFIG_IIO_CONSUMERS_PER_TRIGGER=2
+CONFIG_KXSD9=m
+CONFIG_SCA3000=m
+CONFIG_IIO_PERIODIC_RTC_TRIGGER=m
+CONFIG_IIO_GPIO_TRIGGER=m
+CONFIG_IIO_SYSFS_TRIGGER=m
+CONFIG_IIO_SIMPLE_DUMMY=m
+CONFIG_FB_SM7XX=m
+CONFIG_USB_ENESTORAGE=m
+CONFIG_BCM_WIMAX=m
+CONFIG_FT1000=m
+CONFIG_FT1000_USB=m
+CONFIG_SPEAKUP=m
+CONFIG_SPEAKUP_SYNTH_SPKOUT=m
+CONFIG_SPEAKUP_SYNTH_TXPRT=m
+CONFIG_SPEAKUP_SYNTH_DUMMY=m
+CONFIG_STAGING_MEDIA=y
+CONFIG_DVB_AS102=m
+CONFIG_EASYCAP=m
+CONFIG_LIRC_STAGING=y
+CONFIG_LIRC_IGORPLUGUSB=m
+CONFIG_LIRC_IMON=m
+CONFIG_LIRC_PARALLEL=m
+CONFIG_LIRC_SASEM=m
+CONFIG_LIRC_SERIAL=m
+CONFIG_LIRC_SIR=m
+CONFIG_LIRC_TTUSBIR=m
+CONFIG_LIRC_ZILOG=m
+CONFIG_PHONE=m
+CONFIG_USB_WPAN_HCD=m
+CONFIG_CLKDEV_LOOKUP=y
+CONFIG_IOMMU_SUPPORT=y
+CONFIG_VIRT_DRIVERS=y
+CONFIG_PM_DEVFREQ=y
+CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND=y
+CONFIG_DEVFREQ_GOV_PERFORMANCE=y
+CONFIG_DEVFREQ_GOV_POWERSAVE=y
+CONFIG_DEVFREQ_GOV_USERSPACE=y
+CONFIG_EXT2_FS_XATTR=y
+CONFIG_EXT2_FS_POSIX_ACL=y
+CONFIG_EXT2_FS_SECURITY=y
+CONFIG_EXT3_DEFAULTS_TO_ORDERED=y
+CONFIG_EXT3_FS_XATTR=y
+CONFIG_EXT3_FS_POSIX_ACL=y
+CONFIG_EXT3_FS_SECURITY=y
+CONFIG_EXT4_FS_XATTR=y
+CONFIG_EXT4_FS_POSIX_ACL=y
+CONFIG_EXT4_FS_SECURITY=y
+CONFIG_JBD=y
+CONFIG_JBD2=y
+CONFIG_FS_MBCACHE=y
+CONFIG_REISERFS_FS=m
+CONFIG_REISERFS_FS_XATTR=y
+CONFIG_REISERFS_FS_POSIX_ACL=y
+CONFIG_REISERFS_FS_SECURITY=y
+CONFIG_JFS_FS=m
+CONFIG_JFS_POSIX_ACL=y
+CONFIG_JFS_SECURITY=y
+CONFIG_JFS_STATISTICS=y
+CONFIG_XFS_FS=m
+CONFIG_XFS_QUOTA=y
+CONFIG_XFS_POSIX_ACL=y
+CONFIG_XFS_RT=y
+CONFIG_GFS2_FS=m
+CONFIG_GFS2_FS_LOCKING_DLM=y
+CONFIG_OCFS2_FS=m
+CONFIG_OCFS2_FS_O2CB=m
+CONFIG_OCFS2_FS_USERSPACE_CLUSTER=m
+CONFIG_OCFS2_FS_STATS=y
+CONFIG_OCFS2_DEBUG_MASKLOG=y
+CONFIG_NILFS2_FS=m
+CONFIG_FS_POSIX_ACL=y
+CONFIG_EXPORTFS=y
+CONFIG_FILE_LOCKING=y
+CONFIG_FSNOTIFY=y
+CONFIG_DNOTIFY=y
+CONFIG_INOTIFY_USER=y
+CONFIG_FANOTIFY=y
+CONFIG_FANOTIFY_ACCESS_PERMISSIONS=y
+CONFIG_QUOTA_NETLINK_INTERFACE=y
