/* * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. * * Authors: * Alexander Graf * Kevin Wolf * Paul Mackerras * * Description: * Functions relating to running KVM on Book 3S processors where * we don't have access to hypervisor mode, and we run the guest * in problem state (user mode). * * This file is derived from arch/powerpc/kvm/44x.c, * by Hollis Blanchard . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "trace.h" /* #define EXIT_DEBUG */ /* #define DEBUG_EXT */ static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, ulong msr); /* Some compatibility defines */ #ifdef CONFIG_PPC_BOOK3S_32 #define MSR_USER32 MSR_USER #define MSR_USER64 MSR_USER #define HW_PAGE_SIZE PAGE_SIZE #endif void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { #ifdef CONFIG_PPC_BOOK3S_64 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); memcpy(&get_paca()->shadow_vcpu, to_book3s(vcpu)->shadow_vcpu, sizeof(get_paca()->shadow_vcpu)); svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; svcpu_put(svcpu); #endif vcpu->cpu = smp_processor_id(); #ifdef CONFIG_PPC_BOOK3S_32 current->thread.kvm_shadow_vcpu = to_book3s(vcpu)->shadow_vcpu; #endif } void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) { #ifdef CONFIG_PPC_BOOK3S_64 struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); memcpy(to_book3s(vcpu)->shadow_vcpu, &get_paca()->shadow_vcpu, sizeof(get_paca()->shadow_vcpu)); to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; svcpu_put(svcpu); #endif kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); vcpu->cpu = -1; } int kvmppc_core_check_requests(struct kvm_vcpu *vcpu) { int r = 1; /* Indicate we want to get back into the guest */ /* We misuse TLB_FLUSH to indicate that we want to clear all shadow cache entries */ if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) kvmppc_mmu_pte_flush(vcpu, 0, 0); return r; } /************* MMU Notifiers *************/ int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) { trace_kvm_unmap_hva(hva); /* * Flush all shadow tlb entries everywhere. This is slow, but * we are 100% sure that we catch the to be unmapped page */ kvm_flush_remote_tlbs(kvm); return 0; } int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) { /* kvm_unmap_hva flushes everything anyways */ kvm_unmap_hva(kvm, start); return 0; } int kvm_age_hva(struct kvm *kvm, unsigned long hva) { /* XXX could be more clever ;) */ return 0; } int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) { /* XXX could be more clever ;) */ return 0; } void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) { /* The page will get remapped properly on its next fault */ kvm_unmap_hva(kvm, hva); } /*****************************************/ static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) { ulong smsr = vcpu->arch.shared->msr; /* Guest MSR values */ smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE; /* Process MSR values */ smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; /* External providers the guest reserved */ smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext); /* 64-bit Process MSR values */ #ifdef CONFIG_PPC_BOOK3S_64 smsr |= MSR_ISF | MSR_HV; #endif vcpu->arch.shadow_msr = smsr; } void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) { ulong old_msr = vcpu->arch.shared->msr; #ifdef EXIT_DEBUG printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); #endif msr &= to_book3s(vcpu)->msr_mask; vcpu->arch.shared->msr = msr; kvmppc_recalc_shadow_msr(vcpu); if (msr & MSR_POW) { if (!vcpu->arch.pending_exceptions) { kvm_vcpu_block(vcpu); clear_bit(KVM_REQ_UNHALT, &vcpu->requests); vcpu->stat.halt_wakeup++; /* Unset POW bit after we woke up */ msr &= ~MSR_POW; vcpu->arch.shared->msr = msr; } } if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) != (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { