aboutsummaryrefslogtreecommitdiff
path: root/arch/arm/kernel/asm-offsets.c
AgeCommit message (Collapse)Author
2013-05-05Merge tag 'kvm-3.10-1' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull kvm updates from Gleb Natapov: "Highlights of the updates are: general: - new emulated device API - legacy device assignment is now optional - irqfd interface is more generic and can be shared between arches x86: - VMCS shadow support and other nested VMX improvements - APIC virtualization and Posted Interrupt hardware support - Optimize mmio spte zapping ppc: - BookE: in-kernel MPIC emulation with irqfd support - Book3S: in-kernel XICS emulation (incomplete) - Book3S: HV: migration fixes - BookE: more debug support preparation - BookE: e6500 support ARM: - reworking of Hyp idmaps s390: - ioeventfd for virtio-ccw And many other bug fixes, cleanups and improvements" * tag 'kvm-3.10-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits) kvm: Add compat_ioctl for device control API KVM: x86: Account for failing enable_irq_window for NMI window request KVM: PPC: Book3S: Add API for in-kernel XICS emulation kvm/ppc/mpic: fix missing unlock in set_base_addr() kvm/ppc: Hold srcu lock when calling kvm_io_bus_read/write kvm/ppc/mpic: remove users kvm/ppc/mpic: fix mmio region lists when multiple guests used kvm/ppc/mpic: remove default routes from documentation kvm: KVM_CAP_IOMMU only available with device assignment ARM: KVM: iterate over all CPUs for CPU compatibility check KVM: ARM: Fix spelling in error message ARM: KVM: define KVM_ARM_MAX_VCPUS unconditionally KVM: ARM: Fix API documentation for ONE_REG encoding ARM: KVM: promote vfp_host pointer to generic host cpu context ARM: KVM: add architecture specific hook for capabilities ARM: KVM: perform HYP initilization for hotplugged CPUs ARM: KVM: switch to a dual-step HYP init code ARM: KVM: rework HYP page table freeing ARM: KVM: enforce maximum size for identity mapped code ARM: KVM: move to a KVM provided HYP idmap ...
2013-04-28ARM: KVM: promote vfp_host pointer to generic host cpu contextMarc Zyngier
We use the vfp_host pointer to store the host VFP context, should the guest start using VFP itself. Actually, we can use this pointer in a more generic way to store CPU speficic data, and arm64 is using it to dump the whole host state before switching to the guest. Simply rename the vfp_host field to host_cpu_context, and the corresponding type to kvm_cpu_context_t. No change in functionnality. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
2013-04-25Merge branch 'kvm-arm-cleanup' from git://github.com/columbia/linux-kvm-arm.gitGleb Natapov
2013-04-25Merge branch 'mcpm' of git://git.linaro.org/people/nico/linux into devel-stableRussell King
2013-04-24ARM: mcpm_head.S: vlock-based first man electionDave Martin
Instead of requiring the first man to be elected in advance (which can be suboptimal in some situations), this patch uses a per- cluster mutex to co-ordinate selection of the first man. This should also make it more feasible to reuse this code path for asynchronous cluster resume (as in CPUidle scenarios). We must ensure that the vlock data doesn't share a cacheline with anything else, or dirty cache eviction could corrupt it. Signed-off-by: Dave Martin <dave.martin@linaro.org> Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org> Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Reviewed-by: Will Deacon <will.deacon@arm.com>
2013-04-24ARM: mcpm: introduce helpers for platform coherency exit/setupDave Martin
This provides helper methods to coordinate between CPUs coming down and CPUs going up, as well as documentation on the used algorithms, so that cluster teardown and setup operations are not done for a cluster simultaneously. For use in the power_down() implementation: * __mcpm_cpu_going_down(unsigned int cluster, unsigned int cpu) * __mcpm_outbound_enter_critical(unsigned int cluster) * __mcpm_outbound_leave_critical(unsigned int cluster) * __mcpm_cpu_down(unsigned int cluster, unsigned int cpu) The power_up_setup() helper should do platform-specific setup in preparation for turning the CPU on, such as invalidating local caches or entering coherency. It must be assembler for now, since it must run before the MMU can be switched on. It is passed the affinity level for which initialization should be performed. Because the mcpm_sync_struct content is looked-up and modified with the cache enabled or disabled depending on the code path, it is crucial to always ensure proper cache maintenance to update main memory right away. The sync_cache_*() helpers are used to that end. Also, in order to prevent a cached writer from interfering with an adjacent non-cached writer, we ensure each state variable is located to a separate cache line. Thanks to Nicolas Pitre and Achin Gupta for the help with this patch. Signed-off-by: Dave Martin <dave.martin@linaro.org> Signed-off-by: Nicolas Pitre <nico@linaro.org> Reviewed-by: Will Deacon <will.deacon@arm.com>
