/* * arch/arm/mm/cache-l2x0.c - L210/L220 cache controller support * * Copyright (C) 2007 ARM Limited * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include "cache-aurora-l2.h" #define CACHE_LINE_SIZE 32 static void __iomem *l2x0_base; static DEFINE_RAW_SPINLOCK(l2x0_lock); static u32 l2x0_way_mask; /* Bitmask of active ways */ static u32 l2x0_size; static unsigned long sync_reg_offset = L2X0_CACHE_SYNC; /* Aurora don't have the cache ID register available, so we have to * pass it though the device tree */ static u32 cache_id_part_number_from_dt; struct l2x0_regs l2x0_saved_regs; struct l2x0_of_data { void (*setup)(const struct device_node *, u32 *, u32 *); void (*save)(void); struct outer_cache_fns outer_cache; }; static bool of_init = false; static inline void cache_wait_way(void __iomem *reg, unsigned long mask) { /* wait for cache operation by line or way to complete */ while (readl_relaxed(reg) & mask) cpu_relax(); } #ifdef CONFIG_CACHE_PL310 static inline void cache_wait(void __iomem *reg, unsigned long mask) { /* cache operations by line are atomic on PL310 */ } #else #define cache_wait cache_wait_way #endif static inline void cache_sync(void) { void __iomem *base = l2x0_base; writel_relaxed(0, base + sync_reg_offset); cache_wait(base + L2X0_CACHE_SYNC, 1); } static inline void l2x0_clean_line(unsigned long addr) { void __iomem *base = l2x0_base; cache_wait(base + L2X0_CLEAN_LINE_PA, 1); writel_relaxed(addr, base + L2X0_CLEAN_LINE_PA); } static inline void l2x0_inv_line(unsigned long addr) { void __iomem *base = l2x0_base; cache_wait(base + L2X0_INV_LINE_PA, 1); writel_relaxed(addr, base + L2X0_INV_LINE_PA); } #if defined(CONFIG_PL310_ERRATA_588369) || defined(CONFIG_PL310_ERRATA_727915) static inline void debug_writel(unsigned long val) { if (outer_cache.set_debug) outer_cache.set_debug(val); } static void pl310_set_debug(unsigned long val) { writel_relaxed(val, l2x0_base + L2X0_DEBUG_CTRL); } #else /* Optimised out for non-errata case */ static inline void debug_writel(unsigned long val) { } #define pl310_set_debug NULL #endif #ifdef CONFIG_PL310_ERRATA_588369 static inline void l2x0_flush_line(unsigned long addr) { void __iomem *base = l2x0_base; /* Clean by PA followed by Invalidate by PA */ cache_wait(base + L2X0_CLEAN_LINE_PA, 1); writel_relaxed(addr, base + L2X0_CLEAN_LINE_PA); cache_wait(base + L2X0_INV_LINE_PA, 1); writel_relaxed(addr, base + L2X0_INV_LINE_PA); } #else static inline void l2x0_flush_line(unsigned long addr) { void __iomem *base = l2x0_base; cache_wait(base + L2X0_CLEAN_INV_LINE_PA, 1); writel_relaxed(addr, base + L2X0_CLEAN_INV_LINE_PA); } #endif static void l2x0_cache_sync(void) { unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); cache_sync(); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void __l2x0_flush_all(void) { debug_writel(0x03); writel_relaxed(l2x0_way_mask, l2x0_base + L2X0_CLEAN_INV_WAY); cache_wait_way(l2x0_base + L2X0_CLEAN_INV_WAY, l2x0_way_mask); cache_sync(); debug_writel(0x00); } static void l2x0_flush_all(void) { unsigned long flags; /* clean all ways */ raw_spin_lock_irqsave(&l2x0_lock, flags); __l2x0_flush_all(); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2x0_clean_all(void) { unsigned long flags; /* clean all ways */ raw_spin_lock_irqsave(&l2x0_lock, flags); writel_relaxed(l2x0_way_mask, l2x0_base + L2X0_CLEAN_WAY); cache_wait_way(l2x0_base + L2X0_CLEAN_WAY, l2x0_way_mask); cache_sync(); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2x0_inv_all(void) { unsigned long flags; /* invalidate all ways */ raw_spin_lock_irqsave(&l2x0_lock, flags); /* Invalidating when L2 is enabled is a nono */ BUG_ON(readl(l2x0_base + L2X0_CTRL) & L2X0_CTRL_EN); writel_relaxed(l2x0_way_mask, l2x0_base + L2X0_INV_WAY); cache_wait_way(l2x0_base + L2X0_INV_WAY, l2x0_way_mask); cache_sync(); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2x0_inv_range(unsigned long start, unsigned long end) { void __iomem *base = l2x0_base; unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); if (start & (CACHE_LINE_SIZE - 1)) { start &= ~(CACHE_LINE_SIZE - 1); debug_writel(0x03); l2x0_flush_line(start); debug_writel(0x00); start += CACHE_LINE_SIZE; } if (end & (CACHE_LINE_SIZE - 1)) { end &= ~(CACHE_LINE_SIZE - 1); debug_writel(0x03); l2x0_flush_line(end); debug_writel(0x00); } while (start < end) { unsigned long blk_end = start + min(end - start, 4096UL); while (start < blk_end) { l2x0_inv_line(start); start += CACHE_LINE_SIZE; } if (blk_end < end) { raw_spin_unlock_irqrestore(&l2x0_lock, flags); raw_spin_lock_irqsave(&l2x0_lock, flags); } } cache_wait(base + L2X0_INV_LINE_PA, 1); cache_sync(); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2x0_clean_range(unsigned long start, unsigned long end) { void __iomem *base = l2x0_base; unsigned long flags; if ((end - start) >= l2x0_size) { l2x0_clean_all(); return; } raw_spin_lock_irqsave(&l2x0_lock, flags); start &= ~(CACHE_LINE_SIZE - 1); while (start < end) { unsigned long blk_end = start + min(end - start, 4096UL); while (start < blk_end) { l2x0_clean_line(start); start += CACHE_LINE_SIZE; } if (blk_end < end) { raw_spin_unlock_irqrestore(&l2x0_lock, flags); raw_spin_lock_irqsave(&l2x0_lock, flags); } } cache_wait(base + L2X0_CLEAN_LINE_PA, 1); cache_sync(); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2x0_flush_range(unsigned long start, unsigned long end) { void __iomem *base = l2x0_base; unsigned long flags; if ((end - start) >= l2x0_size) { l2x0_flush_all(); return; } raw_spin_lock_irqsave(&l2x0_lock, flags); start &= ~(CACHE_LINE_SIZE - 1); while (start < end) { unsigned long blk_end = start + min(end - start, 4096UL); debug_writel(0x03); while (start < blk_end) { l2x0_flush_line(start); start += CACHE_LINE_SIZE; } debug_writel(0x00); if (blk_end < end) { raw_spin_unlock_irqrestore(&l2x0_lock, flags); raw_spin_lock_irqsave(&l2x0_lock, flags); } } cache_wait(base + L2X0_CLEAN_INV_LINE_PA, 1); cache_sync(); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2x0_disable(void) { unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); __l2x0_flush_all(); writel_relaxed(0, l2x0_base + L2X0_CTRL); dsb(st); raw_spin_unlock_irqrestore(&l2x0_lock, flags); } static void l2x0_unlock(u32 cache_id) { int lockregs; int i; switch (cache_id & L2X0_CACHE_ID_PART_MASK) { case L2X0_CACHE_ID_PART_L310: lockregs = 8; break; case AURORA_CACHE_ID: lockregs = 4; break; default: /* L210 and unknown types */ lockregs = 1; break; } for (i = 0; i < lockregs; i++) { writel_relaxed(0x0, l2x0_base + L2X0_LOCKDOWN_WAY_D_BASE + i * L2X0_LOCKDOWN_STRIDE); writel_relaxed(0x0, l2x0_base + L2X0_LOCKDOWN_WAY_I_BASE + i * L2X0_LOCKDOWN_STRIDE); } } void __init l2x0_init(void __iomem *base, u32 aux_val, u32 