kvmppc_mmu_flush_segments(vcpu); kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); /* Preload magic page segment when in kernel mode */ if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { struct kvm_vcpu_arch *a = &vcpu->arch; if (msr & MSR_DR) kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); else kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); } } /* * When switching from 32 to 64-bit, we may have a stale 32-bit * magic page around, we need to flush it. Typically 32-bit magic * page will be instanciated when calling into RTAS. Note: We * assume that such transition only happens while in kernel mode, * ie, we never transition from user 32-bit to kernel 64-bit with * a 32-bit magic page around. */ if (vcpu->arch.magic_page_pa && !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { /* going from RTAS to normal kernel code */ kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, ~0xFFFUL); } /* Preload FPU if it's enabled */ if (vcpu->arch.shared->msr & MSR_FP) kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); } void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) { u32 host_pvr; vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; vcpu->arch.pvr = pvr; #ifdef CONFIG_PPC_BOOK3S_64 if ((pvr >= 0x330000) && (pvr < 0x70330000)) { kvmppc_mmu_book3s_64_init(vcpu); if (!to_book3s(vcpu)->hior_explicit) to_book3s(vcpu)->hior = 0xfff00000; to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; vcpu->arch.cpu_type = KVM_CPU_3S_64; } else #endif { kvmppc_mmu_book3s_32_init(vcpu); if (!to_book3s(vcpu)->hior_explicit) to_book3s(vcpu)->hior = 0; to_book3s(vcpu)->msr_mask = 0xffffffffULL; vcpu->arch.cpu_type = KVM_CPU_3S_32; } kvmppc_sanity_check(vcpu); /* If we are in hypervisor level on 970, we can tell the CPU to * treat DCBZ as 32 bytes store */ vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && !strcmp(cur_cpu_spec->platform, "ppc970")) vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; /* Cell performs badly if MSR_FEx are set. So let's hope nobody really needs them in a VM on Cell and force disable them. */ if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); #ifdef CONFIG_PPC_BOOK3S_32 /* 32 bit Book3S always has 32 byte dcbz */ vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; #endif /* On some CPUs we can execute paired single operations natively */ asm ( "mfpvr %0" : "=r"(host_pvr)); switch (host_pvr) { case 0x00080200: /* lonestar 2.0 */ case 0x00088202: /* lonestar 2.2 */ case 0x70000100: /* gekko 1.0 */ case 0x00080100: /* gekko 2.0 */ case 0x00083203: /* gekko 2.3a */ case 0x00083213: /* gekko 2.3b */ case 0x00083204: /* gekko 2.4 */ case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ case 0x00087200: /* broadway */ vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; /* Enable HID2.PSE - in case we need it later */ mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); } } /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to * emulate 32 bytes dcbz length. * * The Book3s_64 inventors also realized this case and implemented a special bit * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. * * My approach here is to patch the dcbz instruction on executing pages. */ static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) { struct page *hpage; u64 hpage_offset; u32 *page; int i; hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); if (is_error_page(hpage)) return; hpage_offset = pte->raddr & ~PAGE_MASK; hpage_offset &= ~0xFFFULL; hpage_offset /= 4; get_page(hpage); page = kmap_atomic(hpage); /* patch dcbz into reserved instruction, so we trap */ for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) if ((page[i] & 0xff0007ff) == INS_DCBZ) page[i] &= 0xfffffff7; kunmap_atomic(page); put_page(hpage); } static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) { ulong mp_pa = vcpu->arch.magic_page_pa; if (!