+CONFIG_PRINT_QUOTA_WARNING=y
+CONFIG_QFMT_V1=m
+CONFIG_QUOTACTL=y
+CONFIG_AUTOFS4_FS=m
+CONFIG_FUSE_FS=y
+CONFIG_CUSE=m
+CONFIG_GENERIC_ACL=y
+CONFIG_FSCACHE=m
+CONFIG_FSCACHE_STATS=y
+CONFIG_FSCACHE_HISTOGRAM=y
+CONFIG_CACHEFILES=m
+CONFIG_ISO9660_FS=m
+CONFIG_JOLIET=y
+CONFIG_ZISOFS=y
+CONFIG_UDF_FS=m
+CONFIG_UDF_NLS=y
+CONFIG_FAT_FS=y
+CONFIG_FAT_DEFAULT_CODEPAGE=437
+CONFIG_FAT_DEFAULT_IOCHARSET="iso8859-1"
+CONFIG_NTFS_FS=m
+CONFIG_PROC_FS=y
+CONFIG_PROC_VMCORE=y
+CONFIG_PROC_SYSCTL=y
+CONFIG_PROC_PAGE_MONITOR=y
+CONFIG_SYSFS=y
+CONFIG_TMPFS_POSIX_ACL=y
+CONFIG_TMPFS_XATTR=y
+CONFIG_CONFIGFS_FS=m
+CONFIG_MISC_FILESYSTEMS=y
+CONFIG_ADFS_FS=m
+CONFIG_AFFS_FS=m
+CONFIG_HFS_FS=m
+CONFIG_HFSPLUS_FS=m
+CONFIG_BEFS_FS=m
+CONFIG_BFS_FS=m
+CONFIG_EFS_FS=m
+CONFIG_JFFS2_FS_DEBUG=0
+CONFIG_JFFS2_FS_WRITEBUFFER=y
+CONFIG_JFFS2_ZLIB=y
+CONFIG_JFFS2_RTIME=y
+CONFIG_JFFS2_CMODE_FAVOURLZO=y
+CONFIG_SQUASHFS=m
+CONFIG_SQUASHFS_XATTR=y
+CONFIG_SQUASHFS_ZLIB=y
+CONFIG_SQUASHFS_LZO=y
+CONFIG_SQUASHFS_XZ=y
+CONFIG_SQUASHFS_FRAGMENT_CACHE_SIZE=3
+CONFIG_VXFS_FS=m
+CONFIG_MINIX_FS=m
+CONFIG_OMFS_FS=m
+CONFIG_HPFS_FS=m
+CONFIG_QNX4FS_FS=m
+CONFIG_QNX6FS_FS=m
+CONFIG_ROMFS_FS=m
+CONFIG_ROMFS_BACKED_BY_BLOCK=y
+CONFIG_ROMFS_ON_BLOCK=y
+CONFIG_PSTORE=y
+CONFIG_SYSV_FS=m
+CONFIG_UFS_FS=m
+CONFIG_NETWORK_FILESYSTEMS=y
+CONFIG_NFS_FS=m
+CONFIG_NFS_V3=y
+CONFIG_NFS_V3_ACL=y
+CONFIG_NFS_V4=y
+CONFIG_NFS_FSCACHE=y
+CONFIG_NFS_USE_KERNEL_DNS=y
+CONFIG_NFSD=m
+CONFIG_NFSD_V2_ACL=y
+CONFIG_NFSD_V3=y
+CONFIG_NFSD_V3_ACL=y
+CONFIG_NFSD_V4=y
+CONFIG_LOCKD=m
+CONFIG_LOCKD_V4=y
+CONFIG_NFS_ACL_SUPPORT=m
+CONFIG_NFS_COMMON=y
+CONFIG_SUNRPC=m
+CONFIG_SUNRPC_GSS=m
+CONFIG_RPCSEC_GSS_KRB5=m
+CONFIG_CEPH_FS=m
+CONFIG_CIFS=m
+CONFIG_CIFS_WEAK_PW_HASH=y
+CONFIG_CIFS_UPCALL=y
+CONFIG_CIFS_XATTR=y
+CONFIG_CIFS_POSIX=y
+CONFIG_CIFS_DFS_UPCALL=y
+CONFIG_NCP_FS=m
+CONFIG_NCPFS_PACKET_SIGNING=y
+CONFIG_NCPFS_IOCTL_LOCKING=y
+CONFIG_NCPFS_STRONG=y
+CONFIG_NCPFS_NFS_NS=y
+CONFIG_NCPFS_OS2_NS=y
