/* * arch/arm/kernel/topology.c * * Copyright (C) 2011 Linaro Limited. * Written by: Vincent Guittot * * based on arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include /* * cpu power scale management */ /* * cpu power table * This per cpu data structure describes the relative capacity of each core. * On a heteregenous system, cores don't have the same computation capacity * and we reflect that difference in the cpu_power field so the scheduler can * take this difference into account during load balance. A per cpu structure * is preferred because each CPU updates its own cpu_power field during the * load balance except for idle cores. One idle core is selected to run the * rebalance_domains for all idle cores and the cpu_power can be updated * during this sequence. */ static DEFINE_PER_CPU(unsigned long, cpu_scale); unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu) { return per_cpu(cpu_scale, cpu); } static void set_power_scale(unsigned int cpu, unsigned long power) { per_cpu(cpu_scale, cpu) = power; } #ifdef CONFIG_OF struct cpu_efficiency { const char *compatible; unsigned long efficiency; }; /* * Table of relative efficiency of each processors * The efficiency value must fit in 20bit and the final * cpu_scale value must be in the range * 0 < cpu_scale < 3*SCHED_POWER_SCALE/2 * in order to return at most 1 when DIV_ROUND_CLOSEST * is used to compute the capacity of a CPU. * Processors that are not defined in the table, * use the default SCHED_POWER_SCALE value for cpu_scale. */ struct cpu_efficiency table_efficiency[] = { {"arm,cortex-a15", 3891}, {"arm,cortex-a7", 2048}, {NULL, }, }; struct cpu_capacity { unsigned long hwid; unsigned long capacity; }; struct cpu_capacity *cpu_capacity; unsigned long middle_capacity = 1; /* * Iterate all CPUs' descriptor in DT and compute the efficiency * (as per table_efficiency). Also calculate a middle efficiency * as close as possible to (max{eff_i} - min{eff_i}) / 2 * This is later used to scale the cpu_power field such that an * 'average' CPU is of middle power. Also see the comments near * table_efficiency[] and update_cpu_power(). */ static void __init parse_dt_topology(void) { struct cpu_efficiency *cpu_eff; struct device_node *cn = NULL; unsigned long min_capacity = (unsigned long)(-1); unsigned long max_capacity = 0; unsigned long capacity = 0; int alloc_size, cpu = 0; alloc_size = nr_cpu_ids * sizeof(struct cpu_capacity); cpu_capacity = (struct cpu_capacity *)kzalloc(alloc_size, GFP_NOWAIT); while ((cn = of_find_node_by_type(cn, "cpu"))) { const u32 *rate, *reg; int len; if (cpu >= num_possible_cpus()) break; for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) if (of_device_is_compatible(cn, cpu_eff->compatible)) break; if (cpu_eff->compatible == NULL) continue; rate = of_get_property(cn, "clock-frequency", &len); if (!rate || len != 4) { pr_err("%s missing clock-frequency property\n", cn->full_name); continue; } reg = of_get_property(cn, "reg", &len); if (!reg || len != 4) { pr_err("%s missing reg property\n", cn->full_name); continue; } capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; /* Save min capacity of the system */ if (capacity < min_capacity) min_capacity = capacity; /* Save max capacity of the system */ if (capacity > max_capacity) max_capacity = capacity; cpu_capacity[cpu].capacity = capacity; cpu_capacity[cpu++].hwid = be32_to_cpup(reg); } if (cpu < num_possible_cpus()) cpu_capacity[cpu].hwid = (unsigned long)(-1); /* If min and max capacities are equals, we bypass the update of the * cpu_scale because all CPUs have the same capacity. Otherwise, we * compute a middle_capacity factor that will ensure that