(vcpu->arch.shared->msr & MSR_SF)) mp_pa = (uint32_t)mp_pa; if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) { return 1; } return kvm_is_visible_gfn(vcpu->kvm, gfn); } int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, ulong eaddr, int vec) { bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); int r = RESUME_GUEST; int relocated; int page_found = 0; struct kvmppc_pte pte; bool is_mmio = false; bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false; bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false; u64 vsid; relocated = data ? dr : ir; /* Resolve real address if translation turned on */ if (relocated) { page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data); } else { pte.may_execute = true; pte.may_read = true; pte.may_write = true; pte.raddr = eaddr & KVM_PAM; pte.eaddr = eaddr; pte.vpage = eaddr >> 12; } switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) { case 0: pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); break; case MSR_DR: case MSR_IR: vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR) pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); else pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); pte.vpage |= vsid; if (vsid == -1) page_found = -EINVAL; break; } if (vcpu->arch.mmu.is_dcbz32(vcpu) && (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { /* * If we do the dcbz hack, we have to NX on every execution, * so we can patch the executing code. This renders our guest * NX-less. */ pte.may_execute = !data; } if (page_found == -ENOENT) { /* Page not found in guest PTE entries */ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); vcpu->arch.shared->dsisr = svcpu->fault_dsisr; vcpu->arch.shared->msr |= (svcpu->shadow_srr1 & 0x00000000f8000000ULL); svcpu_put(svcpu); kvmppc_book3s_queue_irqprio(vcpu, vec); } else if (page_found == -EPERM) { /* Storage protection */ struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); vcpu->arch.shared->dsisr = svcpu->fault_dsisr & ~DSISR_NOHPTE; vcpu->arch.shared->dsisr |= DSISR_PROTFAULT; vcpu->arch.shared->msr |= svcpu->shadow_srr1 & 0x00000000f8000000ULL; svcpu_put(svcpu); kvmppc_book3s_queue_irqprio(vcpu, vec); } else if (page_found == -EINVAL) { /* Page not found in guest SLB */ vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); } else if (!is_mmio && kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) { /* The guest's PTE is not mapped yet. Map on the host */ kvmppc_mmu_map_page(vcpu, &pte); if (data) vcpu->stat.sp_storage++; else if (vcpu->arch.mmu.is_dcbz32(vcpu) && (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) kvmppc_patch_dcbz(vcpu, &pte); } else { /* MMIO */ vcpu->stat.mmio_exits++; vcpu->arch.paddr_accessed = pte.raddr; vcpu->arch.vaddr_accessed = pte.eaddr; r = kvmppc_emulate_mmio(run, vcpu); if ( r == RESUME_HOST_NV ) r = RESUME_HOST; } return r; } static inline int get_fpr_index(int i) { return i * TS_FPRWIDTH; } /* Give up external provider (FPU, Altivec, VSX) */ void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) { struct thread_struct *t = ¤t->thread; u64 *vcpu_fpr = vcpu->arch.fpr; #ifdef CONFIG_VSX u64 *vcpu_vsx = vcpu->arch.vsr; #endif u64 *thread_fpr = (u64*)t->fpr; int i; /* * VSX instructions can access FP and vector registers, so if * we are giving up VSX, make sure we give up FP and VMX as well. */ if (msr & MSR_VSX) msr |= MSR_FP | MSR_VEC; msr &= vcpu->arch.guest_owned_ext; if (!msr) return; #ifdef DEBUG_EXT printk(KERN_INFO "Giving up ext 0x%lx\n", msr); #endif if (msr & MSR_FP) { /* * Note that on CPUs with VSX, giveup_fpu stores * both the traditional FP registers and the added VSX * registers into thread.fpr[]. */ giveup_fpu(current); for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++) vcpu_fpr[i] = thread_fpr[get_fpr_index(i)]; vcpu->arch.fpscr = t->fpscr.val; #ifdef