+CONFIG_NCPFS_NLS=y
+CONFIG_NCPFS_EXTRAS=y
+# CONFIG_CODA_FS is not set
+CONFIG_AFS_FS=m
+CONFIG_9P_FS=m
+CONFIG_9P_FS_POSIX_ACL=y
+CONFIG_NLS=y
+CONFIG_NLS_DEFAULT="utf8"
+CONFIG_NLS_CODEPAGE_737=m
+CONFIG_NLS_CODEPAGE_775=m
+CONFIG_NLS_CODEPAGE_850=m
+CONFIG_NLS_CODEPAGE_852=m
+CONFIG_NLS_CODEPAGE_855=m
+CONFIG_NLS_CODEPAGE_857=m
+CONFIG_NLS_CODEPAGE_860=m
+CONFIG_NLS_CODEPAGE_861=m
+CONFIG_NLS_CODEPAGE_862=m
+CONFIG_NLS_CODEPAGE_863=m
+CONFIG_NLS_CODEPAGE_864=m
+CONFIG_NLS_CODEPAGE_865=m
+CONFIG_NLS_CODEPAGE_866=m
+CONFIG_NLS_CODEPAGE_869=m
+CONFIG_NLS_CODEPAGE_936=m
+CONFIG_NLS_CODEPAGE_950=m
+CONFIG_NLS_CODEPAGE_932=m
+CONFIG_NLS_CODEPAGE_949=m
+CONFIG_NLS_CODEPAGE_874=m
+CONFIG_NLS_ISO8859_8=m
+CONFIG_NLS_CODEPAGE_1250=m
+CONFIG_NLS_CODEPAGE_1251=m
+CONFIG_NLS_ASCII=m
+CONFIG_NLS_ISO8859_2=m
+CONFIG_NLS_ISO8859_3=m
+CONFIG_NLS_ISO8859_4=m
+CONFIG_NLS_ISO8859_5=m
+CONFIG_NLS_ISO8859_6=m
+CONFIG_NLS_ISO8859_7=m
+CONFIG_NLS_ISO8859_9=m
+CONFIG_NLS_ISO8859_13=m
+CONFIG_NLS_ISO8859_14=m
+CONFIG_NLS_ISO8859_15=m
+CONFIG_NLS_KOI8_R=m
+CONFIG_NLS_KOI8_U=m
+CONFIG_NLS_UTF8=m
+CONFIG_DLM=m
+CONFIG_DEFAULT_MESSAGE_LOGLEVEL=4
+CONFIG_FRAME_WARN=1024
+CONFIG_UNUSED_SYMBOLS=y
+CONFIG_DEBUG_FS=y
+CONFIG_DEBUG_KERNEL=y
+CONFIG_LOCKUP_DETECTOR=y
+CONFIG_BOOTPARAM_HARDLOCKUP_PANIC_VALUE=0
+CONFIG_BOOTPARAM_SOFTLOCKUP_PANIC_VALUE=0
+CONFIG_DETECT_HUNG_TASK=y
+CONFIG_DEFAULT_HUNG_TASK_TIMEOUT=120
+CONFIG_BOOTPARAM_HUNG_TASK_PANIC_VALUE=0
+CONFIG_SCHED_DEBUG=y
+CONFIG_STACKTRACE=y
+CONFIG_DEBUG_BUGVERBOSE=y
+CONFIG_DEBUG_MEMORY_INIT=y
+CONFIG_BOOT_PRINTK_DELAY=y
+CONFIG_NOP_TRACER=y
+CONFIG_RING_BUFFER=y
+CONFIG_EVENT_TRACING=y
+CONFIG_EVENT_POWER_TRACING_DEPRECATED=y
+CONFIG_CONTEXT_SWITCH_TRACER=y
+CONFIG_TRACING=y
+CONFIG_TRACING_SUPPORT=y
+CONFIG_FTRACE=y
+CONFIG_BRANCH_PROFILE_NONE=y
+CONFIG_KPROBE_EVENT=y
+CONFIG_ASYNC_RAID6_TEST=m
+CONFIG_KGDB=y
+CONFIG_KGDB_SERIAL_CONSOLE=y
+CONFIG_KGDB_KDB=y
+CONFIG_KDB_KEYBOARD=y
+CONFIG_TEST_KSTRTOX=m