2013-03-06ARM: KVM: abstract fault register accessesMarc Zyngier
Instead of directly accessing the fault registers, use proper accessors so the core code can be shared. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2013-03-03ARM: 7659/1: mm: make mm->context.id an atomic64_t variableWill Deacon
mm->context.id is updated under asid_lock when a new ASID is allocated to an mm_struct. However, it is also read without the lock when a task is being scheduled and checking whether or not the current ASID generation is up-to-date. If two threads of the same process are being scheduled in parallel and the bottom bits of the generation in their mm->context.id match the current generation (that is, the mm_struct has not been used for ~2^24 rollovers) then the non-atomic, lockless access to mm->context.id may yield the incorrect ASID. This patch fixes this issue by making mm->context.id and atomic64_t, ensuring that the generation is always read consistently. For code that only requires access to the ASID bits (e.g. TLB flushing by mm), then the value is accessed directly, which GCC converts to an ldrb. Cc: <stable@vger.kernel.org> # 3.8 Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2013-02-11ARM: KVM: arch_timers: Add timer world switchMarc Zyngier
Do the necessary save/restore dance for the timers in the world switch code. In the process, allow the guest to read the physical counter, which is useful for its own clock_event_device. Reviewed-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2013-02-11ARM: KVM: VGIC control interface world switchMarc Zyngier
Enable the VGIC control interface to be save-restored on world switch. Reviewed-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2013-01-23KVM: ARM: World-switch implementationChristoffer Dall
Provides complete world-switch implementation to switch to other guests running in non-secure modes. Includes Hyp exception handlers that capture necessary exception information and stores the information on the VCPU and KVM structures. The following Hyp-ABI is also documented in the code: Hyp-ABI: Calling HYP-mode functions from host (in SVC mode): Switching to Hyp mode is done through a simple HVC #0 instruction. The exception vector code will check that the HVC comes from VMID==0 and if so will push the necessary state (SPSR, lr_usr) on the Hyp stack. - r0 contains a pointer to a HYP function - r1, r2, and r3 contain arguments to the above function. - The HYP function will be called with its arguments in r0, r1 and r2. On HYP function return, we return directly to SVC. A call to a function executing in Hyp mode is performed like the following: <svc code> ldr r0, =BSYM(my_hyp_fn) ldr r1, =my_param hvc #0 ; Call my_hyp_fn(my_param) from HYP mode <svc code> Otherwise, the world-switch is pretty straight-forward. All state that can be modified by the guest is first backed up on the Hyp stack and the VCPU values is loaded onto the hardware. State, which is not loaded, but theoretically modifiable by the guest is protected through the virtualiation features to generate a trap and cause software emulation. Upon guest returns, all state is restored from hardware onto the VCPU struct and the original state is restored from the Hyp-stack onto the hardware. SMP support using the VMPIDR calculated on the basis of the host MPIDR and overriding the low bits with KVM vcpu_id contributed by Marc Zyngier. Reuse of VMIDs has been implemented by Antonios Motakis and adapated from a separate patch into the appropriate patches introducing the functionality. Note that the VMIDs are stored per VM as required by the ARM architecture reference manual. To support VFP/NEON we trap those instructions using the HPCTR. When we trap, we switch the FPU. After a guest exit, the VFP state is returned to the host. When