CONFIG_VSX if (cpu_has_feature(CPU_FTR_VSX)) for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++) vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1]; #endif } #ifdef CONFIG_ALTIVEC if (msr & MSR_VEC) { giveup_altivec(current); memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr)); vcpu->arch.vscr = t->vscr; } #endif vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); kvmppc_recalc_shadow_msr(vcpu); } static int kvmppc_read_inst(struct kvm_vcpu *vcpu) { ulong srr0 = kvmppc_get_pc(vcpu); u32 last_inst = kvmppc_get_last_inst(vcpu); int ret; ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false); if (ret == -ENOENT) { ulong msr = vcpu->arch.shared->msr; msr = kvmppc_set_field(msr, 33, 33, 1); msr = kvmppc_set_field(msr, 34, 36, 0); vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0); kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE); return EMULATE_AGAIN; } return EMULATE_DONE; } static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr) { /* Need to do paired single emulation? */ if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)) return EMULATE_DONE; /* Read out the instruction */ if (kvmppc_read_inst(vcpu) == EMULATE_DONE) /* Need to emulate */ return EMULATE_FAIL; return EMULATE_AGAIN; } /* Handle external providers (FPU, Altivec, VSX) */ static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, ulong msr) { struct thread_struct *t = ¤t->thread; u64 *vcpu_fpr = vcpu->arch.fpr; #ifdef CONFIG_VSX u64 *vcpu_vsx = vcpu->arch.vsr; #endif u64 *thread_fpr = (u64*)t->fpr; int i; /* When we have paired singles, we emulate in software */ if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) return RESUME_GUEST; if (!(vcpu->arch.shared->msr & msr)) { kvmppc_book3s_queue_irqprio(vcpu, exit_nr); return RESUME_GUEST; } if (msr == MSR_VSX) { /* No VSX? Give an illegal instruction interrupt */ #ifdef CONFIG_VSX if (!cpu_has_feature(CPU_FTR_VSX)) #endif { kvmppc_core_queue_program(vcpu, SRR1_PROGILL); return RESUME_GUEST; } /* * We have to load up all the FP and VMX registers before * we can let the guest use VSX instructions. */ msr = MSR_FP | MSR_VEC | MSR_VSX; } /* See if we already own all the ext(s) needed */ msr &= ~vcpu->arch.guest_owned_ext; if (!msr) return RESUME_GUEST; #ifdef DEBUG_EXT printk(KERN_INFO "Loading up ext 0x%lx\n", msr); #endif current->thread.regs->msr |= msr; if (msr & MSR_FP) { for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++) thread_fpr[get_fpr_index(i)] = vcpu_fpr[i]; #ifdef CONFIG_VSX for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++) thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i]; #endif t->fpscr.val = vcpu->arch.fpscr; t->fpexc_mode = 0; kvmppc_load_up_fpu(); } if (msr & MSR_VEC) { #ifdef CONFIG_ALTIVEC memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr)); t->vscr = vcpu->arch.vscr; t->vrsave = -1; kvmppc_load_up_altivec(); #endif } vcpu->arch.guest_owned_ext |= msr; kvmppc_recalc_shadow_msr(vcpu); return RESUME_GUEST; } int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, unsigned int exit_nr) { int r = RESUME_HOST; int s; vcpu->stat.sum_exits++; run->exit_reason = KVM_EXIT_UNKNOWN; run->ready_for_interrupt_injection = 1; /* We get here with MSR.EE=1 */ trace_kvm_exit(exit_nr, vcpu); kvm_guest_exit(); switch (exit_nr) { case BOOK3S_INTERRUPT_INST_STORAGE: { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); ulong shadow_srr1 = svcpu->shadow_srr1; vcpu->stat.pf_instruc++; #ifdef CONFIG_PPC_BOOK3S_32 /* We set segments as unused segments when invalidating them. So * treat the respective fault as segment fault. */ if (svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT] == SR_INVALID) { kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); r = RESUME_GUEST; svcpu_put(svcpu); break; } #endif svcpu_put(svcpu); /* only care about PTEG not found