/* * Copyright IBM Corp. 2004, 2011 * Author(s): Martin Schwidefsky , * Holger Smolinski , * Thomas Spatzier , * * This file contains interrupt related functions. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "entry.h" DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_stat, irq_stat); EXPORT_PER_CPU_SYMBOL_GPL(irq_stat); struct irq_class { char *name; char *desc; }; /* * The list of "main" irq classes on s390. This is the list of interrupts * that appear both in /proc/stat ("intr" line) and /proc/interrupts. * Historically only external and I/O interrupts have been part of /proc/stat. * We can't add the split external and I/O sub classes since the first field * in the "intr" line in /proc/stat is supposed to be the sum of all other * fields. * Since the external and I/O interrupt fields are already sums we would end * up with having a sum which accounts each interrupt twice. */ static const struct irq_class irqclass_main_desc[NR_IRQS] = { [EXTERNAL_INTERRUPT] = {.name = "EXT"}, [IO_INTERRUPT] = {.name = "I/O"} }; /* * The list of split external and I/O interrupts that appear only in * /proc/interrupts. * In addition this list contains non external / I/O events like NMIs. */ static const struct irq_class irqclass_sub_desc[NR_ARCH_IRQS] = { [IRQEXT_CLK] = {.name = "CLK", .desc = "[EXT] Clock Comparator"}, [IRQEXT_EXC] = {.name = "EXC", .desc = "[EXT] External Call"}, [IRQEXT_EMS] = {.name = "EMS", .desc = "[EXT] Emergency Signal"}, [IRQEXT_TMR] = {.name = "TMR", .desc = "[EXT] CPU Timer"}, [IRQEXT_TLA] = {.name = "TAL", .desc = "[EXT] Timing Alert"}, [IRQEXT_PFL] = {.name = "PFL", .desc = "[EXT] Pseudo Page Fault"}, [IRQEXT_DSD] = {.name = "DSD", .desc = "[EXT] DASD Diag"}, [IRQEXT_VRT] = {.name = "VRT", .desc = "[EXT] Virtio"}, [IRQEXT_SCP] = {.name = "SCP", .desc = "[EXT] Service Call"}, [IRQEXT_IUC] = {.name = "IUC", .desc = "[EXT] IUCV"}, [IRQEXT_CMS] = {.name = "CMS", .desc = "[EXT] CPU-Measurement: Sampling"}, [IRQEXT_CMC] = {.name = "CMC", .desc = "[EXT] CPU-Measurement: Counter"}, [IRQEXT_CMR] = {.name = "CMR", .desc = "[EXT] CPU-Measurement: RI"}, [IRQIO_CIO] = {.name = "CIO", .desc = "[I/O] Common I/O Layer Interrupt"}, [IRQIO_QAI] = {.name = "QAI", .desc = "[I/O] QDIO Adapter Interrupt"}, [IRQIO_DAS] = {.name = "DAS", .desc = "[I/O] DASD"}, [IRQIO_C15] = {.name = "C15", .desc = "[I/O] 3215"}, [IRQIO_C70] = {.name = "C70", .desc = "[I/O] 3270"}, [IRQIO_TAP] = {.name = "TAP", .desc = "[I/O] Tape"}, [IRQIO_VMR] = {.name = "VMR", .desc = "[I/O] Unit Record Devices"}, [IRQIO_LCS] = {.name = "LCS", .desc = "[I/O] LCS"}, [IRQIO_CLW] = {.name = "CLW", .desc = "[I/O] CLAW"}, [IRQIO_CTC] = {.name = "CTC", .desc = "[I/O] CTC"}, [IRQIO_APB] = {.name = "APB", .desc = "[I/O] AP Bus"}, [IRQIO_ADM] = {.name = "ADM", .desc = "[I/O] EADM Subchannel"}, [IRQIO_CSC] = {.name = "CSC", .desc = "[I/O] CHSC Subchannel"}, [IRQIO_PCI] = {.name = "PCI", .desc = "[I/O] PCI Interrupt" }, [IRQIO_MSI] = {.name = "MSI", .desc = "[I/O] MSI Interrupt" }, [IRQIO_VIR] = {.name = "VIR", .desc = "[I/O] Virtual I/O Devices"}, [NMI_NMI] = {.name = "NMI", .desc = "[NMI] Machine