disabling access to floating point instructions, we also mask FPEXC_EN in order to avoid the guest receiving Undefined instruction exceptions before we have a chance to switch back the floating point state. We are reusing vfp_hard_struct, so we depend on VFPv3 being enabled in the host kernel, if not, we still trap cp10 and cp11 in order to inject an undefined instruction exception whenever the guest tries to use VFP/NEON. VFP/NEON developed by Antionios Motakis and Rusty Russell. Aborts that are permission faults, and not stage-1 page table walk, do not report the faulting address in the HPFAR. We have to resolve the IPA, and store it just like the HPFAR register on the VCPU struct. If the IPA cannot be resolved, it means another CPU is playing with the page tables, and we simply restart the guest. This quirk was fixed by Marc Zyngier. Reviewed-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Antonios Motakis <a.motakis@virtualopensystems.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <c.dall@virtualopensystems.com>
2012-08-29ARM: Don't unconditionally bloat thread_infoRussell King
There is no point reserving space at the bottom of the kernel stack for per-thread crunch state, and per-thread VFP state if these are not being supported by the kernel being built. Remove these members from the thread union when these features are disabled. Reported-by: Tim Bird <tim.bird@am.sony.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2011-10-17ARM: 7114/1: cache-l2x0: add resume entry for l2 in secure modeBarry Song
we save the l2x0 registers at the first initialization, and platform codes can get them to restore l2x0 status after wakeup. Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Barry Song <Baohua.Song@csr.com> Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Tested-by: Shawn Guo <shawn.guo@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2011-07-09ARM: vfp: fix a hole in VFP thread migrationRussell King
Fix a hole in the VFP thread migration. Lets define two threads. Thread 1, we'll call 'interesting_thread' which is a thread which is running on CPU0, using VFP (so vfp_current_hw_state[0] = &interesting_thread->vfpstate) and gets migrated off to CPU1, where it continues execution of VFP instructions. Thread 2, we'll call 'new_cpu0_thread' which is the thread which takes over on CPU0. This has also been using VFP, and last used VFP on CPU0, but doesn't use it again. The following code will be executed twice: cpu = thread->cpu; /* * On SMP, if VFP is enabled, save the old state in * case the thread migrates to a different CPU. The * restoring is done lazily. */ if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu]) { vfp_save_state(vfp_current_hw_state[cpu], fpexc); vfp_current_hw_state[cpu]->hard.cpu = cpu; } /* * Thread migration, just force the reloading of the * state on the new CPU in case the VFP registers * contain stale data. */ if (thread->vfpstate.hard.cpu != cpu) vfp_current_hw_state[cpu] = NULL; The first execution will be on CPU0 to switch away from 'interesting_thread'. interesting_thread->cpu will be 0. So, vfp_current_hw_state[0] points at interesting_thread->vfpstate. The hardware state will be saved, along with the CPU number (0) that it was executing on. 'thread' will be 'new_cpu0_thread' with new_cpu0_thread->cpu = 0. Also, because it was executing on CPU0, new_cpu0_thread->vfpstate.hard.cpu = 0, and so the thread migration check is not triggered. This means that vfp_current_hw_state[0] remains pointing at interesting_thread. The second execution will be on CPU1 to switch _to_ 'interesting_thread'. So, 'thread' will be 'interesting_thread' and interesting_thread->cpu now will be 1. The previous thread executing on CPU1 is not relevant to this so we shall ignore that. We get to the thread migration check. Here, we discover that interesting_thread->vfpstate.hard.cpu = 0, yet interesting_thread->cpu is now 1, indicating thread migration. We set vfp_current_hw_state[1] to NULL. So, at this point vfp_current_hw_state[] contains the following: [0] = &interesting_thread->vfpstate [1] = NULL Our interesting thread now executes a VFP instruction, takes a fault which loads the state into the VFP hardware. Now, through the assembly we now have: [0] = &interesting_thread->vfpstate [1] = &interesting_thread->vfpstate CPU1 stops due to ptrace (and so saves its VFP state) using the thread switch code above), and CPU0 calls vfp_sync_hwstate(). if (vfp_current_hw_state[cpu] == &thread->vfpstate) { vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN); BANG, we corrupt interesting_thread's VFP state by overwriting the more up-to-date state saved by CPU1 with the old VFP state from CPU0. Fix this by ensuring that we have sane semantics for the various state describing variables: 1. vfp_current_hw_state[] points to the current owner of the context information stored in each CPUs hardware, or NULL if that state information is invalid. 