the capacity * of an 'average' CPU of the system will be as close as possible to * SCHED_POWER_SCALE, which is the default value, but with the * constraint explained near table_efficiency[]. */ if (min_capacity == max_capacity) cpu_capacity[0].hwid = (unsigned long)(-1); else if (4*max_capacity < (3*(max_capacity + min_capacity))) middle_capacity = (min_capacity + max_capacity) >> (SCHED_POWER_SHIFT+1); else middle_capacity = ((max_capacity / 3) >> (SCHED_POWER_SHIFT-1)) + 1; } /* * Look for a customed capacity of a CPU in the cpu_capacity table during the * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the * function returns directly for SMP system. */ void update_cpu_power(unsigned int cpu, unsigned long hwid) { unsigned int idx = 0; /* look for the cpu's hwid in the cpu capacity table */ for (idx = 0; idx < num_possible_cpus(); idx++) { if (cpu_capacity[idx].hwid == hwid) break; if (cpu_capacity[idx].hwid == -1) return; } if (idx == num_possible_cpus()) return; set_power_scale(cpu, cpu_capacity[idx].capacity / middle_capacity); printk(KERN_INFO "CPU%u: update cpu_power %lu\n", cpu, arch_scale_freq_power(NULL, cpu)); } #else static inline void parse_dt_topology(void) {} static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {} #endif /* * cpu topology management */ #define MPIDR_SMP_BITMASK (0x3 << 30) #define MPIDR_SMP_VALUE (0x2 << 30) #define MPIDR_MT_BITMASK (0x1 << 24) /* * These masks reflect the current use of the affinity levels. * The affinity level can be up to 16 bits according to ARM ARM */ #define MPIDR_HWID_BITMASK 0xFFFFFF #define MPIDR_LEVEL0_MASK 0x3 #define MPIDR_LEVEL0_SHIFT 0 #define MPIDR_LEVEL1_MASK 0xF #define MPIDR_LEVEL1_SHIFT 8 #define MPIDR_LEVEL2_MASK 0xFF #define MPIDR_LEVEL2_SHIFT 16 /* * cpu topology table */ struct cputopo_arm cpu_topology[NR_CPUS]; const struct cpumask *cpu_coregroup_mask(int cpu) { return &cpu_topology[cpu].core_sibling; } void update_siblings_masks(unsigned int cpuid) { struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; int cpu; /* update core and thread sibling masks */ for_each_possible_cpu(cpu) { cpu_topo = &cpu_topology[cpu]; if (cpuid_topo->socket_id != cpu_topo->socket_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); if (cpuid_topo->core_id != cpu_topo->core_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); } smp_wmb(); } /* * store_cpu_topology is called at boot when only one cpu is running * and with the mutex cpu_hotplug.lock locked, when several cpus have booted, * which prevents simultaneous write access to cpu_topology array */ void store_cpu_topology(unsigned int cpuid) { struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid]; unsigned int mpidr; /* If the cpu topology has been already set, just return */ if (cpuid_topo->core_id != -1) return; mpidr = read_cpuid_mpidr(); /* create cpu topology mapping */ if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) { /* * This is a multiprocessor system * multiprocessor format & multiprocessor mode field are set */ if (mpidr & MPIDR_MT_BITMASK) { /* core performance interdependency */ cpuid_topo->thread_id = (mpidr >> MPIDR_LEVEL0_SHIFT) & MPIDR_LEVEL0_MASK; cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL1_SHIFT) & MPIDR_LEVEL1_MASK; cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL2_SHIFT) & MPIDR_LEVEL2_MASK; } else { /* largely independent cores */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL0_SHIFT) & MPIDR_LEVEL0_MASK; cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL1_SHIFT) & MPIDR_LEVEL1_MASK; } } else { /* * This is an uniprocessor system * we are in multiprocessor format but uniprocessor system * or in the old