/* * U300 clock implementation * Copyright (C) 2007-2012 ST-Ericsson AB * License terms: GNU General Public License (GPL) version 2 * Author: Linus Walleij * Author: Jonas Aaberg */ #include #include #include #include #include #include #include /* * The clocking hierarchy currently looks like this. * NOTE: the idea is NOT to show how the clocks are routed on the chip! * The ideas is to show dependencies, so a clock higher up in the * hierarchy has to be on in order for another clock to be on. Now, * both CPU and DMA can actually be on top of the hierarchy, and that * is not modeled currently. Instead we have the backbone AMBA bus on * top. This bus cannot be programmed in any way but conceptually it * needs to be active for the bridges and devices to transport data. * * Please be aware that a few clocks are hw controlled, which mean that * the hw itself can turn on/off or change the rate of the clock when * needed! * * AMBA bus * | * +- CPU * +- FSMC NANDIF NAND Flash interface * +- SEMI Shared Memory interface * +- ISP Image Signal Processor (U335 only) * +- CDS (U335 only) * +- DMA Direct Memory Access Controller * +- AAIF APP/ACC Inteface (Mobile Scalable Link, MSL) * +- APEX * +- VIDEO_ENC AVE2/3 Video Encoder * +- XGAM Graphics Accelerator Controller * +- AHB * | * +- ahb:0 AHB Bridge * | | * | +- ahb:1 INTCON Interrupt controller * | +- ahb:3 MSPRO Memory Stick Pro controller * | +- ahb:4 EMIF External Memory interface * | * +- fast:0 FAST bridge * | | * | +- fast:1 MMCSD MMC/SD card reader controller * | +- fast:2 I2S0 PCM I2S channel 0 controller * | +- fast:3 I2S1 PCM I2S channel 1 controller * | +- fast:4 I2C0 I2C channel 0 controller * | +- fast:5 I2C1 I2C channel 1 controller * | +- fast:6 SPI SPI controller * | +- fast:7 UART1 Secondary UART (U335 only) * | * +- slow:0 SLOW bridge * | * +- slow:1 SYSCON (not possible to control) * +- slow:2 WDOG Watchdog * +- slow:3 UART0 primary UART * +- slow:4 TIMER_APP Application timer - used in Linux * +- slow:5 KEYPAD controller * +- slow:6 GPIO controller * +- slow:7 RTC controller * +- slow:8 BT Bus Tracer (not used currently) * +- slow:9 EH Event Handler (not used currently) * +- slow:a TIMER_ACC Access style timer (not used currently) * +- slow:b PPM (U335 only, what is that?) */ /* Global syscon virtual base */ static void __iomem *syscon_vbase; /** * struct clk_syscon - U300 syscon clock * @hw: corresponding clock hardware entry * @hw_ctrld: whether this clock is hardware controlled (for refcount etc) * and does not need any magic pokes to be enabled/disabled * @reset: state holder, whether this block's reset line is asserted or not * @res_reg: reset line enable/disable flag register * @res_bit: bit for resetting or taking this consumer out of reset * @en_reg: clock line enable/disable flag register * @en_bit: bit for enabling/disabling this consumer clock line * @clk_val: magic value to poke in the register to enable/disable * this one clock */ struct clk_syscon { struct clk_hw hw; bool hw_ctrld; bool reset; void __iomem *res_reg; u8 res_bit; void __iomem *en_reg; u8 en_bit; u16 clk_val; }; #define to_syscon(_hw) container_of(_hw, struct