/* * arch/arm64/kernel/topology.c * * Copyright (C) 2011,2013,2014 Linaro Limited. * * Based on the arm32 version written by Vincent Guittot in turn based on * arch/sh/kernel/topology.c * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include /* * cpu power table * This per cpu data structure describes the relative capacity of each core. * On a heteregenous system, cores don't have the same computation capacity * and we reflect that difference in the cpu_power field so the scheduler can * take this difference into account during load balance. A per cpu structure * is preferred because each CPU updates its own cpu_power field during the * load balance except for idle cores. One idle core is selected to run the * rebalance_domains for all idle cores and the cpu_power can be updated * during this sequence. */ static DEFINE_PER_CPU(unsigned long, cpu_scale); unsigned long arch_scale_freq_power(struct sched_domain *sd, int cpu) { return per_cpu(cpu_scale, cpu); } static void set_power_scale(unsigned int cpu, unsigned long power) { per_cpu(cpu_scale, cpu) = power; } static int __init get_cpu_for_node(struct device_node *node) { struct device_node *cpu_node; int cpu; cpu_node = of_parse_phandle(node, "cpu", 0); if (!cpu_node) return -1; for_each_possible_cpu(cpu) { if (of_get_cpu_node(cpu, NULL) == cpu_node) { of_node_put(cpu_node); return cpu; } } pr_crit("Unable to find CPU node for %s\n", cpu_node->full_name); of_node_put(cpu_node); return -1; } static int __init parse_core(struct device_node *core, int cluster_id, int core_id) { char name[10]; bool leaf = true; int i = 0; int cpu; struct device_node *t; do { snprintf(name, sizeof(name), "thread%d", i); t = of_get_child_by_name(core, name); if (t) { leaf = false; cpu = get_cpu_for_node(t); if (cpu >= 0) { cpu_topology[cpu].cluster_id = cluster_id; cpu_topology[cpu].core_id = core_id; cpu_topology[cpu].thread_id = i; } else { pr_err("%s: Can't get CPU for thread\n", t->full_name); of_node_put(t); return -EINVAL; } of_node_put(t); } i++; } while (t); cpu = get_cpu_for_node(core); if (cpu >= 0) { if (!leaf) { pr_err("%s: Core has both threads and CPU\n", core->full_name); return -EINVAL; } cpu_topology[cpu].cluster_id = cluster_id; cpu_topology[cpu].core_id = core_id; } else if (leaf) { pr_err("%s: Can't get CPU for leaf core\n", core->full_name); return -EINVAL; } return 0; } static int __init parse_cluster(struct device_node *cluster, int depth) { char name[10]; bool leaf = true; bool has_cores = false; struct device_node *c; static int cluster_id __initdata; int core_id = 0; int i, ret; /* * First check for child clusters; we currently ignore any * information about the nesting of clusters and present the * scheduler with a flat list of them. */ i = 0; do { snprintf(name, sizeof(name), "cluster%d", i); c = of_get_child_by_name(cluster, name); if (c) { leaf = false; ret = parse_cluster(c, depth + 1); of_node_put(c); if (ret != 0) return ret; } i++; } while (c); /* Now check for cores */ i = 0; do { snprintf(name, sizeof(name), "core%d", i); c = of_get_child_by_name(cluster, name); if (c) { has_cores = true; if (depth == 0) { pr_err("%s: cpu-map children should be clusters\n", c->full_name); of_node_put(c); return -EINVAL; } if (leaf) { ret = parse_core(c, cluster_id, core_id++); } else { pr_err("%s: Non-leaf cluster with core %s\n", cluster->full_name, name); ret = -EINVAL; } of_node_put(c); if (ret != 0) return ret; } i++; } while (c); if (leaf && !has_cores) pr_warn("%s: empty cluster\n", cluster->full_name); if (leaf) cluster_id++; return 0; } struct cpu_efficiency { const char *compatible; unsigned long efficiency; }; /* * Table of relative efficiency of each processors * The efficiency value must fit in 20bit and the final * cpu_scale value must be in the range * 0 < cpu_scale < 3*SCHED_POWER_SCALE/2 * in order to return at most 1 when DIV_ROUND_CLOSEST * is used to compute the capacity of a CPU. * Processors that are not defined in the table, * use the default SCHED_POWER_SCALE value for cpu_scale. */ static const struct cpu_efficiency table_efficiency[] = { { "arm,cortex-a57", 3891 }, { "arm,cortex-a53", 2048 }, { NULL, }, }; static unsigned long *__cpu_capacity; #define cpu_capacity(cpu) __cpu_capacity[cpu] static unsigned long middle_capacity = 1; /* * Iterate all CPUs' descriptor in DT and compute the efficiency * (as per table_efficiency). Also calculate a middle efficiency * as close as possible to (max{eff_i} - min{eff_i}) / 2 * This is later used to scale the cpu_power field such that an * 'average' CPU is of middle power. Also see the comments near * table_efficiency[] and update_cpu_power(). */ static int __init parse_dt_topology(void) { struct device_node *cn, *map; int ret = 0; int cpu; cn = of_find_node_by_path("/cpus"); if (!cn) { pr_err("No CPU information found in DT\n"); return 0; } /* * When topology is provided cpu-map is essentially a root * cluster with restricted subnodes. */ map = of_get_child_by_name(cn, "cpu-map"); if (!map) goto out; ret = parse_cluster(map, 0); if (ret != 0) goto out_map; /* * Check that all cores are in the topology; the SMP code will * only mark cores described in the DT as possible. */ for_each_possible_cpu(cpu) { if (cpu_topology[cpu].cluster_id == -1) { pr_err("CPU%d: No topology information specified\n", cpu); ret = -EINVAL; } } out_map: of_node_put(map); out: of_node_put(cn); return ret; } static void __init parse_dt_cpu_power(void) { const struct cpu_efficiency *cpu_eff; struct device_node *cn; unsigned long min_capacity = ULONG_MAX; unsigned long max_capacity = 0; unsigned long capacity = 0; int cpu; __cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity), GFP_NOWAIT); for_each_possible_cpu(cpu) { const u32 *rate; int len; /* Too early to use cpu->of_node */ cn = of_get_cpu_node(cpu, NULL); if (!cn) { pr_err("Missing device node for CPU %d\n", cpu); continue; } for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++) if (of_device_is_compatible(cn, cpu_eff->compatible)) break; if (cpu_eff->compatible == NULL) { pr_warn("%s: Unknown CPU type\n", cn->full_name); continue; } rate = of_get_property(cn, "clock-frequency", &len); if (!rate || len != 4) { pr_err("%s: Missing clock-frequency property\n", cn->full_name); continue; } capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency; /* Save min capacity of the system */ if (capacity < min_capacity) min_capacity = capacity; /* Save max capacity of the system */ if (capacity > max_capacity) max_capacity = capacity; cpu_capacity(cpu) = capacity; } /* If min and max capacities are equal we bypass the update of the * cpu_scale because all CPUs have the same capacity. Otherwise, we * compute a middle_capacity factor that will ensure that the capacity * of an 'average' CPU of the system will be as close as possible to * SCHED_POWER_SCALE, which is the default value, but with the * constraint explained near table_efficiency[]. */ if (min_capacity == max_capacity) return; else if (4 * max_capacity < (3 * (max_capacity + min_capacity))) middle_capacity = (min_capacity + max_capacity) >> (SCHED_POWER_SHIFT+1); else middle_capacity = ((max_capacity / 3) >> (SCHED_POWER_SHIFT-1)) + 1; } /* * Look for a customed capacity of a CPU in the cpu_topo_data table during the * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the * function returns directly for SMP system. */ static void update_cpu_power(unsigned int cpu) { if (!cpu_capacity(cpu)) return; set_power_scale(cpu, cpu_capacity(cpu) / middle_capacity); pr_info("CPU%u: update cpu_power %lu\n", cpu, arch_scale_freq_power(NULL, cpu)); } /* * cpu topology table */ struct cpu_topology cpu_topology[NR_CPUS]; EXPORT_SYMBOL_GPL(cpu_topology); const struct cpumask *cpu_coregroup_mask(int cpu) { return &cpu_topology[cpu].core_sibling; } static void update_siblings_masks(unsigned int cpuid) { struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; int cpu; if (cpuid_topo->cluster_id == -1) { /* * DT does not contain topology information for this cpu. */ pr_debug("CPU%u: No topology information configured\n", cpuid); return; } /* update core and thread sibling masks */ for_each_possible_cpu(cpu) { cpu_topo = &cpu_topology[cpu]; if (cpuid_topo->cluster_id != cpu_topo->cluster_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); if (cpuid_topo->core_id != cpu_topo->core_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); if (cpu != cpuid) cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); } } void store_cpu_topology(unsigned int cpuid) { update_siblings_masks(cpuid); update_cpu_power(cpuid); } static void __init reset_cpu_topology(void) { unsigned int cpu; for_each_possible_cpu(cpu) { struct cpu_topology *cpu_topo = &cpu_topology[cpu]; cpu_topo->thread_id = -1; cpu_topo->core_id = 0; cpu_topo->cluster_id = -1; cpumask_clear(&cpu_topo->core_sibling); cpumask_set_cpu(cpu, &cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); } } static void __init reset_cpu_power(void) { unsigned int cpu; for_each_possible_cpu(cpu) set_power_scale(cpu, SCHED_POWER_SCALE); } void __init init_cpu_topology(void) { reset_cpu_topology(); /* * Discard anything that was parsed if we hit an error so we * don't use partial information. */ if (parse_dt_topology()) reset_cpu_topology(); reset_cpu_power(); parse_dt_cpu_power(); }