uniprocessor format */ cpuid_topo->thread_id = -1; cpuid_topo->core_id = 0; cpuid_topo->socket_id = -1; } update_siblings_masks(cpuid); update_cpu_power(cpuid, mpidr & MPIDR_HWID_BITMASK); printk(KERN_INFO "CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n", cpuid, cpu_topology[cpuid].thread_id, cpu_topology[cpuid].core_id, cpu_topology[cpuid].socket_id, mpidr); } #ifdef CONFIG_SCHED_HMP static const char * const little_cores[] = { "arm,cortex-a7", NULL, }; static bool is_little_cpu(struct device_node *cn) { const char * const *lc; for (lc = little_cores; *lc; lc++) if (of_device_is_compatible(cn, *lc)) return true; return false; } void __init arch_get_fast_and_slow_cpus(struct cpumask *fast, struct cpumask *slow) { struct device_node *cn = NULL; int cpu = 0; cpumask_clear(fast); cpumask_clear(slow); /* * Use the config options if they are given. This helps testing * HMP scheduling on systems without a big.LITTLE architecture. */ if (strlen(CONFIG_HMP_FAST_CPU_MASK) && strlen(CONFIG_HMP_SLOW_CPU_MASK)) { if (cpulist_parse(CONFIG_HMP_FAST_CPU_MASK, fast)) WARN(1, "Failed to parse HMP fast cpu mask!\n"); if (cpulist_parse(CONFIG_HMP_SLOW_CPU_MASK, slow)) WARN(1, "Failed to parse HMP slow cpu mask!\n"); return; } /* * Else, parse device tree for little cores. */ while ((cn = of_find_node_by_type(cn, "cpu"))) { if (cpu >= num_possible_cpus()) break; if (is_little_cpu(cn)) cpumask_set_cpu(cpu, slow); else cpumask_set_cpu(cpu, fast); cpu++; } if (!cpumask_empty(fast) && !cpumask_empty(slow)) return; /* * We didn't find both big and little cores so let's call all cores * fast as this will keep the system running, with all cores being * treated equal. */ cpumask_setall(fast); cpumask_clear(slow); } void __init arch_get_hmp_domains(struct list_head *hmp_domains_list) { struct cpumask hmp_fast_cpu_mask; struct cpumask hmp_slow_cpu_mask; struct hmp_domain *domain; arch_get_fast_and_slow_cpus(&hmp_fast_cpu_mask, &hmp_slow_cpu_mask); /* * Initialize hmp_domains * Must be ordered with respect to compute capacity. * Fastest domain at head of list. */ if(!cpumask_empty(&hmp_slow_cpu_mask)) { domain = (struct hmp_domain *) kmalloc(sizeof(struct hmp_domain), GFP_KERNEL); cpumask_copy(&domain->cpus, &hmp_slow_cpu_mask); list_add(&domain->hmp_domains, hmp_domains_list); } domain = (struct hmp_domain *) kmalloc(sizeof(struct hmp_domain), GFP_KERNEL); cpumask_copy(&domain->cpus, &hmp_fast_cpu_mask); list_add(&domain->hmp_domains, hmp_domains_list); } #endif /* CONFIG_SCHED_HMP */ /* * cluster_to_logical_mask - return cpu logical mask of CPUs in a cluster * @socket_id: cluster HW identifier * @cluster_mask: the cpumask location to be initialized, modified by the * function only if return value == 0 * * Return: * * 0 on success * -EINVAL if cluster_mask is NULL or there is no record matching socket_id */ int cluster_to_logical_mask(unsigned int socket_id, cpumask_t *cluster_mask) { int cpu; if (!cluster_mask) return -EINVAL; for_each_online_cpu(cpu) if (socket_id == topology_physical_package_id(cpu)) { cpumask_copy(cluster_mask, topology_core_cpumask(cpu)); return 0; } return -EINVAL; } /* * init_cpu_topology is called at boot when only one cpu is running * which prevent simultaneous write access to cpu_topology array */ void __init init_cpu_topology(void) { unsigned int cpu; /* init core mask and power*/ for_each_possible_cpu(cpu) { struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]); cpu_topo->thread_id = -1; cpu_topo->core_id = -1; cpu_topo->socket_id = -1; cpumask_clear(&cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); set_power_scale(cpu, SCHED_POWER_SCALE); } smp_wmb(); parse_dt_topology(); }