/* * * Optimized version of the copy_user() routine. * It is used to copy date across the kernel/user boundary. * * The source and destination are always on opposite side of * the boundary. When reading from user space we must catch * faults on loads. When writing to user space we must catch * errors on stores. Note that because of the nature of the copy * we don't need to worry about overlapping regions. * * * Inputs: * in0 address of source buffer * in1 address of destination buffer * in2 number of bytes to copy * * Outputs: * ret0 0 in case of success. The number of bytes NOT copied in * case of error. * * Copyright (C) 2000-2001 Hewlett-Packard Co * Stephane Eranian * * Fixme: * - handle the case where we have more than 16 bytes and the alignment * are different. * - more benchmarking * - fix extraneous stop bit introduced by the EX() macro. */ #include // // Tuneable parameters // #define COPY_BREAK 16 // we do byte copy below (must be >=16) #define PIPE_DEPTH 21 // pipe depth #define EPI p[PIPE_DEPTH-1] // // arguments // #define dst in0 #define src in1 #define len in2 // // local registers // #define t1 r2 // rshift in bytes #define t2 r3 // lshift in bytes #define rshift r14 // right shift in bits #define lshift r15 // left shift in bits #define word1 r16 #define word2 r17 #define cnt r18 #define len2 r19 #define saved_lc r20 #define saved_pr r21 #define tmp r22 #define val r23 #define src1 r24 #define dst1 r25 #define src2 r26 #define dst2 r27 #define len1 r28 #define enddst r29 #define endsrc r30 #define saved_pfs r31 GLOBAL_ENTRY(__copy_user) .prologue .save ar.pfs, saved_pfs alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7) .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH] .rotp p[PIPE_DEPTH] adds len2=-1,len // br.ctop is repeat/until mov ret0=r0 ;; // RAW of cfm when len=0 cmp.eq p8,p0=r0,len // check for zero length .save ar.lc, saved_lc mov saved_lc=ar.lc // preserve ar.lc (slow) (p8) br.ret.spnt.many rp // empty mempcy() ;; add enddst=dst,len // first byte after end of source add endsrc=src,len // first byte after end of destination .save pr, saved_pr mov saved_pr=pr // preserve predicates .body mov dst1=dst // copy because of rotation mov ar.ec=PIPE_DEPTH mov pr.rot=1<<16 // p16=true all others are false mov src1=src // copy because of rotation mov ar.lc=len2 // initialize lc for small count cmp.lt p10,p7=COPY_BREAK,len // if len > COPY_BREAK then long copy xor tmp=src,dst // same alignment test prepare (p10) br.cond.dptk .long_copy_user ;; // RAW pr.rot/p16 ? // // Now we do the byte by byte loop with software pipeline // // p7 is necessarily false by now 1: EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) br.ctop.dptk.few 1b ;; mov ar.lc=saved_lc mov pr=saved_pr,0xffffffffffff0000 mov ar.pfs=saved_pfs // restore ar.ec br.ret.sptk.many rp // end of short memcpy // // Not 8-byte aligned // .diff_align_copy_user: // At this point we know we have more than 16 bytes to copy // and also that src and dest do _not_ have the same alignment. and src2=0x7,src1 // src offset and dst2=0x7,dst1 // dst offset ;; // The basic idea is that we copy byte-by-byte at the head so // that we can reach 8-byte alignment for both src1 and dst1. // Then copy the body using software pipelined 8-byte copy, // shifting the two back-to-back words right and left, then copy // the tail by copying byte-by-byte. // // Fault handling. If the byte-by-byte at the head fails on the // load, then restart and finish the pipleline by copying zeros // to the dst1. Then copy zeros for the rest of dst1. // If 8-byte software pipeline fails on the load, do the same as // failure_in3 does. If the byte-by-byte at the tail fails, it is // handled simply by failure_in_pipe1. // // The case p14 represents the source has more bytes in the // the first word (by the shifted part), whereas the p15 needs to // copy some bytes from the 2nd word of the source that has the // tail of the 1st of the destination. // // // Optimization. If dst1 is 8-byte aligned (quite common), we don't need // to