clk_syscon, hw) static DEFINE_SPINLOCK(syscon_resetreg_lock); /* * Reset control functions. We remember if a block has been * taken out of reset and don't remove the reset assertion again * and vice versa. Currently we only remove resets so the * enablement function is defined out. */ static void syscon_block_reset_enable(struct clk_syscon *sclk) { unsigned long iflags; u16 val; /* Not all blocks support resetting */ if (!sclk->res_reg) return; spin_lock_irqsave(&syscon_resetreg_lock, iflags); val = readw(sclk->res_reg); val |= BIT(sclk->res_bit); writew(val, sclk->res_reg); spin_unlock_irqrestore(&syscon_resetreg_lock, iflags); sclk->reset = true; } static void syscon_block_reset_disable(struct clk_syscon *sclk) { unsigned long iflags; u16 val; /* Not all blocks support resetting */ if (!sclk->res_reg) return; spin_lock_irqsave(&syscon_resetreg_lock, iflags); val = readw(sclk->res_reg); val &= ~BIT(sclk->res_bit); writew(val, sclk->res_reg); spin_unlock_irqrestore(&syscon_resetreg_lock, iflags); sclk->reset = false; } static int syscon_clk_prepare(struct clk_hw *hw) { struct clk_syscon *sclk = to_syscon(hw); /* If the block is in reset, bring it out */ if (sclk->reset) syscon_block_reset_disable(sclk); return 0; } static void syscon_clk_unprepare(struct clk_hw *hw) { struct clk_syscon *sclk = to_syscon(hw); /* Please don't force the console into reset */ if (sclk->clk_val == U300_SYSCON_SBCER_UART_CLK_EN) return; /* When unpreparing, force block into reset */ if (!sclk->reset) syscon_block_reset_enable(sclk); } static int syscon_clk_enable(struct clk_hw *hw) { struct clk_syscon *sclk = to_syscon(hw); /* Don't touch the hardware controlled clocks */ if (sclk->hw_ctrld) return 0; /* These cannot be controlled */ if (sclk->clk_val == 0xFFFFU) return 0; writew(sclk->clk_val, syscon_vbase + U300_SYSCON_SBCER); return 0; } static void syscon_clk_disable(struct clk_hw *hw) { struct clk_syscon *sclk = to_syscon(hw); /* Don't touch the hardware controlled clocks */ if (sclk->hw_ctrld) return; if (sclk->clk_val == 0xFFFFU) return; /* Please don't disable the console port */ if (sclk->clk_val == U300_SYSCON_SBCER_UART_CLK_EN) return; writew(sclk->clk_val, syscon_vbase + U300_SYSCON_SBCDR); } static int syscon_clk_is_enabled(struct clk_hw *hw) { struct clk_syscon *sclk = to_syscon(hw); u16 val; /* If no enable register defined, it's always-on */ if (!sclk->en_reg) return 1; val = readw(sclk->en_reg); val &= BIT(sclk->en_bit); return val ? 1 : 0; } static u16 syscon_get_perf(void) { u16 val; val = readw(syscon_vbase + U300_SYSCON_CCR); val &= U300_SYSCON_CCR_CLKING_PERFORMANCE_MASK; return val; } static unsigned long syscon_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_syscon *sclk = to_syscon(hw); u16 perf = syscon_get_perf(); switch(sclk->clk_val) { case U300_SYSCON_SBCER_FAST_BRIDGE_CLK_EN: case U300_SYSCON_SBCER_I2C0_CLK_EN: case U300_SYSCON_SBCER_I2C1_CLK_EN: case U300_SYSCON_SBCER_MMC_CLK_EN: case U300_SYSCON_SBCER_SPI_CLK_EN: /* The FAST clocks have one progression */ switch(perf) { case U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW_POWER: case U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW: return 13000000; default: return parent_rate; /* 26 MHz */ } case U300_SYSCON_SBCER_DMAC_CLK_EN: case U300_SYSCON_SBCER_NANDIF_CLK_EN: case U300_SYSCON_SBCER_XGAM_CLK_EN: /* AMBA interconnect peripherals */ switch(perf) { case U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW_POWER: case U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW: return 6500000; case U300_SYSCON_CCR_CLKING_PERFORMANCE_INTERMEDIATE: return 26000000; default: return parent_rate; /* 52 MHz */ } case U300_SYSCON_SBCER_SEMI_CLK_EN: case U300_SYSCON_SBCER_EMIF_CLK_EN: /* EMIF speeds */ switch(perf) { case U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW_POWER: case U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW: return 13000000; case U300_SYSCON_CCR_CLKING_PERFORMANCE_INTERMEDIATE: return 52000000; default: return 104000000; } case U300_SYSCON_SBCER_CPU_CLK_EN: /* And the fast CPU clock */ switch(perf) { case U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW_POWER: case U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW: return 13000000; case U300_SYSCON_CCR_CLKING_PERFORMANCE_INTERMEDIATE: return 52000000; case U300_SYSCON_CCR_CLKING_PERFORMANCE_HIGH: return 104000000; default: return parent_rate; /* 208 MHz */ } default: /* * The SLOW clocks and default just inherit the rate of * their parent (typically PLL13 13 MHz). */ return parent_rate; } } static long syscon_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct clk_syscon *sclk = to_syscon(hw); if (sclk->clk_val != U300_SYSCON_SBCER_CPU_CLK_EN) return *prate; /* We really only support setting the rate of the CPU clock */ if (rate <= 13000000) return 13000000; if (rate <= 52000000) return 52000000; if (rate <= 104000000) return 104000000; return 208000000; } static int syscon_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_syscon *sclk = to_syscon(hw); u16 val; /* We only support setting the rate of the CPU clock */ if (sclk->clk_val != U300_SYSCON_SBCER_CPU_CLK_EN) return -EINVAL; switch (rate) { case 13000000: val = U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW_POWER; break; case 52000000: val = U300_SYSCON_CCR_CLKING_PERFORMANCE_INTERMEDIATE; break; case 104000000: val = U300_SYSCON_CCR_CLKING_PERFORMANCE_HIGH; break; case 208000000: val = U300_SYSCON_CCR_CLKING_PERFORMANCE_BEST; break; default: return -EINVAL; } val |= readw(syscon_vbase + U300_SYSCON_CCR) & ~U300_SYSCON_CCR_CLKING_PERFORMANCE_MASK ; writew(val, syscon_vbase + U300_SYSCON_CCR); return 0; } static const struct clk_ops syscon_clk_ops = { .prepare = syscon_clk_prepare, .unprepare = syscon_clk_unprepare, .enable = syscon_clk_enable, .disable = syscon_clk_disable, .is_enabled = syscon_clk_is_enabled, .recalc_rate = syscon_clk_recalc_rate, .round_rate = syscon_clk_round_rate, .set_rate = syscon_clk_set_rate, }; static struct clk * __init syscon_clk_register(struct device *dev, const char *name, const char *parent_name, unsigned long flags, bool hw_ctrld, void __iomem *res_reg, u8 res_bit, void __iomem *en_reg, u8 en_bit, u16 clk_val) { struct clk *clk; struct clk_syscon *sclk; struct clk_init_data init; sclk = kzalloc(sizeof(struct clk_syscon), GFP_KERNEL); if (!sclk) { pr_err("could not allocate syscon clock %s\n", name); return ERR_PTR(-ENOMEM); } init.name = name; init.ops = &syscon_clk_ops; init.flags = flags; init.parent_names = (parent_name ? &parent_name : NULL); init.num_parents = (parent_name ? 