errors, but leave NX alone */ if (shadow_srr1 & 0x40000000) { r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr); vcpu->stat.sp_instruc++; } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { /* * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, * so we can't use the NX bit inside the guest. Let's cross our fingers, * that no guest that needs the dcbz hack does NX. */ kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); r = RESUME_GUEST; } else { vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000; kvmppc_book3s_queue_irqprio(vcpu, exit_nr); r = RESUME_GUEST; } break; } case BOOK3S_INTERRUPT_DATA_STORAGE: { ulong dar = kvmppc_get_fault_dar(vcpu); struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); u32 fault_dsisr = svcpu->fault_dsisr; vcpu->stat.pf_storage++; #ifdef CONFIG_PPC_BOOK3S_32 /* We set segments as unused segments when invalidating them. So * treat the respective fault as segment fault. */ if ((svcpu->sr[dar >> SID_SHIFT]) == SR_INVALID) { kvmppc_mmu_map_segment(vcpu, dar); r = RESUME_GUEST; svcpu_put(svcpu); break; } #endif svcpu_put(svcpu); /* The only case we need to handle is missing shadow PTEs */ if (fault_dsisr & DSISR_NOHPTE) { r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr); } else { vcpu->arch.shared->dar = dar; vcpu->arch.shared->dsisr = fault_dsisr; kvmppc_book3s_queue_irqprio(vcpu, exit_nr); r = RESUME_GUEST; } break; } case BOOK3S_INTERRUPT_DATA_SEGMENT: if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu); kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_SEGMENT); } r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_INST_SEGMENT: if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_SEGMENT); } r = RESUME_GUEST; break; /* We're good on these - the host merely wanted to get our attention */ case BOOK3S_INTERRUPT_DECREMENTER: case BOOK3S_INTERRUPT_HV_DECREMENTER: vcpu->stat.dec_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_EXTERNAL: case BOOK3S_INTERRUPT_EXTERNAL_LEVEL: case BOOK3S_INTERRUPT_EXTERNAL_HV: vcpu->stat.ext_intr_exits++; r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PERFMON: r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_PROGRAM: case BOOK3S_INTERRUPT_H_EMUL_ASSIST: { enum emulation_result er; struct kvmppc_book3s_shadow_vcpu *svcpu; ulong flags; program_interrupt: svcpu = svcpu_get(vcpu); flags = svcpu->shadow_srr1 & 0x1f0000ull; svcpu_put(svcpu); if (vcpu->arch.shared->msr & MSR_PR) { #ifdef EXIT_DEBUG printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu)); #endif if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { kvmppc_core_queue_program(vcpu, flags); r = RESUME_GUEST; break; } } vcpu->stat.emulated_inst_exits++; er = kvmppc_emulate_instruction(run, vcpu); switch (er) { case EMULATE_DONE: r = RESUME_GUEST_NV; break; case EMULATE_AGAIN: r = RESUME_GUEST; break; case EMULATE_FAIL: printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n", __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu)); kvmppc_core_queue_program(vcpu, flags); r = RESUME_GUEST; break; case EMULATE_DO_MMIO: run->exit_reason = KVM_EXIT_MMIO; r = RESUME_HOST_NV; break; case EMULATE_EXIT_USER: r = RESUME_HOST_NV; break; default: BUG(); } break; } case BOOK3S_INTERRUPT_SYSCALL: if (vcpu->arch.papr_enabled && (kvmppc_get_last_inst(vcpu) == 0x44000022) && !(vcpu->arch.shared->msr & MSR_PR)) { /* SC 1 papr hypercalls */ ulong cmd = kvmppc_get_gpr(vcpu, 3); int i; #ifdef CONFIG_KVM_BOOK3S_64_PR if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { r = RESUME_GUEST; break; } #endif run->papr_hcall.nr = cmd; for (i = 0; i < 9; ++i) { ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); run->papr_hcall.args[i] = gpr; } run->exit_reason = KVM_EXIT_PAPR_HCALL; vcpu->arch.hcall_needed = 1; r = RESUME_HOST; } else if (vcpu->arch.osi_enabled && (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { /* MOL hypercalls */ u64 *gprs = run->osi.gprs; int i; run->exit_reason = KVM_EXIT_OSI; for (i = 0; i < 32; i++) gprs[i] = kvmppc_get_gpr(vcpu, i); vcpu->arch.osi_needed = 1; r = RESUME_HOST_NV; } else if (!