/* * Copyright 2010 Tilera Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for * more details. */ #include #include #include #include #include #include /* Generic DMA mapping functions: */ /* * Allocate what Linux calls "coherent" memory, which for us just * means uncached. */ void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp) { u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32); int node = dev_to_node(dev); int order = get_order(size); struct page *pg; dma_addr_t addr; gfp |= __GFP_ZERO; /* * By forcing NUMA node 0 for 32-bit masks we ensure that the * high 32 bits of the resulting PA will be zero. If the mask * size is, e.g., 24, we may still not be able to guarantee a * suitable memory address, in which case we will return NULL. * But such devices are uncommon. */ if (dma_mask <= DMA_BIT_MASK(32)) node = 0; pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED); if (pg == NULL) return NULL; addr = page_to_phys(pg); if (addr + size > dma_mask) { homecache_free_pages(addr, order); return NULL; } *dma_handle = addr; return page_address(pg); } EXPORT_SYMBOL(dma_alloc_coherent); /* * Free memory that was allocated with dma_alloc_coherent. */ void dma_free_coherent(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle) { homecache_free_pages((unsigned long)vaddr, get_order(size)); } EXPORT_SYMBOL(dma_free_coherent); /* * The map routines "map" the specified address range for DMA * accesses. The memory belongs to the device after this call is * issued, until it is unmapped with dma_unmap_single. * * We don't need to do any mapping, we just flush the address range * out of the cache and return a DMA address. * * The unmap routines do whatever is necessary before the processor * accesses the memory again, and must be called before the driver * touches the memory. We can get away with a cache invalidate if we * can count on nothing having been touched. */ /* Flush a PA range from cache page by page. */ static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size) { struct page *page = pfn_to_page(PFN_DOWN(dma_addr)); size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1)); while ((ssize_t)size > 0) { /* Flush the page. */ homecache_flush_cache(page++, 0); /* Figure out if we need to continue on the next page. */ size -= bytesleft; bytesleft = PAGE_SIZE; } } /* * dma_map_single can be passed any memory address, and there appear * to be no alignment constraints. * * There is a chance that the start of the buffer will share a cache * line with some other data that has been touched in the meantime. */ dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, enum dma_data_direction direction) { dma_addr_t dma_addr = __pa(ptr); BUG_ON(!valid_dma_direction(direction)); WARN_ON(size == 0); __dma_map_pa_range(dma_addr, size); return dma_addr; } EXPORT_SYMBOL(dma_map_single); void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction) { BUG_ON(!valid_dma_direction(direction)); } EXPORT_SYMBOL(dma_unmap_single); int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction) { struct scatterlist *sg; int i; BUG_ON(!valid_dma_direction(direction)); WARN_ON(nents == 0 || sglist->length == 0); for_each_sg(sglist, sg, nents, i) { sg->dma_address = sg_phys(sg); __dma_map_pa_range(sg->dma_address, sg->length); } return nents; } EXPORT_SYMBOL(dma_map_sg); void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, enum dma_data_direction direction) { BUG_ON(!valid_dma_direction(direction)); } EXPORT_SYMBOL(dma_unmap_sg); dma_addr_t dma_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction) { BUG_ON(!valid_dma_direction(direction)); BUG_ON(offset + size > PAGE_SIZE); homecache_flush_cache(page, 0); return page_to_pa(page) + offset; } EXPORT_SYMBOL(dma_map_page); void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, enum dma_data_direction direction) { BUG_ON(!valid_dma_direction(direction)); } EXPORT_SYMBOL(dma_unmap_page); void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { BUG_ON(!valid_dma_direction(direction)); } EXPORT_SYMBOL(dma_sync_single_for_cpu); void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction) { unsigned long start = PFN_DOWN(dma_handle); unsigned long end = PFN_DOWN(dma_handle + size - 1); unsigned long i; BUG_ON(!valid_dma_direction(direction)); for (i = start; i <= end; ++i) homecache_flush_cache(pfn_to_page(i), 0); } EXPORT_SYMBOL(dma_sync_single_for_device); void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, enum dma_data_direction direction) { BUG_ON(!valid_dma_direction(direction)); WARN_ON(nelems == 0 || sg[0].length == 0); } EXPORT_SYMBOL(dma_sync_sg_for_cpu); /* * Flush and invalidate cache for scatterlist. */ void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, int nelems, enum dma_data_direction direction) { struct scatterlist *sg; int i; BUG_ON(!valid_dma_direction(direction)); WARN_ON(nelems == 0 || sglist->length == 0); for_each_sg(sglist, sg, nelems, i) { dma_sync_single_for_device(dev, sg->dma_address, sg_dma_len(sg), direction); } } EXPORT_SYMBOL(dma_sync_sg_for_device); void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction) { dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction); } EXPORT_SYMBOL(dma_sync_single_range_for_cpu); void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction) { dma_sync_single_for_device(dev, dma_handle + offset, size, direction); } EXPORT_SYMBOL(dma_sync_single_range_for_device); /* * dma_alloc_noncoherent() returns non-cacheable memory, so there's no * need to do any flushing here. */ void dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction) { } EXPORT_SYMBOL(dma_cache_sync);