copy the head to dst1, to start 8-byte copy software pipeline. // We know src1 is not 8-byte aligned in this case. // cmp.eq p14,p15=r0,dst2 (p15) br.cond.spnt 1f ;; sub t1=8,src2 mov t2=src2 ;; shl rshift=t2,3 sub len1=len,t1 // set len1 ;; sub lshift=64,rshift ;; br.cond.spnt .word_copy_user ;; 1: cmp.leu p14,p15=src2,dst2 sub t1=dst2,src2 ;; .pred.rel "mutex", p14, p15 (p14) sub word1=8,src2 // (8 - src offset) (p15) sub t1=r0,t1 // absolute value (p15) sub word1=8,dst2 // (8 - dst offset) ;; // For the case p14, we don't need to copy the shifted part to // the 1st word of destination. sub t2=8,t1 (p14) sub word1=word1,t1 ;; sub len1=len,word1 // resulting len (p15) shl rshift=t1,3 // in bits (p14) shl rshift=t2,3 ;; (p14) sub len1=len1,t1 adds cnt=-1,word1 ;; sub lshift=64,rshift mov ar.ec=PIPE_DEPTH mov pr.rot=1<<16 // p16=true all others are false mov ar.lc=cnt ;; 2: EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1) EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) br.ctop.dptk.few 2b ;; clrrrb ;; .word_copy_user: cmp.gtu p9,p0=16,len1 (p9) br.cond.spnt 4f // if (16 > len1) skip 8-byte copy ;; shr.u cnt=len1,3 // number of 64-bit words ;; adds cnt=-1,cnt ;; .pred.rel "mutex", p14, p15 (p14) sub src1=src1,t2 (p15) sub src1=src1,t1 // // Now both src1 and dst1 point to an 8-byte aligned address. And // we have more than 8 bytes to copy. // mov ar.lc=cnt mov ar.ec=PIPE_DEPTH mov pr.rot=1<<16 // p16=true all others are false ;; 3: // // The pipleline consists of 3 stages: // 1 (p16): Load a word from src1 // 2 (EPI_1): Shift right pair, saving to tmp // 3 (EPI): Store tmp to dst1 // // To make it simple, use at least 2 (p16) loops to set up val1[n] // because we need 2 back-to-back val1[] to get tmp. // Note that this implies EPI_2 must be p18 or greater. // #define EPI_1 p[PIPE_DEPTH-2] #define SWITCH(pred, shift) cmp.eq pred,p0=shift,rshift #define CASE(pred, shift) \ (pred) br.cond.spnt .copy_user_bit##shift #define BODY(rshift) \ .copy_user_bit##rshift: \ 1: \ EX(.failure_out,(EPI) st8 [dst1]=tmp,8); \ (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \ EX(3f,(p16) ld8 val1[1]=[src1],8); \ (p16) mov val1[0]=r0; \ br.ctop.dptk 1b; \ ;; \ br.cond.sptk.many .diff_align_do_tail; \ 2: \ (EPI) st8 [dst1]=tmp,8; \ (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \ 3: \ (p16) mov val1[1]=r0; \ (p16) mov val1[0]=r0; \ br.ctop.dptk 2b; \ ;; \ br.cond.sptk.many .failure_in2 // // Since the instruction 'shrp' requires a fixed 128-bit value // specifying the bits to shift, we need to provide 7 cases // below. // SWITCH(p6, 8) SWITCH(p7, 16) SWITCH(p8, 24) SWITCH(p9, 32) SWITCH(p10, 40) SWITCH(p11, 48) SWITCH(p12, 56) ;; CASE(p6, 8) CASE(p7, 16) CASE(p8, 24) CASE(p9, 32) CASE(p10, 40) CASE(p11, 48) CASE(p12, 56) ;; BODY(8) BODY(16) BODY(24) BODY(32) BODY(40) BODY(48) BODY(56) ;; .diff_align_do_tail: .pred.rel "mutex", p14, p15 (p14) sub src1=src1,t1 (p14) adds dst1=-8,dst1 (p15) sub dst1=dst1,t1 ;; 4: // Tail correction. // // The problem with this piplelined loop is that the last word is not // loaded and thus parf of the last word written is not correct. // To fix that, we simply copy the tail byte by byte. sub len1=endsrc,src1,1 clrrrb ;; mov ar.ec=PIPE_DEPTH mov pr.rot=1<<16 // p16=true all others are false mov ar.lc=len1 ;; 5: EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) br.ctop.dptk.few 5b ;; mov ar.lc=saved_lc mov pr=saved_pr,0xffffffffffff0000 mov ar.pfs=saved_pfs br.ret.sptk.many rp // // Beginning of long mempcy (i.e. > 16 bytes) // .long_copy_user: tbit.nz p6,p7=src1,0 // odd alignment and tmp=7,tmp ;; cmp.eq p10,p8=r0,tmp mov len1=len // copy because of rotation (p8) br.cond.dpnt .diff_align_copy_user ;; // At this point we know we have more than 16 bytes to copy // and also that both src and dest have the same alignment // which may not be the one we want. So for now we must move // forward slowly until we reach 16byte alignment: no need to // worry about reaching the end of buffer. // EX(.failure_in1,(p6) ld1 val1[0]=[src1],1) // 1-byte