/* * regmap based irq_chip * * Copyright 2011 Wolfson Microelectronics plc * * Author: Mark Brown * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include "internal.h" struct regmap_irq_chip_data { struct mutex lock; struct regmap *map; struct regmap_irq_chip *chip; int irq_base; void *status_reg_buf; unsigned int *status_buf; unsigned int *mask_buf; unsigned int *mask_buf_def; }; static inline const struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data, int irq) { return &data->chip->irqs[irq - data->irq_base]; } static void regmap_irq_lock(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); mutex_lock(&d->lock); } static void regmap_irq_sync_unlock(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); int i, ret; /* * If there's been a change in the mask write it back to the * hardware. We rely on the use of the regmap core cache to * suppress pointless writes. */ for (i = 0; i < d->chip->num_regs; i++) { ret = regmap_update_bits(d->map, d->chip->mask_base + i, d->mask_buf_def[i], d->mask_buf[i]); if (ret != 0) dev_err(d->map->dev, "Failed to sync masks in %x\n", d->chip->mask_base + i); } mutex_unlock(&d->lock); } static void regmap_irq_enable(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->irq); d->mask_buf[irq_data->reg_offset] &= ~irq_data->mask; } static void regmap_irq_disable(struct irq_data *data) { struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data); const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->irq); d->mask_buf[irq_data->reg_offset] |= irq_data->mask; } static struct irq_chip regmap_irq_chip = { .name = "regmap", .irq_bus_lock = regmap_irq_lock, .irq_bus_sync_unlock = regmap_irq_sync_unlock, .irq_disable = regmap_irq_disable, .irq_enable = regmap_irq_enable, }; static irqreturn_t regmap_irq_thread(int irq, void *d) { struct regmap_irq_chip_data *data = d; struct regmap_irq_chip *chip = data->chip; struct regmap *map = data->map; int ret, i; u8 *buf8 = data->status_reg_buf; u16 *buf16 = data->status_reg_buf; u32 *buf32 = data->status_reg_buf; bool handled = false; ret = regmap_bulk_read(map, chip->status_base, data->status_reg_buf, chip->num_regs); if (ret != 0) { dev_err(map->dev, "Failed to read IRQ status: %d\n", ret); return IRQ_NONE; } /* * Ignore masked IRQs and ack if we need to; we ack early so * there is no race between handling and acknowleding the * interrupt. We assume that typically few of the interrupts * will fire simultaneously so don't worry about overhead from * doing a write per register. */ for (i = 0; i < data->chip->num_regs; i++) { switch (map->format.val_bytes) { case 1: data->status_buf[i] = buf8[i]; break; case 2: data->status_buf[i] = buf16[i]; break; case 4: data->status_buf[i] = buf32[i]; break; default: BUG(); return IRQ_NONE; } data->status_buf[i] &= ~data->mask_buf[i]; if (data->status_buf[i] && chip->ack_base) { ret = regmap_write(map, chip->ack_base + i, data->status_buf[i]); if (ret != 0) dev_err(map->dev, "Failed to ack 0x%x: %d\n", chip->ack_base + i, ret); } } for (i = 0; i < chip->num_irqs; i++) { if (data->status_buf[chip->irqs[i].reg_offset] & chip->irqs[i].mask) { handle_nested_irq(data->irq_base + i); handled = true; } } if (handled) return IRQ_HANDLED; else return IRQ_NONE; } /** * regmap_add_irq_chip(): Use standard regmap IRQ controller handling * * map: The regmap for the device. * irq: The IRQ the device uses to signal interrupts * irq_flags: The IRQF_ flags to use for the primary interrupt. * chip: Configuration for the interrupt controller. * data: Runtime data structure for the controller, allocated on success * * Returns 0 on success or an errno on failure. * * In order for this to be efficient the chip really should use a * register cache. The chip driver is responsible for restoring the * register values used by the IRQ controller over suspend and resume. */ int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags, int irq_base, struct regmap_irq_chip *chip, struct regmap_irq_chip_data **data) { struct regmap_irq_chip_data *d; int cur_irq, i; int ret = -ENOMEM; irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0); if (irq_base < 0) { dev_warn(map->dev, "Failed to allocate IRQs: %d\n", irq_base); return irq_base; } d = kzalloc(sizeof(*d), GFP_KERNEL); if (!d) return -ENOMEM; d->status_buf = kzalloc(sizeof(unsigned int) * chip->num_regs, GFP_KERNEL); if (!d->status_buf) goto err_alloc; d->status_reg_buf = kzalloc(map->format.val_bytes * chip->num_regs, GFP_KERNEL); if (!d->status_reg_buf) goto err_alloc; d->mask_buf = kzalloc(sizeof(unsigned int) * chip->num_regs, GFP_KERNEL); if (!d->mask_buf) goto err_alloc; d->mask_buf_def = kzalloc(sizeof(unsigned int) * chip->num_regs, GFP_KERNEL); if (!d->mask_buf_def) goto err_alloc; d->map = map; d->chip = chip; d->irq_base = irq_base; mutex_init(&d->lock); for (i = 0; i < chip->num_irqs; i++) d->mask_buf_def[chip->irqs[i].reg_offset] |= chip->irqs[i].mask; /* Mask all the interrupts by default */ for (i = 0; i < chip->num_regs; i++) { d->mask_buf[i] = d->mask_buf_def[i]; ret = regmap_write(map, chip->mask_base + i, d->mask_buf[i]); if (ret != 0) { dev_err(map->dev, "Failed to set masks in 0x%x: %d\n", chip->mask_base + i, ret); goto err_alloc; } } /* Register them with genirq */ for (cur_irq = irq_base; cur_irq < chip->num_irqs + irq_base; cur_irq++) { irq_set_chip_data(cur_irq, d); irq_set_chip_and_handler(cur_irq, ®map_irq_chip, handle_edge_irq); irq_set_nested_thread(cur_irq, 1); /* ARM needs us to explicitly flag the IRQ as valid * and will set them noprobe when we do so. */ #ifdef CONFIG_ARM set_irq_flags(cur_irq, IRQF_VALID); #else irq_set_noprobe(cur_irq); #endif } ret = request_threaded_irq(irq, NULL, regmap_irq_thread, irq_flags, chip->name, d); if (ret != 0) { dev_err(map->dev, "Failed to request IRQ %d: %d\n", irq, ret); goto err_alloc; } return 0; err_alloc: kfree(d->mask_buf_def); kfree(d->mask_buf); kfree(d->status_reg_buf); kfree(d->status_buf); kfree(d); return ret; } EXPORT_SYMBOL_GPL(regmap_add_irq_chip); /** * regmap_del_irq_chip(): Stop interrupt handling for a regmap IRQ chip * * @irq: Primary IRQ for the device * @d: regmap_irq_chip_data allocated by regmap_add_irq_chip() */ void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d) { if (!d) return; free_irq(irq, d); kfree(d->mask_buf_def); kfree(d->mask_buf); kfree(d->status_reg_buf); kfree(d->status_buf); kfree(d); } EXPORT_SYMBOL_GPL(regmap_del_irq_chip); /** * regmap_irq_chip_get_base(): Retrieve interrupt base for a regmap IRQ chip * * Useful for drivers to request their own IRQs. * * @data: regmap_irq controller to operate on. */ int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data) { return data->irq_base; } EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);