/* * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights * reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the NetLogic * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __NLM_HAL_HALDEFS_H__ #define __NLM_HAL_HALDEFS_H__ /* * This file contains platform specific memory mapped IO implementation * and will provide a way to read 32/64 bit memory mapped registers in * all ABIs */ #if !defined(CONFIG_64BIT) && defined(CONFIG_CPU_XLP) #error "o32 compile not supported on XLP yet" #endif /* * For o32 compilation, we have to disable interrupts and enable KX bit to * access 64 bit addresses or data. * * We need to disable interrupts because we save just the lower 32 bits of * registers in interrupt handling. So if we get hit by an interrupt while * using the upper 32 bits of a register, we lose. */ static inline uint32_t nlm_save_flags_kx(void) { return change_c0_status(ST0_KX | ST0_IE, ST0_KX); } static inline uint32_t nlm_save_flags_cop2(void) { return change_c0_status(ST0_CU2 | ST0_IE, ST0_CU2); } static inline void nlm_restore_flags(uint32_t sr) { write_c0_status(sr); } /* * The n64 implementations are simple, the o32 implementations when they * are added, will have to disable interrupts and enable KX before doing * 64 bit ops. */ static inline uint32_t nlm_read_reg(uint64_t base, uint32_t reg) { volatile uint32_t *addr = (volatile uint32_t *)(long)base + reg; return *addr; } static inline void nlm_write_reg(uint64_t base, uint32_t reg, uint32_t val) { volatile uint32_t *addr = (volatile uint32_t *)(long)base + reg; *addr = val; } static inline uint64_t nlm_read_reg64(uint64_t base, uint32_t reg) { uint64_t addr = base + (reg >> 1) * sizeof(uint64_t); volatile uint64_t *ptr = (volatile uint64_t *)(long)addr; return *ptr; } static inline void nlm_write_reg64(uint64_t base, uint32_t reg, uint64_t val) { uint64_t addr = base + (reg >> 1) * sizeof(uint64_t); volatile uint64_t *ptr = (volatile uint64_t *)(long)addr; *ptr = val; } /* * Routines to store 32/64 bit values to 64 bit addresses, * used when going thru XKPHYS to access registers */ static inline uint32_t nlm_read_reg_xkphys(uint64_t base, uint32_t reg) { return nlm_read_reg(base, reg); } static inline void nlm_write_reg_xkphys(uint64_t base, uint32_t reg, uint32_t val) { nlm_write_reg(base, reg, val); } static inline uint64_t nlm_read_reg64_xkphys(uint64_t base, uint32_t reg) { return nlm_read_reg64(base, reg); } static inline void nlm_write_reg64_xkphys(uint64_t base, uint32_t reg, uint64_t val) { nlm_write_reg64(base, reg, val); } /* Location where IO base is mapped */ extern uint64_t nlm_io_base; #if defined(CONFIG_CPU_XLP) static inline uint64_t nlm_pcicfg_base(uint32_t devoffset) { return nlm_io_base + devoffset; } static inline uint64_t nlm_xkphys_map_pcibar0(uint64_t pcibase) { uint64_t paddr; paddr = nlm_read_reg(pcibase, 0x4) & ~0xfu; return (uint64_t)0x9000000000000000 | paddr; } #elif defined(CONFIG_CPU_XLR) static inline uint64_t nlm_mmio_base(uint32_t devoffset) { return nlm_io_base + devoffset; } #endif #endif