aux_mask) { u32 aux; u32 cache_id; u32 way_size = 0; int ways; int way_size_shift = L2X0_WAY_SIZE_SHIFT; const char *type; l2x0_base = base; if (cache_id_part_number_from_dt) cache_id = cache_id_part_number_from_dt; else cache_id = readl_relaxed(l2x0_base + L2X0_CACHE_ID); aux = readl_relaxed(l2x0_base + L2X0_AUX_CTRL); aux &= aux_mask; aux |= aux_val; /* Determine the number of ways */ switch (cache_id & L2X0_CACHE_ID_PART_MASK) { case L2X0_CACHE_ID_PART_L310: if (aux & (1 << 16)) ways = 16; else ways = 8; type = "L310"; #ifdef CONFIG_PL310_ERRATA_753970 /* Unmapped register. */ sync_reg_offset = L2X0_DUMMY_REG; #endif if ((cache_id & L2X0_CACHE_ID_RTL_MASK) <= L2X0_CACHE_ID_RTL_R3P0) outer_cache.set_debug = pl310_set_debug; break; case L2X0_CACHE_ID_PART_L210: ways = (aux >> 13) & 0xf; type = "L210"; break; case AURORA_CACHE_ID: sync_reg_offset = AURORA_SYNC_REG; ways = (aux >> 13) & 0xf; ways = 2 << ((ways + 1) >> 2); way_size_shift = AURORA_WAY_SIZE_SHIFT; type = "Aurora"; break; default: /* Assume unknown chips have 8 ways */ ways = 8; type = "L2x0 series"; break; } l2x0_way_mask = (1 << ways) - 1; /* * L2 cache Size = Way size * Number of ways */ way_size = (aux & L2X0_AUX_CTRL_WAY_SIZE_MASK) >> 17; way_size = 1 << (way_size + way_size_shift); l2x0_size = ways * way_size * SZ_1K; /* * Check if l2x0 controller is already enabled. * If you are booting from non-secure mode * accessing the below registers will fault. */ if (!(readl_relaxed(l2x0_base + L2X0_CTRL) & L2X0_CTRL_EN)) { /* Make sure that I&D is not locked down when starting */ l2x0_unlock(cache_id); /* l2x0 controller is disabled */ writel_relaxed(aux, l2x0_base + L2X0_AUX_CTRL); l2x0_inv_all(); /* enable L2X0 */ writel_relaxed(L2X0_CTRL_EN, l2x0_base + L2X0_CTRL); } /* Re-read it in case some bits are reserved. */ aux = readl_relaxed(l2x0_base + L2X0_AUX_CTRL); /* Save the value for resuming. */ l2x0_saved_regs.aux_ctrl = aux; if (!of_init) { outer_cache.inv_range = l2x0_inv_range; outer_cache.clean_range = l2x0_clean_range; outer_cache.flush_range = l2x0_flush_range; outer_cache.sync = l2x0_cache_sync; outer_cache.flush_all = l2x0_flush_all; outer_cache.inv_all = l2x0_inv_all; outer_cache.disable = l2x0_disable; } pr_info("%s cache controller enabled\n", type); pr_info("l2x0: %d ways, CACHE_ID 0x%08x, AUX_CTRL 0x%08x, Cache size: %d kB\n", ways, cache_id, aux, l2x0_size >> 10); } #ifdef CONFIG_OF static int l2_wt_override; /* * Note that the end addresses passed to Linux primitives are * noninclusive, while the hardware cache range operations use * inclusive start and end addresses. */ static unsigned long calc_range_end(unsigned long start, unsigned long end) { /* * Limit the number of cache lines processed at once, * since cache range operations stall the CPU pipeline * until completion. */ if (end > start + MAX_RANGE_SIZE) end = start + MAX_RANGE_SIZE; /* * Cache range operations can't straddle a page boundary. */ if (end > PAGE_ALIGN(start+1)) end = PAGE_ALIGN(start+1); return end; } /* * Make sure 'start' and 'end' reference the same page, as L2 is PIPT * and range operations only do a TLB lookup on the start address. */ static void aurora_pa_range(unsigned long start, unsigned long end, unsigned long offset) { unsigned long flags; raw_spin_lock_irqsave(&l2x0_lock, flags); writel_relaxed(start, l2x0_base + AURORA_RANGE_BASE_ADDR_REG); writel_relaxed(end, l2x0_base + offset); raw_spin_unlock_irqrestore(&l2x0_lock, flags); cache_sync(); } static void aurora_inv_range(unsigned long start, unsigned long end) { /* * round start and end adresses up to cache line size */ start &= ~(CACHE_LINE_SIZE - 1); end = ALIGN(end, CACHE_LINE_SIZE); /* * Invalidate all full cache lines between 'start' and 'end'. */ while (start < end) { unsigned long range_end = calc_range_end(start, end); aurora_pa_range(start, range_end - CACHE_LINE_SIZE, AURORA_INVAL_RANGE_REG); start = range_end; } } static void aurora_clean_range(unsigned long start, unsigned long end) { /* * If L2 is forced to WT, the L2 will always be clean and we * don't need to do anything here. */ if (!l2_wt_override) { start &= ~(CACHE_LINE_SIZE - 1); end = ALIGN(end, CACHE_LINE_SIZE); while (start != end) { unsigned long range_end = calc_range_end(start, end); aurora_pa_range(start, range_end - CACHE_LINE_SIZE, AURORA_CLEAN_RANGE_REG); start = range_end; } } } static void aurora_flush_range(unsigned long start, unsigned long end) { start &= ~(CACHE_LINE_SIZE - 1); end = ALIGN(end, CACHE_LINE_SIZE); while (start != end) { unsigned long range_end = calc_range_end(start, end); /* * If L2 is forced to WT, the L2 will always be clean and we * just need to invalidate. */ if (l2_wt_override) aurora_pa_range(start, range_end - CACHE_LINE_SIZE, AURORA_INVAL_RANGE_REG); else aurora_pa_range(start, range_end - CACHE_LINE_SIZE, AURORA_FLUSH_RANGE_REG); start = range_end; } } /* * For certain Broadcom SoCs, depending on the address range, different offsets * need to be added to the address before passing it to L2 for * invalidation/clean/flush * * Section Address Range Offset EMI * 1 0x00000000 - 0x3FFFFFFF 0x80000000 VC * 2 0x40000000 - 0xBFFFFFFF 0x40000000 SYS * 3 0xC0000000 - 0xFFFFFFFF 0x80000000 VC * * When the start and end addresses have crossed two different sections, we * need to break the L2 operation into two, each within its own section. * For example, if we need to invalidate addresses starts at 0xBFFF0000 and * ends at 0xC0001000, we need do invalidate 1) 0xBFFF0000 - 0xBFFFFFFF and 2) * 0xC0000000 - 0xC0001000 * * Note 1: * By breaking a single L2 operation into two, we may potentially suffer some * performance hit, but keep in mind the cross section case is very rare * * Note 2: * We do not need to handle the case when the start address is in * Section 1 and the end address is in Section 3, since it is not a valid use * case * * Note 3: * Section 1 in practical terms can no longer be used on rev A2. Because of * that the code does not need to handle section 1 at all. * */ #define BCM_SYS_EMI_START_ADDR 0x40000000UL #define BCM_VC_EMI_SEC3_START_ADDR 0xC0000000UL #define BCM_SYS_EMI_OFFSET 0x40000000UL #define BCM_VC_EMI_OFFSET 0x80000000UL static inline int bcm_addr_is_sys_emi(unsigned long addr) { return (addr >= BCM_SYS_EMI_START_ADDR) && (addr < BCM_VC_EMI_SEC3_START_ADDR); } static inline unsigned long bcm_l2_phys_addr(unsigned long addr) { if (bcm_addr_is_sys_emi(addr)) return addr + BCM_SYS_EMI_OFFSET; else return addr + BCM_VC_EMI_OFFSET; } static void bcm_inv_range(unsigned long start, unsigned long end) { unsigned long new_start, new_end; BUG_ON(start < BCM_SYS_EMI_START_ADDR); if (unlikely(end <= start)) return; new_start = bcm_l2_phys_addr(start); new_end = bcm_l2_phys_addr(end); /* normal