From 2e04ef76916d1e29a077ea9d0f2003c8fd86724d Mon Sep 17 00:00:00 2001 From: Rusty Russell Date: Thu, 30 Jul 2009 16:03:45 -0600 Subject: lguest: fix comment style I don't really notice it (except to begrudge the extra vertical space), but Ingo does. And he pointed out that one excuse of lguest is as a teaching tool, it should set a good example. Signed-off-by: Rusty Russell Cc: Ingo Molnar --- drivers/lguest/core.c | 114 +++++++++++++++++++++++++++++++++----------------- 1 file changed, 75 insertions(+), 39 deletions(-) (limited to 'drivers/lguest/core.c') diff --git a/drivers/lguest/core.c b/drivers/lguest/core.c index a6974e9b8eb..cd058bc903f 100644 --- a/drivers/lguest/core.c +++ b/drivers/lguest/core.c @@ -1,6 +1,8 @@ -/*P:400 This contains run_guest() which actually calls into the Host<->Guest +/*P:400 + * This contains run_guest() which actually calls into the Host<->Guest * Switcher and analyzes the return, such as determining if the Guest wants the - * Host to do something. This file also contains useful helper routines. :*/ + * Host to do something. This file also contains useful helper routines. +:*/ #include #include #include @@ -24,7 +26,8 @@ static struct page **switcher_page; /* This One Big lock protects all inter-guest data structures. */ DEFINE_MUTEX(lguest_lock); -/*H:010 We need to set up the Switcher at a high virtual address. Remember the +/*H:010 + * We need to set up the Switcher at a high virtual address. Remember the * Switcher is a few hundred bytes of assembler code which actually changes the * CPU to run the Guest, and then changes back to the Host when a trap or * interrupt happens. @@ -33,7 +36,8 @@ DEFINE_MUTEX(lguest_lock); * Host since it will be running as the switchover occurs. * * Trying to map memory at a particular address is an unusual thing to do, so - * it's not a simple one-liner. */ + * it's not a simple one-liner. + */ static __init int map_switcher(void) { int i, err; @@ -47,8 +51,10 @@ static __init int map_switcher(void) * easy. */ - /* We allocate an array of struct page pointers. map_vm_area() wants - * this, rather than just an array of pages. */ + /* + * We allocate an array of struct page pointers. map_vm_area() wants + * this, rather than just an array of pages. + */ switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES, GFP_KERNEL); if (!switcher_page) { @@ -56,8 +62,10 @@ static __init int map_switcher(void) goto out; } - /* Now we actually allocate the pages. The Guest will see these pages, - * so we make sure they're zeroed. */ + /* + * Now we actually allocate the pages. The Guest will see these pages, + * so we make sure they're zeroed. + */ for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) { unsigned long addr = get_zeroed_page(GFP_KERNEL); if (!addr) { @@ -67,19 +75,23 @@ static __init int map_switcher(void) switcher_page[i] = virt_to_page(addr); } - /* First we check that the Switcher won't overlap the fixmap area at + /* + * First we check that the Switcher won't overlap the fixmap area at * the top of memory. It's currently nowhere near, but it could have - * very strange effects if it ever happened. */ + * very strange effects if it ever happened. + */ if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){ err = -ENOMEM; printk("lguest: mapping switcher would thwack fixmap\n"); goto free_pages; } - /* Now we reserve the "virtual memory area" we want: 0xFFC00000 + /* + * Now we reserve the "virtual memory area" we want: 0xFFC00000 * (SWITCHER_ADDR). We might not get it in theory, but in practice * it's worked so far. The end address needs +1 because __get_vm_area - * allocates an extra guard page, so we need space for that. */ + * allocates an extra guard page, so we need space for that. + */ switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE, VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE); @@ -89,11 +101,13 @@ static __init int map_switcher(void) goto free_pages; } - /* This code actually sets up the pages we've allocated to appear at + /* + * This code actually sets up the pages we've allocated to appear at * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the * kind of pages we're mapping (kernel pages), and a pointer to our * array of struct pages. It increments that pointer, but we don't - * care. */ + * care. + */ pagep = switcher_page; err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep); if (err) { @@ -101,8 +115,10 @@ static __init int map_switcher(void) goto free_vma; } - /* Now the Switcher is mapped at the right address, we can't fail! - * Copy in the compiled-in Switcher code (from _switcher.S). */ + /* + * Now the Switcher is mapped at the right address, we