Check"}, [CPU_RST] = {.name = "RST", .desc = "[CPU] CPU Restart"}, }; /* * show_interrupts is needed by /proc/interrupts. */ int show_interrupts(struct seq_file *p, void *v) { int irq = *(loff_t *) v; int cpu; get_online_cpus(); if (irq == 0) { seq_puts(p, " "); for_each_online_cpu(cpu) seq_printf(p, "CPU%d ", cpu); seq_putc(p, '\n'); } if (irq < NR_IRQS) { seq_printf(p, "%s: ", irqclass_main_desc[irq].name); for_each_online_cpu(cpu) seq_printf(p, "%10u ", kstat_cpu(cpu).irqs[irq]); seq_putc(p, '\n'); goto skip_arch_irqs; } for (irq = 0; irq < NR_ARCH_IRQS; irq++) { seq_printf(p, "%s: ", irqclass_sub_desc[irq].name); for_each_online_cpu(cpu) seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).irqs[irq]); if (irqclass_sub_desc[irq].desc) seq_printf(p, " %s", irqclass_sub_desc[irq].desc); seq_putc(p, '\n'); } skip_arch_irqs: put_online_cpus(); return 0; } /* * Switch to the asynchronous interrupt stack for softirq execution. */ asmlinkage void do_softirq(void) { unsigned long flags, old, new; if (in_interrupt()) return; local_irq_save(flags); if (local_softirq_pending()) { /* Get current stack pointer. */ asm volatile("la %0,0(15)" : "=a" (old)); /* Check against async. stack address range. */ new = S390_lowcore.async_stack; if (((new - old) >> (PAGE_SHIFT + THREAD_ORDER)) != 0) { /* Need to switch to the async. stack. */ new -= STACK_FRAME_OVERHEAD; ((struct stack_frame *) new)->back_chain = old; asm volatile(" la 15,0(%0)\n" " basr 14,%2\n" " la 15,0(%1)\n" : : "a" (new), "a" (old), "a" (__do_softirq) : "0", "1", "2", "3", "4", "5", "14", "cc", "memory" ); } else { /* We are already on the async stack. */ __do_softirq(); } } local_irq_restore(flags); } #ifdef CONFIG_PROC_FS void init_irq_proc(void) { if (proc_mkdir("irq", NULL)) create_prof_cpu_mask(); } #endif /* * ext_int_hash[index] is the list head for all external interrupts that hash * to this index. */ static struct list_head ext_int_hash[256]; struct ext_int_info { ext_int_handler_t handler; u16 code; struct list_head entry; struct rcu_head rcu; }; /* ext_int_hash_lock protects the handler lists for external interrupts */ DEFINE_SPINLOCK(ext_int_hash_lock); static void __init init_external_interrupts(void) { int idx; for (idx = 0; idx < ARRAY_SIZE(ext_int_hash); idx++) INIT_LIST_HEAD(&ext_int_hash[idx]); } static inline int ext_hash(u16 code) { return (code + (code >> 9)) & 0xff; } int register_external_interrupt(u16 code, ext_int_handler_t handler) { struct ext_int_info *p; unsigned long flags; int index; p = kmalloc(sizeof(*p), GFP_ATOMIC); if (!p) return -ENOMEM; p->code = code; p->handler = handler; index = ext_hash(code); spin_lock_irqsave(&ext_int_hash_lock, flags); list_add_rcu(&p->entry, &ext_int_hash[index]); spin_unlock_irqrestore(&ext_int_hash_lock, flags); return 0; } EXPORT_SYMBOL(register_external_interrupt); int unregister_external_interrupt(u16 code, ext_int_handler_t handler) { struct ext_int_info *p; unsigned long flags; int index = ext_hash(code); spin_lock_irqsave(&ext_int_hash_lock, flags); list_for_each_entry_rcu(p, &ext_int_hash[index], entry) { if (p->code == code && p->handler == handler) { list_del_rcu(&p->entry); kfree_rcu(p, rcu); } } spin_unlock_irqrestore(&ext_int_hash_lock, flags); return 0; } EXPORT_SYMBOL(unregister_external_interrupt); void __irq_entry do_extint(struct pt_regs *regs, struct ext_code ext_code, unsigned int param32, unsigned long param64) { struct pt_regs *old_regs; struct ext_int_info *p; int index; old_regs = set_irq_regs(regs); irq_enter(); if (S390_lowcore.int_clock >= S390_lowcore.clock_comparator) { /* Serve timer interrupts first. */ clock_comparator_work(); } kstat_incr_irqs_this_cpu(EXTERNAL_INTERRUPT, NULL); if (ext_code.code != 0x1004) __get_cpu_var(s390_idle).nohz_delay = 1; index = ext_hash(ext_code.code); rcu_read_lock(); list_for_each_entry_rcu(p, &ext_int_hash[index], entry) if (likely(p->code == ext_code.code)) p->handler(ext_code, param32, param64); rcu_read_unlock(); irq_exit(); set_irq_regs(old_regs); } void __init init_IRQ(void) { init_external_interrupts(); } static DEFINE_SPINLOCK(sc_irq_lock); static int sc_irq_refcount; void service_subclass_irq_register(void) { spin_lock(&sc_irq_lock); if (!sc_irq_refcount) ctl_set_bit(0, 9); sc_irq_refcount++; spin_unlock(&sc_irq_lock); } EXPORT_SYMBOL(service_subclass_irq_register); void service_subclass_irq_unregister(void) { spin_lock(&sc_irq_lock); sc_irq_refcount--; if (!sc_irq_refcount) ctl_clear_bit(0, 9); spin_unlock(&sc_irq_lock); } EXPORT_SYMBOL(service_subclass_irq_unregister); static DEFINE_SPINLOCK(ma_subclass_lock); static int ma_subclass_refcount; void measurement_alert_subclass_register(void) { spin_lock(&ma_subclass_lock); if (!ma_subclass_refcount) ctl_set_bit(0, 5); ma_subclass_refcount++; spin_unlock(&ma_subclass_lock); } EXPORT_SYMBOL(measurement_alert_subclass_register); void measurement_alert_subclass_unregister(void) { spin_lock(&ma_subclass_lock); ma_subclass_refcount--; if (!ma_subclass_refcount) ctl_clear_bit(0, 5); spin_unlock(&ma_subclass_lock); } EXPORT_SYMBOL(measurement_alert_subclass_unregister); #ifdef CONFIG_SMP void synchronize_irq(unsigned int irq) { /* * Not needed, the handler is protected by a lock and IRQs that occur * after the handler is deleted are just NOPs. */ } EXPORT_SYMBOL_GPL(synchronize_irq); #endif #ifndef CONFIG_PCI /* Only PCI devices have dynamically-defined IRQ handlers */ int request_irq(unsigned int irq, irq_handler_t handler, unsigned long irqflags, const char *devname, void *dev_id) { return -EINVAL; } EXPORT_SYMBOL_GPL(request_irq); void free_irq(unsigned int irq, void *dev_id) { WARN_ON(1); } EXPORT_SYMBOL_GPL(free_irq); void enable_irq(unsigned int irq) { WARN_ON(1); } EXPORT_SYMBOL_GPL(enable_irq); void disable_irq(unsigned int irq) { WARN_ON(1); } EXPORT_SYMBOL_GPL(disable_irq); #endif /* !CONFIG_PCI */ void disable_irq_nosync(unsigned int irq) { disable_irq(irq); } EXPORT_SYMBOL_GPL(disable_irq_nosync); unsigned long probe_irq_on(void) { return 0; } EXPORT_SYMBOL_GPL(probe_irq_on); int probe_irq_off(unsigned long val) { return 0; } EXPORT_SYMBOL_GPL(probe_irq_off); unsigned int probe_irq_mask(unsigned long val) { return val; } EXPORT_SYMBOL_GPL(probe_irq_mask);