(vcpu->arch.shared->msr & MSR_PR) && (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { /* KVM PV hypercalls */ kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); r = RESUME_GUEST; } else { /* Guest syscalls */ vcpu->stat.syscall_exits++; kvmppc_book3s_queue_irqprio(vcpu, exit_nr); r = RESUME_GUEST; } break; case BOOK3S_INTERRUPT_FP_UNAVAIL: case BOOK3S_INTERRUPT_ALTIVEC: case BOOK3S_INTERRUPT_VSX: { int ext_msr = 0; switch (exit_nr) { case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break; case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break; case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break; } switch (kvmppc_check_ext(vcpu, exit_nr)) { case EMULATE_DONE: /* everything ok - let's enable the ext */ r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); break; case EMULATE_FAIL: /* we need to emulate this instruction */ goto program_interrupt; break; default: /* nothing to worry about - go again */ break; } break; } case BOOK3S_INTERRUPT_ALIGNMENT: if (kvmppc_read_inst(vcpu) == EMULATE_DONE) { vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu, kvmppc_get_last_inst(vcpu)); vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu, kvmppc_get_last_inst(vcpu)); kvmppc_book3s_queue_irqprio(vcpu, exit_nr); } r = RESUME_GUEST; break; case BOOK3S_INTERRUPT_MACHINE_CHECK: case BOOK3S_INTERRUPT_TRACE: kvmppc_book3s_queue_irqprio(vcpu, exit_nr); r = RESUME_GUEST; break; default: { struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); ulong shadow_srr1 = svcpu->shadow_srr1; svcpu_put(svcpu); /* Ugh - bork here! What did we get? */ printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); r = RESUME_HOST; BUG(); break; } } if (!(r & RESUME_HOST)) { /* To avoid clobbering exit_reason, only check for signals if * we aren't already exiting to userspace for some other * reason. */ /* * Interrupts could be timers for the guest which we have to * inject again, so let's postpone them until we're in the guest * and if we really did time things so badly, then we just exit * again due to a host external interrupt. */ local_irq_disable(); s = kvmppc_prepare_to_enter(vcpu); if (s <= 0) { local_irq_enable(); r = s; } else { kvmppc_lazy_ee_enable(); } } trace_kvm_book3s_reenter(r, vcpu); return r; } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); int i; sregs->pvr = vcpu->arch.pvr; sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { for (i = 0; i < 64; i++) { sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; } } else { for (i = 0; i < 16; i++) sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i]; for (i = 0; i < 8; i++) { sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; } } return 0; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); int i; kvmppc_set_pvr(vcpu, sregs->pvr); vcpu3s->sdr1 = sregs->u.s.sdr1; if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { for (i = 0; i < 64; i++) { vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv, sregs->u.s.ppc64.slb[i].slbe); } } else { for (i = 0; i < 16; i++) { vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); } for (i = 0; i < 8; i++) { kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, (u32)sregs->u.s.ppc32.ibat[i]); kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, (u32)sregs->u.s.ppc32.dbat[i]); kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); } } /* Flush the MMU after messing with the segments */ kvmppc_mmu_pte_flush(vcpu, 0, 0); return 0; } int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; switch (id) { case KVM_REG_PPC_HIOR: *val = get_reg_val(id, to_book3s(vcpu)->hior); break; #ifdef CONFIG_VSX