case, no cross section between start and end */ if (likely(bcm_addr_is_sys_emi(end) || !bcm_addr_is_sys_emi(start))) { l2x0_inv_range(new_start, new_end); return; } /* They cross sections, so it can only be a cross from section * 2 to section 3 */ l2x0_inv_range(new_start, bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR-1)); l2x0_inv_range(bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR), new_end); } static void bcm_clean_range(unsigned long start, unsigned long end) { unsigned long new_start, new_end; BUG_ON(start < BCM_SYS_EMI_START_ADDR); if (unlikely(end <= start)) return; if ((end - start) >= l2x0_size) { l2x0_clean_all(); return; } new_start = bcm_l2_phys_addr(start); new_end = bcm_l2_phys_addr(end); /* normal case, no cross section between start and end */ if (likely(bcm_addr_is_sys_emi(end) || !bcm_addr_is_sys_emi(start))) { l2x0_clean_range(new_start, new_end); return; } /* They cross sections, so it can only be a cross from section * 2 to section 3 */ l2x0_clean_range(new_start, bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR-1)); l2x0_clean_range(bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR), new_end); } static void bcm_flush_range(unsigned long start, unsigned long end) { unsigned long new_start, new_end; BUG_ON(start < BCM_SYS_EMI_START_ADDR); if (unlikely(end <= start)) return; if ((end - start) >= l2x0_size) { l2x0_flush_all(); return; } new_start = bcm_l2_phys_addr(start); new_end = bcm_l2_phys_addr(end); /* normal case, no cross section between start and end */ if (likely(bcm_addr_is_sys_emi(end) || !bcm_addr_is_sys_emi(start))) { l2x0_flush_range(new_start, new_end); return; } /* They cross sections, so it can only be a cross from section * 2 to section 3 */ l2x0_flush_range(new_start, bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR-1)); l2x0_flush_range(bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR), new_end); } static void __init l2x0_of_setup(const struct device_node *np, u32 *aux_val, u32 *aux_mask) { u32 data[2] = { 0, 0 }; u32 tag = 0; u32 dirty = 0; u32 val = 0, mask = 0; of_property_read_u32(np, "arm,tag-latency", &tag); if (tag) { mask |= L2X0_AUX_CTRL_TAG_LATENCY_MASK; val |= (tag - 1) << L2X0_AUX_CTRL_TAG_LATENCY_SHIFT; } of_property_read_u32_array(np, "arm,data-latency", data, ARRAY_SIZE(data)); if (data[0] && data[1]) { mask |= L2X0_AUX_CTRL_DATA_RD_LATENCY_MASK | L2X0_AUX_CTRL_DATA_WR_LATENCY_MASK; val |= ((data[0] - 1) << L2X0_AUX_CTRL_DATA_RD_LATENCY_SHIFT) | ((data[1] - 1) << L2X0_AUX_CTRL_DATA_WR_LATENCY_SHIFT); } of_property_read_u32(np, "arm,dirty-latency", &dirty); if (dirty) { mask |= L2X0_AUX_CTRL_DIRTY_LATENCY_MASK; val |= (dirty - 1) << L2X0_AUX_CTRL_DIRTY_LATENCY_SHIFT; } *aux_val &= ~mask; *aux_val |= val; *aux_mask &= ~mask; } static void __init pl310_of_setup(const struct device_node *np, u32 *aux_val, u32 *aux_mask) { u32 data[3] = { 0, 0, 0 }; u32 tag[3] = { 0, 0, 0 }; u32 filter[2] = { 0, 0 }; of_property_read_u32_array(np, "arm,tag-latency", tag, ARRAY_SIZE(tag)); if (tag[0] && tag[1] && tag[2]) writel_relaxed( ((tag[0] - 1) << L2X0_LATENCY_CTRL_RD_SHIFT) | ((tag[1] - 1) << L2X0_LATENCY_CTRL_WR_SHIFT) | ((tag[2] - 1) << L2X0_LATENCY_CTRL_SETUP_SHIFT), l2x0_base + L2X0_TAG_LATENCY_CTRL); of_property_read_u32_array(np, "arm,data-latency", data, ARRAY_SIZE(data)); if (data[0] && data[1] && data[2]) writel_relaxed( ((data[0] - 1) << L2X0_LATENCY_CTRL_RD_SHIFT) | ((data[1] - 1) << L2X0_LATENCY_CTRL_WR_SHIFT) | ((data[2] - 1) << L2X0_LATENCY_CTRL_SETUP_SHIFT), l2x0_base + L2X0_DATA_LATENCY_CTRL); of_property_read_u32_array(np, "arm,filter-ranges", filter, ARRAY_SIZE(filter)); if (filter[1]) { writel_relaxed(ALIGN(filter[0] + filter[1], SZ_1M), l2x0_base + L2X0_ADDR_FILTER_END); writel_relaxed((filter[0] & ~(SZ_1M - 1)) | L2X0_ADDR_FILTER_EN, l2x0_base + L2X0_ADDR_FILTER_START); } } static void __init pl310_save(void) { u32 l2x0_revision = readl_relaxed(l2x0_base + L2X0_CACHE_ID) & L2X0_CACHE_ID_RTL_MASK; l2x0_saved_regs.tag_latency = readl_relaxed(l2x0_base + L2X0_TAG_LATENCY_CTRL); l2x0_saved_regs.data_latency = readl_relaxed(l2x0_base + L2X0_DATA_LATENCY_CTRL); l2x0_saved_regs.filter_end = readl_relaxed(l2x0_base + L2X0_ADDR_FILTER_END); l2x0_saved_regs.filter_start = readl_relaxed(l2x0_base + L2X0_ADDR_FILTER_START); if (l2x0_revision >= L2X0_CACHE_ID_RTL_R2P0) { /* * From r2p0, there is Prefetch offset/control register */ l2x0_saved_regs.prefetch_ctrl = readl_relaxed(l2x0_base + L2X0_PREFETCH_CTRL); /* * From r3p0, there is Power control register */ if (l2x0_revision >= L2X0_CACHE_ID_RTL_R3P0) l2x0_saved_regs.pwr_ctrl = readl_relaxed(l2x0_base + L2X0_POWER_CTRL); } } static void aurora_save(void) { l2x0_saved_regs.ctrl = readl_relaxed(l2x0_base + L2X0_CTRL); l2x0_saved_regs.aux_ctrl = readl_relaxed(l2x0_base + L2X0_AUX_CTRL); } static void l2x0_resume(void) { if (!(readl_relaxed(l2x0_base + L2X0_CTRL) & L2X0_CTRL_EN)) { /* restore aux ctrl and enable l2 */ l2x0_unlock(readl_relaxed(l2x0_base + L2X0_CACHE_ID)); writel_relaxed(l2x0_saved_regs.aux_ctrl, l2x0_base + L2X0_AUX_CTRL); l2x0_inv_all(); writel_relaxed(L2X0_CTRL_EN, l2x0_base + L2X0_CTRL); } } static void pl310_resume(void) { u32 l2x0_revision; if (!(readl_relaxed(l2x0_base + L2X0_CTRL) & L2X0_CTRL_EN)) { /* restore pl310 setup */ writel_relaxed(l2x0_saved_regs.tag_latency, l2x0_base + L2X0_TAG_LATENCY_CTRL); writel_relaxed(l2x0_saved_regs.data_latency, l2x0_base + L2X0_DATA_LATENCY_CTRL); writel_relaxed(l2x0_saved_regs.filter_end, l2x0_base + L2X0_ADDR_FILTER_END); writel_relaxed(l2x0_saved_regs.filter_start, l2x0_base + L2X0_ADDR_FILTER_START); l2x0_revision = readl_relaxed(l2x0_base + L2X0_CACHE_ID) & L2X0_CACHE_ID_RTL_MASK; if (l2x0_revision >= L2X0_CACHE_ID_RTL_R2P0) { writel_relaxed(l2x0_saved_regs.prefetch_ctrl, l2x0_base + L2X0_PREFETCH_CTRL); if (l2x0_revision >= L2X0_CACHE_ID_RTL_R3P0) writel_relaxed(l2x0_saved_regs.pwr_ctrl, l2x0_base + L2X0_POWER_CTRL); } } l2x0_resume(); } static void aurora_resume(void) { if (!(readl(l2x0_base + L2X0_CTRL) & L2X0_CTRL_EN)) { writel_relaxed(l2x0_saved_regs.aux_ctrl, l2x0_base + L2X0_AUX_CTRL); writel_relaxed(l2x0_saved_regs.ctrl, l2x0_base + L2X0_CTRL); } } static void __init aurora_broadcast_l2_commands(void) { __u32 u; /* Enable Broadcasting of cache commands to L2*/ __asm__ __volatile__("mrc p15, 1, %0, c15, c2, 0" : "=r"(u)); u |= AURORA_CTRL_FW; /* Set the FW bit */ __asm__ __volatile__("mcr p15, 1, %0, c15, c2, 0\n" : : "r"(u)); isb(); } static void __init aurora_of_setup(const struct device_node *np, u32 *aux_val, u32 *aux_mask) { u32 val = AURORA_ACR_REPLACEMENT_TYPE_SEMIPLRU; u32 mask = AURORA_ACR_REPLACEMENT_MASK; of_property_read_u32(np, "cache-id-part", &cache_id_part_number_from_dt); /* Determine