2. thread->vfpstate.hard.cpu always contains the most recent CPU number which the state was loaded into or NR_CPUS if no CPU owns the state. So, for a particular CPU to be a valid owner of the VFP state for a particular thread t, two things must be true: vfp_current_hw_state[cpu] == &t->vfpstate && t->vfpstate.hard.cpu == cpu. and that is valid from the moment a CPU loads the saved VFP context into the hardware. This gives clear and consistent semantics to interpreting these variables. This patch also fixes thread copying, ensuring that t->vfpstate.hard.cpu is invalidated, otherwise CPU0 may believe it was the last owner. The hole can happen thus: - thread1 runs on CPU2 using VFP, migrates to CPU3, exits and thread_info freed. - New thread allocated from a previously running thread on CPU2, reusing memory for thread1 and copying vfp.hard.cpu. At this point, the following are true: new_thread1->vfpstate.hard.cpu == 2 &new_thread1->vfpstate == vfp_current_hw_state[2] Lastly, this also addresses thread flushing in a similar way to thread copying. Hole is: - thread runs on CPU0, using VFP, migrates to CPU1 but does not use VFP. - thread calls execve(), so thread flush happens, leaving vfp_current_hw_state[0] intact. This vfpstate is memset to 0 causing thread->vfpstate.hard.cpu = 0. - thread migrates back to CPU0 before using VFP. At this point, the following are true: thread->vfpstate.hard.cpu == 0 &thread->vfpstate == vfp_current_hw_state[0] Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2011-02-22ARM: pm: add generic CPU suspend/resume supportRussell King
This adds core support for saving and restoring CPU coprocessor registers for suspend/resume support. This contains support for suspend with ARM920, ARM926, SA11x0, PXA25x, PXA27x, PXA3xx, V6 and V7 CPUs. Tested on Assabet and Tegra 2. Tested-by: Colin Cross <ccross@android.com> Tested-by: Kukjin Kim <kgene.kim@samsung.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2011-02-12ARM: move cache/processor/fault glue to separate include filesRussell King
This allows the cache/processor/fault glue to be more easily used from assembler code. Tested on Assabet and Tegra 2. Tested-by: Colin Cross <ccross@android.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2010-10-20arm: remove machine_desc.io_pg_offst and .phys_ioNicolas Pitre
Since we're now using addruart to establish the debug mapping, we can remove the io_pg_offst and phys_io members of struct machine_desc. The various declarations were removed using the following script: grep -rl MACHINE_START arch/arm | xargs \ sed -i '/MACHINE_START/,/MACHINE_END/ { /\.\(phys_io\|io_pg_offst\)/d }' [ Initial patch was from Jeremy Kerr, example script from Russell King ] Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org> Acked-by: Eric Miao <eric.miao at canonical.com>
2010-06-14ARM: stack protector: change the canary value per taskNicolas Pitre
A new random value for the canary is stored in the task struct whenever a new task is forked. This is meant to allow for different canary values per task. On ARM, GCC expects the canary value to be found in a global variable called __stack_chk_guard. So this variable has to be updated with the value stored in the task struct whenever a task switch occurs. Because the variable GCC expects is global, this cannot work on SMP unfortunately. So, on SMP, the same initial canary value is kept throughout, making this feature a bit less effective although it is still useful. One way to overcome this GCC limitation would be to locate the __stack_chk_guard variable into a memory page of its own for each CPU, and then use TLB locking to have each CPU see its own page at the same virtual address for each of them. Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
2010-02-15ARM: dma-mapping: provide per-cpu type map/unmap functionsRussell King
