/* * linux/arch/unicore32/mm/init.c * * Copyright (C) 2010 GUAN Xue-tao * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mm.h" static unsigned long phys_initrd_start __initdata = 0x01000000; static unsigned long phys_initrd_size __initdata = SZ_8M; static int __init early_initrd(char *p) { unsigned long start, size; char *endp; start = memparse(p, &endp); if (*endp == ',') { size = memparse(endp + 1, NULL); phys_initrd_start = start; phys_initrd_size = size; } return 0; } early_param("initrd", early_initrd); /* * This keeps memory configuration data used by a couple memory * initialization functions, as well as show_mem() for the skipping * of holes in the memory map. It is populated by uc32_add_memory(). */ struct meminfo meminfo; void show_mem(unsigned int filter) { int free = 0, total = 0, reserved = 0; int shared = 0, cached = 0, slab = 0, i; struct meminfo *mi = &meminfo; printk(KERN_DEFAULT "Mem-info:\n"); show_free_areas(filter); for_each_bank(i, mi) { struct membank *bank = &mi->bank[i]; unsigned int pfn1, pfn2; struct page *page, *end; pfn1 = bank_pfn_start(bank); pfn2 = bank_pfn_end(bank); page = pfn_to_page(pfn1); end = pfn_to_page(pfn2 - 1) + 1; do { total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (PageSlab(page)) slab++; else if (!page_count(page)) free++; else shared += page_count(page) - 1; page++; } while (page < end); } printk(KERN_DEFAULT "%d pages of RAM\n", total); printk(KERN_DEFAULT "%d free pages\n", free); printk(KERN_DEFAULT "%d reserved pages\n", reserved); printk(KERN_DEFAULT "%d slab pages\n", slab); printk(KERN_DEFAULT "%d pages shared\n", shared); printk(KERN_DEFAULT "%d pages swap cached\n", cached); } static void __init find_limits(unsigned long *min, unsigned long *max_low, unsigned long *max_high) { struct meminfo *mi = &meminfo; int i; *min = -1UL; *max_low = *max_high = 0; for_each_bank(i, mi) { struct membank *bank = &mi->bank[i]; unsigned long start, end; start = bank_pfn_start(bank); end = bank_pfn_end(bank); if (*min > start) *min = start; if (*max_high < end) *max_high = end; if (bank->highmem) continue; if (*max_low < end) *max_low = end; } } static void __init uc32_bootmem_init(unsigned long start_pfn, unsigned long end_pfn) { struct memblock_region *reg; unsigned int boot_pages; phys_addr_t bitmap; pg_data_t *pgdat; /* * Allocate the bootmem bitmap page. This must be in a region * of memory which has already been mapped. */ boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn); bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES, __pfn_to_phys(end_pfn)); /* * Initialise the bootmem allocator, handing the * memory banks over to bootmem. */ node_set_online(0); pgdat = NODE_DATA(0); init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn); /* Free the lowmem regions from memblock into bootmem. */ for_each_memblock(memory, reg) { unsigned long start = memblock_region_memory_base_pfn(reg); unsigned long end = memblock_region_memory_end_pfn(reg); if (end >= end_pfn) end = end_pfn; if (start >= end) break; free_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT); } /* Reserve the lowmem memblock reserved regions in bootmem. */ for_each_memblock(reserved, reg) { unsigned long start = memblock_region_reserved_base_pfn(reg); unsigned long end = memblock_region_reserved_end_pfn(reg); if (end >= end_pfn) end = end_pfn; if (start >= end) break; reserve_bootmem(__pfn_to_phys(start), (end - start) << PAGE_SHIFT, BOOTMEM_DEFAULT); } } static void __init uc32_bootmem_free(unsigned long min, unsigned long max_low, unsigned long max_high) { unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; struct memblock_region *reg; /* * initialise the zones. */ memset(zone_size, 0, sizeof(zone_size)); /* * The memory size has already been determined. If we need * to do anything fancy with the allocation of this