/* * * Copyright (C) 2007 Google, Inc. * Copyright (c) 2009-2012, The Linux Foundation. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #define TIMER_MATCH_VAL 0x0000 #define TIMER_COUNT_VAL 0x0004 #define TIMER_ENABLE 0x0008 #define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1) #define TIMER_ENABLE_EN BIT(0) #define TIMER_CLEAR 0x000C #define DGT_CLK_CTL_DIV_4 0x3 #define GPT_HZ 32768 #define MSM_DGT_SHIFT 5 static void __iomem *event_base; static irqreturn_t msm_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = *(struct clock_event_device **)dev_id; /* Stop the timer tick */ if (evt->mode == CLOCK_EVT_MODE_ONESHOT) { u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE); ctrl &= ~TIMER_ENABLE_EN; writel_relaxed(ctrl, event_base + TIMER_ENABLE); } evt->event_handler(evt); return IRQ_HANDLED; } static int msm_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE); writel_relaxed(0, event_base + TIMER_CLEAR); writel_relaxed(cycles, event_base + TIMER_MATCH_VAL); writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE); return 0; } static void msm_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { u32 ctrl; ctrl = readl_relaxed(event_base + TIMER_ENABLE); ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN); switch (mode) { case CLOCK_EVT_MODE_RESUME: case CLOCK_EVT_MODE_PERIODIC: break; case CLOCK_EVT_MODE_ONESHOT: /* Timer is enabled in set_next_event */ break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: break; } writel_relaxed(ctrl, event_base + TIMER_ENABLE); } static struct clock_event_device msm_clockevent = { .name = "gp_timer", .features = CLOCK_EVT_FEAT_ONESHOT, .rating = 200, .set_next_event = msm_timer_set_next_event, .set_mode = msm_timer_set_mode, }; static union { struct clock_event_device *evt; struct clock_event_device * __percpu *percpu_evt; } msm_evt; static void __iomem *source_base; static notrace cycle_t msm_read_timer_count(struct clocksource *cs) { return readl_relaxed(source_base + TIMER_COUNT_VAL); } static notrace cycle_t msm_read_timer_count_shift(struct clocksource *cs) { /* * Shift timer count down by a constant due to unreliable lower bits * on some targets. */ return msm_read_timer_count(cs) >> MSM_DGT_SHIFT; } static struct clocksource msm_clocksource = { .name = "dg_timer", .rating = 300, .read = msm_read_timer_count, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; #ifdef CONFIG_LOCAL_TIMERS static int __cpuinit msm_local_timer_setup(struct clock_event_device *evt) { /* Use existing clock_event for cpu 0 */ if (!smp_processor_id()) return 0; writel_relaxed(0, event_base + TIMER_ENABLE); writel_relaxed(0, event_base + TIMER_CLEAR); writel_relaxed(~0, event_base + TIMER_MATCH_VAL); evt->irq = msm_clockevent.irq; evt->name = "local_timer"; evt->features = msm_clockevent.features; evt->rating = msm_clockevent.rating; evt->set_mode = msm_timer_set_mode; evt->set_next_event = msm_timer_set_next_event; *__this_cpu_ptr(msm_evt.percpu_evt) = evt; clockevents_config_and_register(evt, GPT_HZ, 4, 0xf0000000); enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING); return 0; } static void msm_local_timer_stop(struct clock_event_device *evt) { evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt); disable_percpu_irq(evt->irq); } static struct local_timer_ops msm_local_timer_ops __cpuinitdata = { .setup = msm_local_timer_setup, .stop = msm_local_timer_stop, }; #endif /* CONFIG_LOCAL_TIMERS */ static notrace u32 msm_sched_clock_read(void) { return msm_clocksource.read(&msm_clocksource); } static void __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq, bool percpu) { struct clock_event_device *ce = &msm_clockevent; struct clocksource *cs = &msm_clocksource; int res; writel_relaxed(0, event_base + TIMER_ENABLE); writel_relaxed(0, event_base + TIMER_CLEAR); writel_relaxed(~0, event_base + TIMER_MATCH_VAL); ce->cpumask = cpumask_of(0); ce->irq = irq; clockevents_config_and_register(ce, GPT_HZ, 4, 0xffffffff); if (percpu) { msm_evt.percpu_evt = alloc_percpu(struct clock_event_device *); if (!msm_evt.percpu_evt) { pr_err("memory allocation failed for %s\n", ce->name); goto err; } *__this_cpu_ptr(msm_evt.percpu_evt) = ce; res = request_percpu_irq(ce->irq, msm_timer_interrupt, ce->name, msm_evt.percpu_evt); if (!res) { enable_percpu_irq(ce->irq, IRQ_TYPE_EDGE_RISING); #ifdef CONFIG_LOCAL_TIMERS local_timer_register(&msm_local_timer_ops); #endif } } else { msm_evt.evt = ce; res = request_irq(ce->irq, msm_timer_interrupt, IRQF_TIMER | IRQF_NOBALANCING | IRQF_TRIGGER_RISING, ce->name, &msm_evt.evt); } if (res) pr_err("request_irq failed for %s\n", ce->name); err: writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE); res = clocksource_register_hz(cs, dgt_hz); if (res) pr_err("clocksource_register failed\n"); setup_sched_clock(msm_sched_clock_read, sched_bits, dgt_hz); } #ifdef CONFIG_OF static const struct of_device_id msm_dgt_match[] __initconst = { { .compatible = "qcom,msm-dgt" }, { }, }; static const struct of_device_id msm_gpt_match[] __initconst = { { .compatible = "qcom,msm-gpt" }, { }, }; void __init msm_dt_timer_init(void) { struct device_node *np; u32 freq; int irq; struct resource res; u32 percpu_offset; void __iomem *dgt_clk_ctl; np = of_find_matching_node(NULL, msm_gpt_match); if (!np) { pr_err("Can't find GPT DT node\n"); return; } event_base = of_iomap(np, 0); if (!event_base) { pr_err("Failed to map event base\n"); return; } irq = irq_of_parse_and_map(np, 0); if (irq <= 0) { pr_err("Can't get irq\n"); return; } of_node_put(np); np = of_find_matching_node(NULL, msm_dgt_match); if (!np) { pr_err("Can't find DGT DT node\n"); return; } if (of_property_read_u32(np, "cpu-offset", &percpu_offset)) percpu_offset = 0; if (of_address_to_resource(np, 0, &res)) { pr_err("Failed to parse DGT resource\n"); return; } source_base = ioremap(res.start + percpu_offset, resource_size(&res)); if (!source_base) { pr_err("Failed to map source base\n"); return; } if (!of_address_to_resource(np, 1, &res)) { dgt_clk_ctl = ioremap(res.start + percpu_offset, resource_size(&res)); if (!dgt_clk_ctl) { pr_err("Failed to map DGT control base\n"); return; } writel_relaxed(DGT_CLK_CTL_DIV_4, dgt_clk_ctl); iounmap(dgt_clk_ctl); } if (of_property_read_u32(np, "clock-frequency", &freq)) { pr_err("Unknown frequency\n"); return; } of_node_put(np); msm_timer_init(freq, 32, irq, !!percpu_offset); } #endif static int __init msm_timer_map(phys_addr_t event, phys_addr_t source) { event_base = ioremap(event, SZ_64); if (!event_base) { pr_err("Failed to map event base\n"); return 1; } source_base = ioremap(source, SZ_64); if (!source_base) { pr_err("Failed to map source base\n"); return 1; } return 0; } void __init msm7x01_timer_init(void) { struct clocksource *cs = &msm_clocksource; if (msm_timer_map(0xc0100000, 0xc0100010)) return; cs->read = msm_read_timer_count_shift; cs->mask = CLOCKSOURCE_MASK((32 - MSM_DGT_SHIFT)); /* 600 KHz */ msm_timer_init(19200000 >> MSM_DGT_SHIFT, 32 - MSM_DGT_SHIFT, 7, false); } void __init msm7x30_timer_init(void) { if (msm_timer_map(0xc0100004, 0xc0100024)) return; msm_timer_init(24576000 / 4, 32, 1, false); } void __init qsd8x50_timer_init(void) { if (msm_timer_map(0xAC100000, 0xAC100010)) return; msm_timer_init(19200000 / 4, 32, 7, false); }