+CONFIG_STRICT_DEVMEM=y
+CONFIG_DEBUG_USER=y
+CONFIG_DEBUG_LL=y
+CONFIG_DEBUG_LL_UART_NONE=y
+CONFIG_EARLY_PRINTK=y
+CONFIG_ENCRYPTED_KEYS=y
+CONFIG_SECURITY=y
+CONFIG_SECURITYFS=y
+CONFIG_SECURITY_NETWORK=y
+CONFIG_SECURITY_PATH=y
+CONFIG_LSM_MMAP_MIN_ADDR=0
+CONFIG_SECURITY_SELINUX=y
+CONFIG_SECURITY_SELINUX_BOOTPARAM=y
+CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE=0
+CONFIG_SECURITY_SELINUX_DISABLE=y
+CONFIG_SECURITY_SELINUX_DEVELOP=y
+CONFIG_SECURITY_SELINUX_AVC_STATS=y
+CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE=1
+CONFIG_SECURITY_SMACK=y
+CONFIG_SECURITY_TOMOYO=y
+CONFIG_SECURITY_TOMOYO_MAX_ACCEPT_ENTRY=2048
+CONFIG_SECURITY_TOMOYO_MAX_AUDIT_LOG=1024
+CONFIG_SECURITY_TOMOYO_POLICY_LOADER="/sbin/tomoyo-init"
+CONFIG_SECURITY_TOMOYO_ACTIVATION_TRIGGER="/sbin/init"
+CONFIG_SECURITY_APPARMOR=y
+CONFIG_SECURITY_APPARMOR_BOOTPARAM_VALUE=1
+CONFIG_SECURITY_YAMA=y
+CONFIG_INTEGRITY=y
+CONFIG_INTEGRITY_SIGNATURE=y
+CONFIG_EVM=y
+CONFIG_DEFAULT_SECURITY_APPARMOR=y
+CONFIG_DEFAULT_SECURITY="apparmor"
+CONFIG_XOR_BLOCKS=m
+CONFIG_ASYNC_CORE=m
+CONFIG_ASYNC_MEMCPY=m
+CONFIG_ASYNC_XOR=m
+CONFIG_ASYNC_PQ=m
+CONFIG_ASYNC_RAID6_RECOV=m
+CONFIG_CRYPTO=y
+CONFIG_CRYPTO_ALGAPI=y
+CONFIG_CRYPTO_ALGAPI2=y
+CONFIG_CRYPTO_AEAD=m
+CONFIG_CRYPTO_AEAD2=y
+CONFIG_CRYPTO_BLKCIPHER=y
+CONFIG_CRYPTO_BLKCIPHER2=y
+CONFIG_CRYPTO_HASH=y
+CONFIG_CRYPTO_HASH2=y
+CONFIG_CRYPTO_RNG=y
+CONFIG_CRYPTO_RNG2=y
+CONFIG_CRYPTO_PCOMP=m
+CONFIG_CRYPTO_PCOMP2=y
+CONFIG_CRYPTO_MANAGER=y
+CONFIG_CRYPTO_MANAGER2=y
+CONFIG_CRYPTO_USER=m
+CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=y
+CONFIG_CRYPTO_GF128MUL=m
+CONFIG_CRYPTO_NULL=m
+CONFIG_CRYPTO_WORKQUEUE=y
+CONFIG_CRYPTO_CRYPTD=m
+CONFIG_CRYPTO_AUTHENC=m
+CONFIG_CRYPTO_TEST=m
+CONFIG_CRYPTO_CCM=m
+CONFIG_CRYPTO_GCM=m
+CONFIG_CRYPTO_SEQIV=m
+CONFIG_CRYPTO_CBC=y
+CONFIG_CRYPTO_CTR=m
+CONFIG_CRYPTO_CTS=m
+CONFIG_CRYPTO_ECB=y
+CONFIG_CRYPTO_LRW=m
+CONFIG_CRYPTO_PCBC=m
+CONFIG_CRYPTO_XTS=m
+CONFIG_CRYPTO_HMAC=y