memory * to the zones, now is the time to do it. */ zone_size[0] = max_low - min; /* * Calculate the size of the holes. * holes = node_size - sum(bank_sizes) */ memcpy(zhole_size, zone_size, sizeof(zhole_size)); for_each_memblock(memory, reg) { unsigned long start = memblock_region_memory_base_pfn(reg); unsigned long end = memblock_region_memory_end_pfn(reg); if (start < max_low) { unsigned long low_end = min(end, max_low); zhole_size[0] -= low_end - start; } } /* * Adjust the sizes according to any special requirements for * this machine type. */ arch_adjust_zones(zone_size, zhole_size); free_area_init_node(0, zone_size, min, zhole_size); } int pfn_valid(unsigned long pfn) { return memblock_is_memory(pfn << PAGE_SHIFT); } EXPORT_SYMBOL(pfn_valid); static void uc32_memory_present(void) { } static int __init meminfo_cmp(const void *_a, const void *_b) { const struct membank *a = _a, *b = _b; long cmp = bank_pfn_start(a) - bank_pfn_start(b); return cmp < 0 ? -1 : cmp > 0 ? 1 : 0; } void __init uc32_memblock_init(struct meminfo *mi) { int i; sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL); for (i = 0; i < mi->nr_banks; i++) memblock_add(mi->bank[i].start, mi->bank[i].size); /* Register the kernel text, kernel data and initrd with memblock. */ memblock_reserve(__pa(_text), _end - _text); #ifdef CONFIG_BLK_DEV_INITRD if (phys_initrd_size) { memblock_reserve(phys_initrd_start, phys_initrd_size); /* Now convert initrd to virtual addresses */ initrd_start = __phys_to_virt(phys_initrd_start); initrd_end = initrd_start + phys_initrd_size; } #endif uc32_mm_memblock_reserve(); memblock_allow_resize(); memblock_dump_all(); } void __init bootmem_init(void) { unsigned long min, max_low, max_high; max_low = max_high = 0; find_limits(&min, &max_low, &max_high); uc32_bootmem_init(min, max_low); #ifdef CONFIG_SWIOTLB swiotlb_init(1); #endif /* * Sparsemem tries to allocate bootmem in memory_present(), * so must be done after the fixed reservations */ uc32_memory_present(); /* * sparse_init() needs the bootmem allocator up and running. */ sparse_init(); /* * Now free the memory - free_area_init_node needs * the sparse mem_map arrays initialized by sparse_init() * for memmap_init_zone(), otherwise all PFNs are invalid. */ uc32_bootmem_free(min, max_low, max_high); high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1; /* * This doesn't seem to be used by the Linux memory manager any * more, but is used by ll_rw_block. If we can get rid of it, we * also get rid of some of the stuff above as well. * * Note: max_low_pfn and max_pfn reflect the number of _pages_ in * the system, not the maximum PFN. */ max_low_pfn = max_low - PHYS_PFN_OFFSET; max_pfn = max_high - PHYS_PFN_OFFSET; } static inline int free_area(unsigned long pfn, unsigned long end, char *s) { unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10); for (; pfn < end; pfn++) { struct page *page = pfn_to_page(pfn); ClearPageReserved(page); init_page_count(page); __free_page(page); pages++; } if (size && s) printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); return pages; } static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) { struct page *start_pg, *end_pg; unsigned long pg, pgend; /* * Convert start_pfn/end_pfn to a struct page pointer. */ start_pg = pfn_to_page(start_pfn - 1) + 1; end_pg = pfn_to_page(end_pfn); /* * Convert to physical addresses, and * round start upwards and end downwards. */ pg = PAGE_ALIGN(__pa(start_pg)); pgend = __pa(end_pg) & PAGE_MASK; /* * If there are free pages between these, * free the section of the memmap array. */ if (pg < pgend) free_bootmem(pg, pgend - pg); } /* * The mem_map array can get very big. Free the unused area of the memory map. */ static void __init free_unused_memmap(struct meminfo *mi) { unsigned long bank_start, prev_bank_end = 0; unsigned