case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: { long int i = id - KVM_REG_PPC_VSR0; if (!cpu_has_feature(CPU_FTR_VSX)) { r = -ENXIO; break; } val->vsxval[0] = vcpu->arch.fpr[i]; val->vsxval[1] = vcpu->arch.vsr[i]; break; } #endif /* CONFIG_VSX */ default: r = -EINVAL; break; } return r; } int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; switch (id) { case KVM_REG_PPC_HIOR: to_book3s(vcpu)->hior = set_reg_val(id, *val); to_book3s(vcpu)->hior_explicit = true; break; #ifdef CONFIG_VSX case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: { long int i = id - KVM_REG_PPC_VSR0; if (!cpu_has_feature(CPU_FTR_VSX)) { r = -ENXIO; break; } vcpu->arch.fpr[i] = val->vsxval[0]; vcpu->arch.vsr[i] = val->vsxval[1]; break; } #endif /* CONFIG_VSX */ default: r = -EINVAL; break; } return r; } int kvmppc_core_check_processor_compat(void) { return 0; } struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) { struct kvmppc_vcpu_book3s *vcpu_book3s; struct kvm_vcpu *vcpu; int err = -ENOMEM; unsigned long p; vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); if (!vcpu_book3s) goto out; vcpu_book3s->shadow_vcpu = kzalloc(sizeof(*vcpu_book3s->shadow_vcpu), GFP_KERNEL); if (!vcpu_book3s->shadow_vcpu) goto free_vcpu; vcpu = &vcpu_book3s->vcpu; err = kvm_vcpu_init(vcpu, kvm, id); if (err) goto free_shadow_vcpu; p = __get_free_page(GFP_KERNEL|__GFP_ZERO); /* the real shared page fills the last 4k of our page */ vcpu->arch.shared = (void*)(p + PAGE_SIZE - 4096); if (!p) goto uninit_vcpu; #ifdef CONFIG_PPC_BOOK3S_64 /* default to book3s_64 (970fx) */ vcpu->arch.pvr = 0x3C0301; #else /* default to book3s_32 (750) */ vcpu->arch.pvr = 0x84202; #endif kvmppc_set_pvr(vcpu, vcpu->arch.pvr); vcpu->arch.slb_nr = 64; vcpu->arch.shadow_msr = MSR_USER64; err = kvmppc_mmu_init(vcpu); if (err < 0) goto uninit_vcpu; return vcpu; uninit_vcpu: kvm_vcpu_uninit(vcpu); free_shadow_vcpu: kfree(vcpu_book3s->shadow_vcpu); free_vcpu: vfree(vcpu_book3s); out: return ERR_PTR(err); } void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); kvm_vcpu_uninit(vcpu); kfree(vcpu_book3s->shadow_vcpu); vfree(vcpu_book3s); } int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) { int ret; double fpr[32][TS_FPRWIDTH]; unsigned int fpscr; int fpexc_mode; #ifdef CONFIG_ALTIVEC vector128 vr[32]; vector128 vscr; unsigned long uninitialized_var(vrsave); int used_vr; #endif #ifdef CONFIG_VSX int used_vsr; #endif ulong ext_msr; /* Check if we can run the vcpu at all */ if (!vcpu->arch.sane) { kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR; ret = -EINVAL; goto out; } /* * Interrupts could be timers for the guest which we have to inject * again, so let's postpone them until we're in the guest and if we * really did time things so badly, then we just exit again due to * a host external interrupt. */ local_irq_disable(); ret = kvmppc_prepare_to_enter(vcpu); if (ret <= 0) { local_irq_enable(); goto out; } /* Save FPU state in stack */ if (current->thread.regs->msr & MSR_FP) giveup_fpu(current); memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr)); fpscr = current->thread.fpscr.val; fpexc_mode = current->thread.fpexc_mode; #ifdef CONFIG_ALTIVEC /* Save Altivec state in stack */ used_vr = current->thread.used_vr; if (used_vr) { if (current->thread.regs->msr & MSR_VEC) giveup_altivec(current); memcpy(vr, current->thread.vr, sizeof(current->thread.vr)); vscr = current->thread.vscr; vrsave = current->thread.vrsave; } #endif #ifdef CONFIG_VSX /* Save VSX state in stack */ used_vsr = current->thread.used_vsr; if (used_vsr && (current->thread.regs->msr & MSR_VSX)) __giveup_vsx(current); #endif /* Remember the MSR with disabled extensions */ ext_msr = current->thread.regs->msr; /* Preload FPU if it's enabled */ if (vcpu->arch.shared->msr & MSR_FP) kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); kvmppc_lazy_ee_enable(); ret = __kvmppc_vcpu_run(kvm_run, vcpu); /* No need for kvm_guest_exit. It's done in handle_exit. We also get here with interrupts enabled. */ /* Make sure we save the guest FPU/Altivec/VSX state */ kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); current->thread.regs->msr = ext_msr; /* Restore FPU/VSX state from stack */ memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr)); current->thread.fpscr.val = fpscr; current->thread.fpexc_mode = fpexc_mode; #ifdef CONFIG_ALTIVEC /* Restore Altivec state from stack */ if (used_vr && current->thread.used_vr) { memcpy(current->thread.vr, vr, sizeof(current->thread.vr)); current->thread.vscr = vscr; current->thread.vrsave = vrsave; } current->thread.used_vr = used_vr; #endif #ifdef CONFIG_VSX current->thread.used_vsr = used_vsr; #endif out: vcpu->mode = OUTSIDE_GUEST_MODE; return ret; } /* * Get (and clear) the dirty memory log for a memory slot. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { struct kvm_memory_slot *memslot; struct kvm_vcpu *vcpu; ulong ga, ga_end; int is_dirty = 0; int r; unsigned long n; mutex_lock(&kvm->slots_lock); r = kvm_get_dirty_log(kvm, log, &is_dirty); if (r) goto out; /* If nothing is dirty, don't bother messing with page tables. */ if (is_dirty) { memslot = id_to_memslot(kvm->memslots, log->slot); ga = memslot->base_gfn << PAGE_SHIFT; ga_end = ga + (memslot->npages << PAGE_SHIFT); kvm_for_each_vcpu(n, vcpu, kvm) kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); n = kvm_dirty_bitmap_bytes(memslot); memset(memslot->dirty_bitmap, 0, n); } r = 0; out: mutex_unlock(&kvm->slots_lock); return r; } #ifdef CONFIG_PPC64 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info) { /* No flags */ info->flags = 0; /* SLB is always 64 entries */ info->slb_size = 64; /* Standard 4k base page size segment */ info->sps[0].page_shift = 12; info->sps[0].slb_enc = 0; info->sps[0].enc[0].page_shift = 12; info->sps[0].enc[0].pte_enc = 0; /* Standard 16M large page size segment */ info->sps[1].page_shift = 24; info->sps[1].slb_enc = SLB_VSID_L; info->sps[1].enc[0].page_shift = 24; info->sps[1].enc[0].pte_enc = 0; return 0; } #endif /* CONFIG_PPC64 */ void kvmppc_core_free_memslot(struct kvm_memory_slot *free, struct kvm_memory_slot *dont) { } int kvmppc_core_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) { return 0; } int kvmppc_core_prepare_memory_region(struct kvm *kvm, struct kvm_memory_slot *memslot, struct kvm_userspace_memory_region *mem) { return 0; } void kvmppc_core_commit_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, const struct kvm_memory_slot *old) { } void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot) { } static unsigned int kvm_global_user_count = 0; static DEFINE_SPINLOCK(kvm_global_user_count_lock); int kvmppc_core_init_vm(struct kvm *kvm) { #ifdef CONFIG_PPC64 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); INIT_LIST_HEAD(&kvm->arch.rtas_tokens); #endif if (firmware_has_feature(FW_FEATURE_SET_MODE)) { spin_lock(&kvm_global_user_count_lock); if (++kvm_global_user_count == 1) pSeries_disable_reloc_on_exc(); spin_unlock(&kvm_global_user_count_lock); } return 0; } void kvmppc_core_destroy_vm(struct kvm *kvm) { #ifdef CONFIG_PPC64 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); #endif if (firmware_has_feature(FW_FEATURE_SET_MODE)) { spin_lock(&kvm_global_user_count_lock); BUG_ON(kvm_global_user_count == 0); if (--kvm_global_user_count == 0) pSeries_enable_reloc_on_exc(); spin_unlock(&kvm_global_user_count_lock); } } static int kvmppc_book3s_init(void) { int r; r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), 0, THIS_MODULE); if (r) return r; r = kvmppc_mmu_hpte_sysinit(); return r; } static void kvmppc_book3s_exit(void) { kvmppc_mmu_hpte_sysexit(); kvm_exit(); } module_init(kvmppc_book3s_init); module_exit(kvmppc_book3s_exit);