and save the write policy */ l2_wt_override = of_property_read_bool(np, "wt-override"); if (l2_wt_override) { val |= AURORA_ACR_FORCE_WRITE_THRO_POLICY; mask |= AURORA_ACR_FORCE_WRITE_POLICY_MASK; } *aux_val &= ~mask; *aux_val |= val; *aux_mask &= ~mask; } static const struct l2x0_of_data pl310_data = { .setup = pl310_of_setup, .save = pl310_save, .outer_cache = { .resume = pl310_resume, .inv_range = l2x0_inv_range, .clean_range = l2x0_clean_range, .flush_range = l2x0_flush_range, .sync = l2x0_cache_sync, .flush_all = l2x0_flush_all, .inv_all = l2x0_inv_all, .disable = l2x0_disable, }, }; static const struct l2x0_of_data l2x0_data = { .setup = l2x0_of_setup, .save = NULL, .outer_cache = { .resume = l2x0_resume, .inv_range = l2x0_inv_range, .clean_range = l2x0_clean_range, .flush_range = l2x0_flush_range, .sync = l2x0_cache_sync, .flush_all = l2x0_flush_all, .inv_all = l2x0_inv_all, .disable = l2x0_disable, }, }; static const struct l2x0_of_data aurora_with_outer_data = { .setup = aurora_of_setup, .save = aurora_save, .outer_cache = { .resume = aurora_resume, .inv_range = aurora_inv_range, .clean_range = aurora_clean_range, .flush_range = aurora_flush_range, .sync = l2x0_cache_sync, .flush_all = l2x0_flush_all, .inv_all = l2x0_inv_all, .disable = l2x0_disable, }, }; static const struct l2x0_of_data aurora_no_outer_data = { .setup = aurora_of_setup, .save = aurora_save, .outer_cache = { .resume = aurora_resume, }, }; static const struct l2x0_of_data bcm_l2x0_data = { .setup = pl310_of_setup, .save = pl310_save, .outer_cache = { .resume = pl310_resume, .inv_range = bcm_inv_range, .clean_range = bcm_clean_range, .flush_range = bcm_flush_range, .sync = l2x0_cache_sync, .flush_all = l2x0_flush_all, .inv_all = l2x0_inv_all, .disable = l2x0_disable, }, }; static const struct of_device_id l2x0_ids[] __initconst = { { .compatible = "arm,pl310-cache", .data = (void *)&pl310_data }, { .compatible = "arm,l220-cache", .data = (void *)&l2x0_data }, { .compatible = "arm,l210-cache", .data = (void *)&l2x0_data }, { .compatible = "marvell,aurora-system-cache", .data = (void *)&aurora_no_outer_data}, { .compatible = "marvell,aurora-outer-cache", .data = (void *)&aurora_with_outer_data}, { .compatible = "brcm,bcm11351-a2-pl310-cache", .data = (void *)&bcm_l2x0_data}, { .compatible = "bcm,bcm11351-a2-pl310-cache", /* deprecated name */ .data = (void *)&bcm_l2x0_data}, {} }; int __init l2x0_of_init(u32 aux_val, u32 aux_mask) { struct device_node *np; const struct l2x0_of_data *data; struct resource res; np = of_find_matching_node(NULL, l2x0_ids); if (!np) return -ENODEV; if (of_address_to_resource(np, 0, &res)) return -ENODEV; l2x0_base = ioremap(res.start, resource_size(&res)); if (!l2x0_base) return -ENOMEM; l2x0_saved_regs.phy_base = res.start; data = of_match_node(l2x0_ids, np)->data; /* L2 configuration can only be changed if the cache is disabled */ if (!(readl_relaxed(l2x0_base + L2X0_CTRL) & L2X0_CTRL_EN)) { if (data->setup) data->setup(np, &aux_val, &aux_mask); /* For aurora cache in no outer mode select the * correct mode using the coprocessor*/ if (data == &aurora_no_outer_data) aurora_broadcast_l2_commands(); } if (data->save) data->save(); of_init = true; memcpy(&outer_cache, &data->outer_cache, sizeof(outer_cache)); l2x0_init(l2x0_base, aux_val, aux_mask); return 0; } #endif