1 : 0); sclk->hw.init = &init; sclk->hw_ctrld = hw_ctrld; /* Assume the block is in reset at registration */ sclk->reset = true; sclk->res_reg = res_reg; sclk->res_bit = res_bit; sclk->en_reg = en_reg; sclk->en_bit = en_bit; sclk->clk_val = clk_val; clk = clk_register(dev, &sclk->hw); if (IS_ERR(clk)) kfree(sclk); return clk; } /** * struct clk_mclk - U300 MCLK clock (MMC/SD clock) * @hw: corresponding clock hardware entry * @is_mspro: if this is the memory stick clock rather than MMC/SD */ struct clk_mclk { struct clk_hw hw; bool is_mspro; }; #define to_mclk(_hw) container_of(_hw, struct clk_mclk, hw) static int mclk_clk_prepare(struct clk_hw *hw) { struct clk_mclk *mclk = to_mclk(hw); u16 val; /* The MMC and MSPRO clocks need some special set-up */ if (!mclk->is_mspro) { /* Set default MMC clock divisor to 18.9 MHz */ writew(0x0054U, syscon_vbase + U300_SYSCON_MMF0R); val = readw(syscon_vbase + U300_SYSCON_MMCR); /* Disable the MMC feedback clock */ val &= ~U300_SYSCON_MMCR_MMC_FB_CLK_SEL_ENABLE; /* Disable MSPRO frequency */ val &= ~U300_SYSCON_MMCR_MSPRO_FREQSEL_ENABLE; writew(val, syscon_vbase + U300_SYSCON_MMCR); } else { val = readw(syscon_vbase + U300_SYSCON_MMCR); /* Disable the MMC feedback clock */ val &= ~U300_SYSCON_MMCR_MMC_FB_CLK_SEL_ENABLE; /* Enable MSPRO frequency */ val |= U300_SYSCON_MMCR_MSPRO_FREQSEL_ENABLE; writew(val, syscon_vbase + U300_SYSCON_MMCR); } return 0; } static unsigned long mclk_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u16 perf = syscon_get_perf(); switch (perf) { case U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW_POWER: /* * Here, the 208 MHz PLL gets shut down and the always * on 13 MHz PLL used for RTC etc kicks into use * instead. */ return 13000000; case U300_SYSCON_CCR_CLKING_PERFORMANCE_LOW: case U300_SYSCON_CCR_CLKING_PERFORMANCE_INTERMEDIATE: case U300_SYSCON_CCR_CLKING_PERFORMANCE_HIGH: case U300_SYSCON_CCR_CLKING_PERFORMANCE_BEST: { /* * This clock is under program control. The register is * divided in two nybbles, bit 7-4 gives cycles-1 to count * high, bit 3-0 gives cycles-1 to count low. Distribute * these with no more than 1 cycle difference between * low and high and add low and high to get the actual * divisor. The base PLL is 208 MHz. Writing 0x00 will * divide by 1 and 1 so the highest frequency possible * is 104 MHz. * * e.g. 0x54 => * f = 208 / ((5+1) + (4+1)) = 208 / 11 = 18.9 MHz */ u16 val = readw(syscon_vbase + U300_SYSCON_MMF0R) & U300_SYSCON_MMF0R_MASK; switch (val) { case 0x0054: return 18900000; case 0x0044: return 20800000; case 0x0043: return 23100000; case 0x0033: return 26000000; case 0x0032: return 29700000; case 0x0022: return 34700000; case 0x0021: return 41600000; case 0x0011: return 52000000; case 0x0000: return 104000000; default: break; } } default: break; } return parent_rate; } static long mclk_clk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { if (rate <= 18900000) return 18900000; if (rate <= 20800000) return 20800000; if (rate <= 23100000) return 23100000; if (rate <= 26000000) return 26000000; if (rate <= 29700000) return 29700000; if (rate <= 34700000) return 34700000; if (rate <= 41600000) return 41600000; /* Highest rate */ return 52000000; } static int mclk_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { u16 val; u16 reg; switch (rate) { case 18900000: val = 0x0054; break; case 20800000: val = 0x0044; break; case 23100000: val = 0x0043; break; case 26000000: val = 0x0033; break; case 29700000: val = 0x0032; break; case 34700000: val = 0x0022; break; case 41600000: val = 0x0021; break; case 52000000: val = 0x0011; break; case 104000000: val = 0x0000; break; default: return -EINVAL; } reg = readw(syscon_vbase + U300_SYSCON_MMF0R) & ~U300_SYSCON_MMF0R_MASK; writew(reg | val, syscon_vbase + U300_SYSCON_MMF0R); return 0; } static const struct clk_ops mclk_ops = { .prepare = mclk_clk_prepare, .recalc_rate = mclk_clk_recalc_rate, .round_rate = mclk_clk_round_rate, .set_rate = mclk_clk_set_rate, }; static struct clk * __init mclk_clk_register(struct device *dev, const char *name, const char *parent_name, bool is_mspro) { struct clk *clk; struct clk_mclk *mclk; struct clk_init_data init; mclk = kzalloc(sizeof(struct clk_mclk), GFP_KERNEL); if (!mclk) { pr_err("could not allocate MMC/SD clock %s\n", name); return ERR_PTR(-ENOMEM); } init.name = "mclk"; init.ops = &mclk_ops; init.flags = 0; init.parent_names = (parent_name ? &parent_name : NULL); init.num_parents = (parent_name ? 1 : 0); mclk->hw.init = &init; mclk->is_mspro = is_mspro; clk = clk_register(dev, &mclk->hw); if (IS_ERR(clk)) kfree(mclk); return clk; } void __init u300_clk_init(void __iomem *base) { u16 val; struct clk *clk; syscon_vbase = base; /* Set system to run at PLL208, max performance, a known state. */ val = readw(syscon_vbase + U300_SYSCON_CCR); val &= ~U300_SYSCON_CCR_CLKING_PERFORMANCE_MASK; writew(val, syscon_vbase + U300_SYSCON_CCR); /* Wait for the PLL208 to lock if not locked in yet */ while (!(readw(syscon_vbase + U300_SYSCON_CSR) & U300_SYSCON_CSR_PLL208_LOCK_IND)); /* Power management enable */ val = readw(syscon_vbase + U300_SYSCON_PMCR); val |= U300_SYSCON_PMCR_PWR_MGNT_ENABLE; writew(val, syscon_vbase + U300_SYSCON_PMCR); /* These are always available (RTC and PLL13) */ clk = clk_register_fixed_rate(NULL, "app_32_clk", NULL, CLK_IS_ROOT, 32768); /* The watchdog sits directly on the 32 kHz clock */ clk_register_clkdev(clk, NULL, "coh901327_wdog"); clk = clk_register_fixed_rate(NULL, "pll13", NULL, CLK_IS_ROOT, 13000000); /* These derive from PLL208 */ clk = clk_register_fixed_rate(NULL, "pll208", NULL, CLK_IS_ROOT, 208000000); clk = clk_register_fixed_factor(NULL, "app_208_clk", "pll208", 0, 1, 1); clk = clk_register_fixed_factor(NULL, "app_104_clk", "pll208", 0, 1, 2); clk = clk_register_fixed_factor(NULL, "app_52_clk", "pll208", 0, 1, 4); /* The 52 MHz is divided down to 26 MHz */ clk = clk_register_fixed_factor(NULL, "app_26_clk", "app_52_clk", 0, 1, 2); /* Directly on the AMBA interconnect */ clk = syscon_clk_register(NULL, "cpu_clk", "app_208_clk", 