/* * linux/arch/i386/mm/pgtable.c */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void show_mem(void) { int total = 0, reserved = 0; int shared = 0, cached = 0; int highmem = 0; struct page *page; pg_data_t *pgdat; unsigned long i; unsigned long flags; printk(KERN_INFO "Mem-info:\n"); show_free_areas(); printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); for_each_online_pgdat(pgdat) { pgdat_resize_lock(pgdat, &flags); for (i = 0; i < pgdat->node_spanned_pages; ++i) { if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) touch_nmi_watchdog(); page = pgdat_page_nr(pgdat, i); total++; if (PageHighMem(page)) highmem++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (page_count(page)) shared += page_count(page) - 1; } pgdat_resize_unlock(pgdat, &flags); } printk(KERN_INFO "%d pages of RAM\n", total); printk(KERN_INFO "%d pages of HIGHMEM\n", highmem); printk(KERN_INFO "%d reserved pages\n", reserved); printk(KERN_INFO "%d pages shared\n", shared); printk(KERN_INFO "%d pages swap cached\n", cached); printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY)); printk(KERN_INFO "%lu pages writeback\n", global_page_state(NR_WRITEBACK)); printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED)); printk(KERN_INFO "%lu pages slab\n", global_page_state(NR_SLAB_RECLAIMABLE) + global_page_state(NR_SLAB_UNRECLAIMABLE)); printk(KERN_INFO "%lu pages pagetables\n", global_page_state(NR_PAGETABLE)); } /* * Associate a virtual page frame with a given physical page frame * and protection flags for that frame. */ static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; pgd = swapper_pg_dir + pgd_index(vaddr); if (pgd_none(*pgd)) { BUG(); return; } pud = pud_offset(pgd, vaddr); if (pud_none(*pud)) { BUG(); return; } pmd = pmd_offset(pud, vaddr); if (pmd_none(*pmd)) { BUG(); return; } pte = pte_offset_kernel(pmd, vaddr); if (pgprot_val(flags)) set_pte_present(&init_mm, vaddr, pte, pfn_pte(pfn, flags)); else pte_clear(&init_mm, vaddr, pte); /* * It's enough to flush this one mapping. * (PGE mappings get flushed as well) */ __flush_tlb_one(vaddr); } /* * Associate a large virtual page frame with a given physical page frame * and protection flags for that frame. pfn is for the base of the page, * vaddr is what the page gets mapped to - both must be properly aligned. * The pmd must already be instantiated. Assumes PAE mode. */ void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */ printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n"); return; /* BUG(); */ } if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */ printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n"); return; /* BUG(); */ } pgd = swapper_pg_dir + pgd_index(vaddr); if (pgd_none(*pgd)) { printk(KERN_WARNING "set_pmd_pfn: pgd_none\n"); return; /* BUG(); */ } pud = pud_offset(pgd, vaddr); pmd = pmd_offset(pud, vaddr); set_pmd(pmd, pfn_pmd(pfn, flags)); /* * It's enough to flush this one mapping. * (PGE mappings get flushed as well) */ __flush_tlb_one(vaddr); } static int fixmaps; unsigned long __FIXADDR_TOP = 0xfffff000; EXPORT_SYMBOL(__FIXADDR_TOP); void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags) { unsigned long address = __fix_to_virt(idx); if (idx >= __end_of_fixed_addresses) { BUG(); return; } set_pte_pfn(address, phys >> PAGE_SHIFT, flags); fixmaps++; } /** * reserve_top_address - reserves a hole in the top of kernel address space * @reserve - size of hole to reserve * * Can be used to relocate the fixmap area and poke a hole in the top * of kernel address space to make room for a hypervisor. */ void reserve_top_address(unsigned long reserve) { BUG_ON(fixmaps > 0); printk(KERN_INFO "Reserving virtual address space above 0x%08x\n", (int)-reserve); __FIXADDR_TOP = -reserve - PAGE_SIZE; __VMALLOC_RESERVE += reserve; } pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) { return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO); } struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address) { struct page *pte; #ifdef CONFIG_HIGHPTE pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0); #else pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0); #endif return pte; } /* * List of all pgd's needed for non-PAE so it can invalidate entries * in both cached and uncached pgd's; not needed for PAE since the * kernel pmd is shared. If PAE were not to share the pmd a similar * tactic would be needed. This is essentially codepath-based locking * against pageattr.c; it is the unique case in which a valid change * of