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
2008-04-29arm: use kbuild.h instead of macros in asm-offsets.cChristoph Lameter
Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-18Add a prefetch abort handlerPaul Brook
This patch adds a prefetch abort handler similar to the data abort one and renames the latter for consistency. Initial implementation by Paul Brook with some renaming by Catalin Marinas. Signed-off-by: Paul Brook <paul@codesourcery.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2008-04-18ARMv7: Add support for the ThumbEE state saving/restoringCatalin Marinas
This patch adds the detection and handling of the ThumbEE extension on ARMv7 CPUs. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2007-05-17[ARM] ARMv6: add CPU_HAS_ASID configurationRussell King
Presently, we check for the minimum ARM architecture that we're building for to determine whether we need ASID support. This is wrong - if we're going to support a range of CPUs which include ARMv6 or higher, we need the ASID. Convert the checks to use a new configuration symbol, and arrange for ARMv6 and higher CPU entries to select it. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-11-30[ARM] Include asm/elf.h instead of asm/procinfo.hRussell King
These files want to provide/access ELF hwcap information, so should be including asm/elf.h rather than asm/procinfo.h Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-06-29[ARM] Set bit 4 on section mappings correctly depending on CPURussell King
On some CPUs, bit 4 of section mappings means "update the cache when written to". On others, this bit is required to be one, and others it's required to be zero. Finally, on ARMv6 and above, setting it turns on "no execute" and prevents speculative prefetches. With all these combinations, no one value fits all CPUs, so we have to pick a value depending on the CPU type, and the area we're mapping. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-06-28[ARM] 3370/2: ep93xx: add crunch supportLennert Buytenhek
Patch from Lennert Buytenhek Add the necessary kernel bits for crunch task switching. Signed-off-by: Lennert Buytenhek <buytenh@wantstofly.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-05-16[ARM] 3517/1: move definition of PROC_INFO_SZ from procinfo.h to asm-offsets.hUwe Zeisberger
Patch from Uwe Zeisberger The symbol is only used in arch/arm/kernel/head-common.S. This in turn is included from arch/arm/kernel/head.S and arch/arm/kernel/head-nommu.S which include asm-offsets.h . Signed-off-by: Uwe Zeisberger <Uwe_Zeisberger@digi.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-05-05[ARM] 3496/1: more constants for asm-offsets.hUwe Zeisberger
Patch from Uwe Zeisberger added the following constants: - MACHINFO_TYPE - MACHINFO_NAME - MACHINFO_PHYSIO - MACHINFO_PGOFFIO - PROCINFO_INITFUNC - PROCINFO_MMUFLAGS and removed their definition from head.S and head-nommu.S Signed-off-by: Uwe Zeisberger <Uwe_Zeisberger@digi.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-03-12[ARM] iwmmxt thread state alignmentRussell King
This patch removes the reliance of iwmmxt on hand coded alignments. Since thread_info is always 8K aligned, specifying that fpstate is 8-byte aligned achieves the same effect without needing to resort to hand coded alignments. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2006-01-08[PATCH] remove gcc-2 checksAndrew Morton
Remove various things which were checking for gcc-1.x and gcc-2.x compilers. From: Adrian Bunk <bunk@stusta.de> Some documentation updates and removes some code paths for gcc < 3.2. Acked-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Adrian Bunk <bunk@stusta.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29[ARM] 3060/1: allow constants found in asm/memory.h to be used in asm codeNicolas Pitre
Patch from Nicolas Pitre This patch allows for assorted type of cleanups by letting assembly code use the same set of defines for constant values and avoid duplicated definitions that might not always be in sync, or that might simply be confusing due to the different names for the same thing. Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2005-04-26[PATCH] ARM: pt_regs offsetsRussell King
Generate pt_regs S_xx offsets from the structure itself instead of #defining them. Signed-off-by: Russell King <rmk@arm.linux.org.uk>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!