int i; /* * This relies on each bank being in address order. * The banks are sorted previously in bootmem_init(). */ for_each_bank(i, mi) { struct membank *bank = &mi->bank[i]; bank_start = bank_pfn_start(bank); /* * If we had a previous bank, and there is a space * between the current bank and the previous, free it. */ if (prev_bank_end && prev_bank_end < bank_start) free_memmap(prev_bank_end, bank_start); /* * Align up here since the VM subsystem insists that the * memmap entries are valid from the bank end aligned to * MAX_ORDER_NR_PAGES. */ prev_bank_end = ALIGN(bank_pfn_end(bank), MAX_ORDER_NR_PAGES); } } /* * mem_init() marks the free areas in the mem_map and tells us how much * memory is free. This is done after various parts of the system have * claimed their memory after the kernel image. */ void __init mem_init(void) { unsigned long reserved_pages, free_pages; struct memblock_region *reg; int i; max_mapnr = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map; /* this will put all unused low memory onto the freelists */ free_unused_memmap(&meminfo); totalram_pages += free_all_bootmem(); reserved_pages = free_pages = 0; for_each_bank(i, &meminfo) { struct membank *bank = &meminfo.bank[i]; unsigned int pfn1, pfn2; struct page *page, *end; pfn1 = bank_pfn_start(bank); pfn2 = bank_pfn_end(bank); page = pfn_to_page(pfn1); end = pfn_to_page(pfn2 - 1) + 1; do { if (PageReserved(page)) reserved_pages++; else if (!page_count(page)) free_pages++; page++; } while (page < end); } /* * Since our memory may not be contiguous, calculate the * real number of pages we have in this system */ printk(KERN_INFO "Memory:"); num_physpages = 0; for_each_memblock(memory, reg) { unsigned long pages = memblock_region_memory_end_pfn(reg) - memblock_region_memory_base_pfn(reg); num_physpages += pages; printk(" %ldMB", pages >> (20 - PAGE_SHIFT)); } printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); printk(KERN_NOTICE "Memory: %luk/%luk available, %luk reserved, %luK highmem\n", nr_free_pages() << (PAGE_SHIFT-10), free_pages << (PAGE_SHIFT-10), reserved_pages << (PAGE_SHIFT-10), totalhigh_pages << (PAGE_SHIFT-10)); printk(KERN_NOTICE "Virtual kernel memory layout:\n" " vector : 0x%08lx - 0x%08lx (%4ld kB)\n" " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n" " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n" " modules : 0x%08lx - 0x%08lx (%4ld MB)\n" " .init : 0x%p" " - 0x%p" " (%4d kB)\n" " .text : 0x%p" " - 0x%p" " (%4d kB)\n" " .data : 0x%p" " - 0x%p" " (%4d kB)\n", VECTORS_BASE, VECTORS_BASE + PAGE_SIZE, DIV_ROUND_UP(PAGE_SIZE, SZ_1K), VMALLOC_START, VMALLOC_END, DIV_ROUND_UP((VMALLOC_END - VMALLOC_START), SZ_1M), PAGE_OFFSET, (unsigned long)high_memory, DIV_ROUND_UP(((unsigned long)high_memory - PAGE_OFFSET), SZ_1M), MODULES_VADDR, MODULES_END, DIV_ROUND_UP((MODULES_END - MODULES_VADDR), SZ_1M), __init_begin, __init_end, DIV_ROUND_UP((__init_end - __init_begin), SZ_1K), _stext, _etext, DIV_ROUND_UP((_etext - _stext), SZ_1K), _sdata, _edata, DIV_ROUND_UP((_edata - _sdata), SZ_1K)); BUILD_BUG_ON(TASK_SIZE > MODULES_VADDR); BUG_ON(TASK_SIZE > MODULES_VADDR); if (PAGE_SIZE >= 16384 && num_physpages <= 128) { /* * On a machine this small we won't get * anywhere without overcommit, so turn * it on by default. */ sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; } } void free_initmem(void) { totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)), __phys_to_pfn(__pa(__init_end)), "init"); } #ifdef CONFIG_BLK_DEV_INITRD static int keep_initrd; void free_initrd_mem(unsigned long start, unsigned long end) { if (!keep_initrd) totalram_pages += free_area(__phys_to_pfn(__pa(start)), __phys_to_pfn(__pa(end)), "initrd"); } static int __init keepinitrd_setup(char *__unused) { keep_initrd = 1; return 1; } __setup("keepinitrd", keepinitrd_setup); #endif