kernel pagetables can't be lazily synchronized by vmalloc faults. * vmalloc faults work because attached pagetables are never freed. * -- wli */ static inline void pgd_list_add(pgd_t *pgd) { struct page *page = virt_to_page(pgd); list_add(&page->lru, &pgd_list); } static inline void pgd_list_del(pgd_t *pgd) { struct page *page = virt_to_page(pgd); list_del(&page->lru); } #if (PTRS_PER_PMD == 1) /* Non-PAE pgd constructor */ static void pgd_ctor(void *pgd) { unsigned long flags; /* !PAE, no pagetable sharing */ memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t)); spin_lock_irqsave(&pgd_lock, flags); /* must happen under lock */ clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD, swapper_pg_dir + USER_PTRS_PER_PGD, KERNEL_PGD_PTRS); paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT, __pa(swapper_pg_dir) >> PAGE_SHIFT, USER_PTRS_PER_PGD, KERNEL_PGD_PTRS); pgd_list_add(pgd); spin_unlock_irqrestore(&pgd_lock, flags); } #else /* PTRS_PER_PMD > 1 */ /* PAE pgd constructor */ static void pgd_ctor(void *pgd) { /* PAE, kernel PMD may be shared */ if (SHARED_KERNEL_PMD) { clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD, swapper_pg_dir + USER_PTRS_PER_PGD, KERNEL_PGD_PTRS); } else { unsigned long flags; memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t)); spin_lock_irqsave(&pgd_lock, flags); pgd_list_add(pgd); spin_unlock_irqrestore(&pgd_lock, flags); } } #endif /* PTRS_PER_PMD */ static void pgd_dtor(void *pgd) { unsigned long flags; /* can be called from interrupt context */ if (SHARED_KERNEL_PMD) return; spin_lock_irqsave(&pgd_lock, flags); pgd_list_del(pgd); spin_unlock_irqrestore(&pgd_lock, flags); } #define UNSHARED_PTRS_PER_PGD \ (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD) #ifdef CONFIG_X86_PAE /* * Mop up any pmd pages which may still be attached to the pgd. * Normally they will be freed by munmap/exit_mmap, but any pmd we * preallocate which never got a corresponding vma will need to be * freed manually. */ static void pgd_mop_up_pmds(pgd_t *pgdp) { int i; for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) { pgd_t pgd = pgdp[i]; if (pgd_val(pgd) != 0) { pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd); pgdp[i] = native_make_pgd(0); paravirt_release_pd(pgd_val(pgd) >> PAGE_SHIFT); pmd_free(pmd); } } } /* * In PAE mode, we need to do a cr3 reload (=tlb flush) when * updating the top-level pagetable entries to guarantee the * processor notices the update. Since this is expensive, and * all 4 top-level entries are used almost immediately in a * new process's life, we just pre-populate them here. * * Also, if we're in a paravirt environment where the kernel pmd is * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate * and initialize the kernel pmds here. */ static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd) { pud_t *pud; unsigned long addr; int i; pud = pud_offset(pgd, 0); for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD; i++, pud++, addr += PUD_SIZE) { pmd_t *pmd = pmd_alloc_one(mm, addr); if (!pmd) { pgd_mop_up_pmds(pgd); return 0; } if (i >= USER_PTRS_PER_PGD) memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]), sizeof(pmd_t) * PTRS_PER_PMD); pud_populate(mm, pud, pmd); } return 1; } #else /* !CONFIG_X86_PAE */ /* No need to prepopulate any pagetable entries in non-PAE modes. */ static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd) { return 1; } static void pgd_mop_up_pmds(pgd_t *pgd) { } #endif /* CONFIG_X86_PAE */ pgd_t *pgd_alloc(struct mm_struct *mm) { pgd_t *pgd = quicklist_alloc(0, GFP_KERNEL, pgd_ctor); mm->pgd = pgd; /* so that alloc_pd can use it */ if (pgd && !pgd_prepopulate_pmd(mm, pgd)) { quicklist_free(0, pgd_dtor, pgd); pgd = NULL; } return pgd; } void pgd_free(pgd_t *pgd) { pgd_mop_up_pmds(pgd); quicklist_free(0, pgd_dtor, pgd); } void check_pgt_cache(void) { quicklist_trim(0, pgd_dtor, 25, 16); } void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte) { paravirt_release_pt(page_to_pfn(pte)); tlb_remove_page(tlb, pte); } #ifdef CONFIG_X86_PAE void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd) { /* This is called just after the pmd has been detached from the pgd, which requires a full tlb flush to be recognized by the CPU. Rather than incurring multiple tlb flushes while the address space is being pulled down, make the tlb gathering machinery do a full flush when we're done. */ tlb->fullmm = 1; paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT); tlb_remove_page(tlb, virt_to_page(pmd)); } #endif