aligned (p6) adds len1=-1,len1;; tbit.nz p7,p0=src1,1 ;; EX(.failure_in1,(p7) ld2 val1[1]=[src1],2) // 2-byte aligned (p7) adds len1=-2,len1;; tbit.nz p8,p0=src1,2 ;; // // Stop bit not required after ld4 because if we fail on ld4 // we have never executed the ld1, therefore st1 is not executed. // EX(.failure_in1,(p8) ld4 val2[0]=[src1],4) // 4-byte aligned ;; EX(.failure_out,(p6) st1 [dst1]=val1[0],1) tbit.nz p9,p0=src1,3 ;; // // Stop bit not required after ld8 because if we fail on ld8 // we have never executed the ld2, therefore st2 is not executed. // EX(.failure_in1,(p9) ld8 val2[1]=[src1],8) // 8-byte aligned EX(.failure_out,(p7) st2 [dst1]=val1[1],2) (p8) adds len1=-4,len1 ;; EX(.failure_out, (p8) st4 [dst1]=val2[0],4) (p9) adds len1=-8,len1;; shr.u cnt=len1,4 // number of 128-bit (2x64bit) words ;; EX(.failure_out, (p9) st8 [dst1]=val2[1],8) tbit.nz p6,p0=len1,3 cmp.eq p7,p0=r0,cnt adds tmp=-1,cnt // br.ctop is repeat/until (p7) br.cond.dpnt .dotail // we have less than 16 bytes left ;; adds src2=8,src1 adds dst2=8,dst1 mov ar.lc=tmp ;; // // 16bytes/iteration // 2: EX(.failure_in3,(p16) ld8 val1[0]=[src1],16) (p16) ld8 val2[0]=[src2],16 EX(.failure_out, (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16) (EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16 br.ctop.dptk 2b ;; // RAW on src1 when fall through from loop // // Tail correction based on len only // // No matter where we come from (loop or test) the src1 pointer // is 16 byte aligned AND we have less than 16 bytes to copy. // .dotail: EX(.failure_in1,(p6) ld8 val1[0]=[src1],8) // at least 8 bytes tbit.nz p7,p0=len1,2 ;; EX(.failure_in1,(p7) ld4 val1[1]=[src1],4) // at least 4 bytes tbit.nz p8,p0=len1,1 ;; EX(.failure_in1,(p8) ld2 val2[0]=[src1],2) // at least 2 bytes tbit.nz p9,p0=len1,0 ;; EX(.failure_out, (p6) st8 [dst1]=val1[0],8) ;; EX(.failure_in1,(p9) ld1 val2[1]=[src1]) // only 1 byte left mov ar.lc=saved_lc ;; EX(.failure_out,(p7) st4 [dst1]=val1[1],4) mov pr=saved_pr,0xffffffffffff0000 ;; EX(.failure_out, (p8) st2 [dst1]=val2[0],2) mov ar.pfs=saved_pfs ;; EX(.failure_out, (p9) st1 [dst1]=val2[1]) br.ret.sptk.many rp // // Here we handle the case where the byte by byte copy fails // on the load. // Several factors make the zeroing of the rest of the buffer kind of // tricky: // - the pipeline: loads/stores are not in sync (pipeline) // // In the same loop iteration, the dst1 pointer does not directly // reflect where the faulty load was. // // - pipeline effect // When you get a fault on load, you may have valid data from // previous loads not yet store in transit. Such data must be // store normally before moving onto zeroing the rest. // // - single/multi dispersal independence. // // solution: // - we don't disrupt the pipeline, i.e. data in transit in // the software pipeline will be eventually move to memory. // We simply replace the load with a simple mov and keep the // pipeline going. We can't really do this inline because // p16 is always reset to 1 when lc > 0. // .failure_in_pipe1: sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied 1: (p16) mov val1[0]=r0 (EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1 br.ctop.dptk 1b ;; mov pr=saved_pr,0xffffffffffff0000 mov ar.lc=saved_lc mov ar.pfs=saved_pfs br.ret.sptk.many rp // // This is the case where the byte by byte copy fails on the load // when we copy the head. We need to finish the pipeline and copy // zeros for the rest of the destination. Since this happens // at the top we still need to fill the body and tail. .failure_in_pipe2: sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied 2: (p16) mov val1[0]=r0 (EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1 br.ctop.dptk 2b ;; sub len=enddst,dst1,1 // precompute len br.cond.dptk.many .failure_in1bis ;; // // Here we handle the head & tail part when we check for alignment. // The following code handles only the load failures. The // main diffculty comes from the fact that loads/stores are // scheduled. So when you fail on a load, the stores corresponding // to previous successful loads must be executed. // // However some simplifications are possible given the way // things work. // // 1) HEAD // Theory of operation: // // Page A | Page B // ---------|----- // 1|8 x // 1 2|8 x // 4|8 x // 1 4|8 x // 2 4|8 x // 1 2 4|8 x // |1 // |2 x // |4 x // // page_size >= 4k (2^12). (x means 4, 2, 1) // Here we suppose Page A exists and Page B does not. // // As we move towards eight byte alignment we may encounter faults. // The numbers on each page show the size of the load (current alignment). // // Key point: // - if you fail on 1, 2, 4 then you have never executed any smaller // size loads, e.g. failing ld4 means no ld1 nor ld2 executed // before. // // This allows us to simplify the cleanup code, because basically you // only have to worry about "pending" stores in the case of a failing // ld8(). Given the way the code is written today, this means only // worry about st2, st4. There we can use the information encapsulated // into the predicates. // // Other key point: // - if you fail on the ld8 in the head, it means you went straight // to it, i.e. 8byte alignment within an unexisting page. // Again this comes from the fact that if you crossed just for the ld8 then // you are 8byte aligned but also 16byte align, therefore you would // either go for the 16byte copy loop OR the ld8 in the tail part. // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible // because it would mean you had 15bytes to copy in which case you // would have defaulted to the byte by byte copy. // // // 2) TAIL // Here we now we have less than 16 bytes AND we are either 8 or 16 byte // aligned. // // Key point: // This means that we either: // - are right on a page boundary // OR // - are at more than 16 bytes from a page boundary with // at most 15 bytes to copy: no chance of crossing. // // This allows us to assume that if we fail on a load we haven't possibly // executed any of the previous (tail) ones, so we don't need to do // any stores. For instance, if we fail on ld2, this means we had // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4. // // This means that we are in a situation similar the a fault in the // head part. That's nice! // .failure_in1: sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied sub len=endsrc,src1,1 // // we know that ret0 can never be zero at this point // because we failed why trying to do a load, i.e. there is still // some work to do. // The failure_in1bis and length problem is taken care of at the // calling side. // ;; .failure_in1bis: // from (.failure_in3) mov ar.lc=len // Continue with a stupid byte store. ;; 5: st1 [dst1]=r0,1 br.cloop.dptk 5b ;; mov pr=saved_pr,0xffffffffffff0000 mov ar.lc=saved_lc mov ar.pfs=saved_pfs br.ret.sptk.many rp // // Here we simply restart the loop but instead // of doing loads we fill the pipeline with zeroes // We can't simply store r0 because we may have valid // data in transit in the pipeline. // ar.lc and ar.ec are setup correctly at this point // // we MUST use src1/endsrc here and not dst1/enddst because // of the pipeline effect. // .failure_in3: sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied ;; 2: (p16) mov val1[0]=r0 (p16) mov val2[0]=r0 (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16 (EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16 br.ctop.dptk 2b ;; cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ? sub len=enddst,dst1,1 // precompute len (p6) br.cond.dptk .failure_in1bis ;; mov pr=saved_pr,0xffffffffffff0000 mov ar.lc=saved_lc mov ar.pfs=saved_pfs br.ret.sptk.many rp .failure_in2: sub ret0=endsrc,src1 cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ? sub len=enddst,dst1,1 // precompute len (p6) br.cond.dptk .failure_in1bis ;; mov pr=saved_pr,0xffffffffffff0000 mov ar.lc=saved_lc mov ar.pfs=saved_pfs br.ret.sptk.many rp // // handling of failures on stores: that's the easy part // .failure_out: sub ret0=enddst,dst1 mov pr=saved_pr,0xffffffffffff0000 mov ar.lc=saved_lc mov ar.pfs=saved_pfs br.ret.sptk.many rp END(__copy_user)