+CONFIG_CRYPTO_XCBC=m
+CONFIG_CRYPTO_VMAC=m
+CONFIG_CRYPTO_CRC32C=y
+CONFIG_CRYPTO_GHASH=m
+CONFIG_CRYPTO_MD4=m
+CONFIG_CRYPTO_MD5=y
+CONFIG_CRYPTO_RMD128=m
+CONFIG_CRYPTO_RMD160=m
+CONFIG_CRYPTO_RMD256=m
+CONFIG_CRYPTO_RMD320=m
+CONFIG_CRYPTO_SHA1=y
+CONFIG_CRYPTO_SHA256=y
+CONFIG_CRYPTO_SHA512=m
+CONFIG_CRYPTO_TGR192=m
+CONFIG_CRYPTO_WP512=m
+CONFIG_CRYPTO_AES=y
+CONFIG_CRYPTO_ANUBIS=m
+CONFIG_CRYPTO_BLOWFISH=m
+CONFIG_CRYPTO_BLOWFISH_COMMON=m
+CONFIG_CRYPTO_CAMELLIA=m
+CONFIG_CRYPTO_CAST5=m
+CONFIG_CRYPTO_CAST6=m
+CONFIG_CRYPTO_DES=m
+CONFIG_CRYPTO_FCRYPT=m
+CONFIG_CRYPTO_KHAZAD=m
+CONFIG_CRYPTO_SALSA20=m
+CONFIG_CRYPTO_SEED=m
+CONFIG_CRYPTO_SERPENT=m
+CONFIG_CRYPTO_TEA=m
+CONFIG_CRYPTO_TWOFISH=m
+CONFIG_CRYPTO_TWOFISH_COMMON=m
+CONFIG_CRYPTO_DEFLATE=m
+CONFIG_CRYPTO_ZLIB=m
+CONFIG_CRYPTO_LZO=m
+CONFIG_CRYPTO_ANSI_CPRNG=m
+CONFIG_CRYPTO_USER_API=m
+CONFIG_CRYPTO_USER_API_HASH=m
+CONFIG_CRYPTO_USER_API_SKCIPHER=m
+CONFIG_CRYPTO_HW=y
+CONFIG_BINARY_PRINTF=y
+CONFIG_RAID6_PQ=m
+CONFIG_BITREVERSE=y
+CONFIG_GENERIC_IO=y
+CONFIG_CRC16=y
+CONFIG_CRC32=y
+CONFIG_CRC32_SLICEBY8=y
+CONFIG_CRC8=m
+CONFIG_AUDIT_GENERIC=y
+CONFIG_ZLIB_INFLATE=y
+CONFIG_LZO_COMPRESS=y
+CONFIG_LZO_DECOMPRESS=y
+CONFIG_XZ_DEC=y
+CONFIG_XZ_DEC_X86=y
+CONFIG_XZ_DEC_POWERPC=y
+CONFIG_XZ_DEC_IA64=y
+CONFIG_XZ_DEC_ARM=y
+CONFIG_XZ_DEC_ARMTHUMB=y
+CONFIG_XZ_DEC_SPARC=y
+CONFIG_XZ_DEC_BCJ=y
+CONFIG_XZ_DEC_TEST=m
+CONFIG_DECOMPRESS_GZIP=y
+CONFIG_DECOMPRESS_BZIP2=y
+CONFIG_DECOMPRESS_LZMA=y
+CONFIG_DECOMPRESS_XZ=y
+CONFIG_DECOMPRESS_LZO=y
+CONFIG_REED_SOLOMON=y
+CONFIG_REED_SOLOMON_ENC8=y
+CONFIG_REED_SOLOMON_DEC8=y
+CONFIG_REED_SOLOMON_DEC16=y
+CONFIG_BCH=y
+CONFIG_BCH_CONST_PARAMS=y
+CONFIG_TEXTSEARCH=y
+CONFIG_TEXTSEARCH_KMP=m
+CONFIG_TEXTSEARCH_BM=m
+CONFIG_TEXTSEARCH_FSM=m
+CONFIG_HAS_IOMEM=y
+CONFIG_HAS_IOPORT=y
+CONFIG_HAS_DMA=y
+CONFIG_DQL=y
+CONFIG_NLATTR=y
+CONFIG_LRU_CACHE=m
+CONFIG_AVERAGE=y
+CONFIG_CLZ_TAB=y
+CONFIG_CORDIC=m
+CONFIG_MPILIB=y
+CONFIG_SIGNATURE=y