can't fail! + * Copy in the compiled-in Switcher code (from _switcher.S). + */ memcpy(switcher_vma->addr, start_switcher_text, end_switcher_text - start_switcher_text); @@ -124,8 +140,7 @@ out: } /*:*/ -/* Cleaning up the mapping when the module is unloaded is almost... - * too easy. */ +/* Cleaning up the mapping when the module is unloaded is almost... too easy. */ static void unmap_switcher(void) { unsigned int i; @@ -151,16 +166,19 @@ static void unmap_switcher(void) * But we can't trust the Guest: it might be trying to access the Launcher * code. We have to check that the range is below the pfn_limit the Launcher * gave us. We have to make sure that addr + len doesn't give us a false - * positive by overflowing, too. */ + * positive by overflowing, too. + */ bool lguest_address_ok(const struct lguest *lg, unsigned long addr, unsigned long len) { return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr); } -/* This routine copies memory from the Guest. Here we can see how useful the +/* + * This routine copies memory from the Guest. Here we can see how useful the * kill_lguest() routine we met in the Launcher can be: we return a random - * value (all zeroes) instead of needing to return an error. */ + * value (all zeroes) instead of needing to return an error. + */ void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes) { if (!lguest_address_ok(cpu->lg, addr, bytes) @@ -181,9 +199,11 @@ void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b, } /*:*/ -/*H:030 Let's jump straight to the the main loop which runs the Guest. +/*H:030 + * Let's jump straight to the the main loop which runs the Guest. * Remember, this is called by the Launcher reading /dev/lguest, and we keep - * going around and around until something interesting happens. */ + * going around and around until something interesting happens. + */ int run_guest(struct lg_cpu *cpu, unsigned long __user *user) { /* We stop running once the Guest is dead. */ @@ -195,8 +215,10 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user) if (cpu->hcall) do_hypercalls(cpu); - /* It's possible the Guest did a NOTIFY hypercall to the - * Launcher, in which case we return from the read() now. */ + /* + * It's possible the Guest did a NOTIFY hypercall to the + * Launcher, in which case we return from the read() now. + */ if (cpu->pending_notify) { if (!send_notify_to_eventfd(cpu)) { if (put_user(cpu->pending_notify, user)) @@ -209,29 +231,39 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user) if (signal_pending(current)) return -ERESTARTSYS; - /* Check if there are any interrupts which can be delivered now: + /* + * Check if there are any interrupts which can be delivered now: * if so, this sets up the hander to be executed when we next - * run the Guest. */ + * run the Guest. + */ irq = interrupt_pending(cpu, &more); if (irq < LGUEST_IRQS) try_deliver_interrupt(cpu, irq, more); - /* All long-lived kernel loops need to check with this horrible + /* + * All long-lived kernel loops need to check with this horrible * thing called the freezer. If the Host is trying to suspend, - * it stops us. */ + * it stops us. + */ try_to_freeze(); - /* Just make absolutely sure the Guest is still alive. One of - * those hypercalls could have been fatal, for example. */ + /* + * Just make absolutely sure the Guest is still alive. One of + * those hypercalls could have been fatal, for example. + */ if (cpu->lg->dead) break; - /* If the Guest asked to be stopped, we sleep. The Guest's - * clock timer will wake us. */ + /* + * If the Guest asked to be stopped, we sleep. The Guest's + * clock timer will wake us. + */ if (cpu->halted) { set_current_state(TASK_INTERRUPTIBLE); - /* Just before we sleep, make sure no interrupt snuck in - * which we should be doing. */ + /* + * Just before we sleep, make sure no interrupt snuck in + * which we should be doing. + */ if (interrupt_pending(cpu, &more) < LGUEST_IRQS) set_current_state(TASK_RUNNING); else @@ -239,8 +271,10 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user) continue; } - /* OK, now we're ready to jump into the Guest. First we put up - * the "Do Not Disturb" sign: */ + /* + * OK, now we're ready to jump into the Guest. First we put up + * the "Do Not Disturb" sign: + */ local_irq_disable(); /* Actually run the Guest until something happens. */ @@ -327,8 +361,10 @@ static void __exit fini(void) } /*:*/ -/* The Host side of lguest can be a module. This is a nice way for people to - * play with it. */ +/* + * The Host side of lguest can be a module. This is a nice way for people to + * play with it. + */ module_init(init); module_exit(fini); MODULE_LICENSE("GPL"); -- cgit v1.2.3