0, true, syscon_vbase + U300_SYSCON_RRR, 3, syscon_vbase + U300_SYSCON_CERR, 3, U300_SYSCON_SBCER_CPU_CLK_EN); clk = syscon_clk_register(NULL, "dmac_clk", "app_52_clk", 0, true, syscon_vbase + U300_SYSCON_RRR, 4, syscon_vbase + U300_SYSCON_CERR, 4, U300_SYSCON_SBCER_DMAC_CLK_EN); clk_register_clkdev(clk, NULL, "dma"); clk = syscon_clk_register(NULL, "fsmc_clk", "app_52_clk", 0, false, syscon_vbase + U300_SYSCON_RRR, 6, syscon_vbase + U300_SYSCON_CERR, 6, U300_SYSCON_SBCER_NANDIF_CLK_EN); clk_register_clkdev(clk, NULL, "fsmc-nand"); clk = syscon_clk_register(NULL, "xgam_clk", "app_52_clk", 0, true, syscon_vbase + U300_SYSCON_RRR, 8, syscon_vbase + U300_SYSCON_CERR, 8, U300_SYSCON_SBCER_XGAM_CLK_EN); clk_register_clkdev(clk, NULL, "xgam"); clk = syscon_clk_register(NULL, "semi_clk", "app_104_clk", 0, false, syscon_vbase + U300_SYSCON_RRR, 9, syscon_vbase + U300_SYSCON_CERR, 9, U300_SYSCON_SBCER_SEMI_CLK_EN); clk_register_clkdev(clk, NULL, "semi"); /* AHB bridge clocks */ clk = syscon_clk_register(NULL, "ahb_subsys_clk", "app_52_clk", 0, true, syscon_vbase + U300_SYSCON_RRR, 10, syscon_vbase + U300_SYSCON_CERR, 10, U300_SYSCON_SBCER_AHB_SUBSYS_BRIDGE_CLK_EN); clk = syscon_clk_register(NULL, "intcon_clk", "ahb_subsys_clk", 0, false, syscon_vbase + U300_SYSCON_RRR, 12, syscon_vbase + U300_SYSCON_CERR, 12, /* Cannot be enabled, just taken out of reset */ 0xFFFFU); clk_register_clkdev(clk, NULL, "intcon"); clk = syscon_clk_register(NULL, "emif_clk", "ahb_subsys_clk", 0, false, syscon_vbase + U300_SYSCON_RRR, 5, syscon_vbase + U300_SYSCON_CERR, 5, U300_SYSCON_SBCER_EMIF_CLK_EN); clk_register_clkdev(clk, NULL, "pl172"); /* FAST bridge clocks */ clk = syscon_clk_register(NULL, "fast_clk", "app_26_clk", 0, true, syscon_vbase + U300_SYSCON_RFR, 0, syscon_vbase + U300_SYSCON_CEFR, 0, U300_SYSCON_SBCER_FAST_BRIDGE_CLK_EN); clk = syscon_clk_register(NULL, "i2c0_p_clk", "fast_clk", 0, false, syscon_vbase + U300_SYSCON_RFR, 1, syscon_vbase + U300_SYSCON_CEFR, 1, U300_SYSCON_SBCER_I2C0_CLK_EN); clk_register_clkdev(clk, NULL, "stu300.0"); clk = syscon_clk_register(NULL, "i2c1_p_clk", "fast_clk", 0, false, syscon_vbase + U300_SYSCON_RFR, 2, syscon_vbase + U300_SYSCON_CEFR, 2, U300_SYSCON_SBCER_I2C1_CLK_EN); clk_register_clkdev(clk, NULL, "stu300.1"); clk = syscon_clk_register(NULL, "mmc_p_clk", "fast_clk", 0, false, syscon_vbase + U300_SYSCON_RFR, 5, syscon_vbase + U300_SYSCON_CEFR, 5, U300_SYSCON_SBCER_MMC_CLK_EN); clk_register_clkdev(clk, "apb_pclk", "mmci"); clk = syscon_clk_register(NULL, "spi_p_clk", "fast_clk", 0, false, syscon_vbase + U300_SYSCON_RFR, 6, syscon_vbase + U300_SYSCON_CEFR, 6, U300_SYSCON_SBCER_SPI_CLK_EN); /* The SPI has no external clock for the outward bus, uses the pclk */ clk_register_clkdev(clk, NULL, "pl022"); clk_register_clkdev(clk, "apb_pclk", "pl022"); /* SLOW bridge clocks */ clk = syscon_clk_register(NULL, "slow_clk", "pll13", 0, true, syscon_vbase + U300_SYSCON_RSR, 0, syscon_vbase + U300_SYSCON_CESR, 0, U300_SYSCON_SBCER_SLOW_BRIDGE_CLK_EN); clk = syscon_clk_register(NULL, "uart0_clk", "slow_clk", 0, false, syscon_vbase + U300_SYSCON_RSR, 1, syscon_vbase + U300_SYSCON_CESR, 1, U300_SYSCON_SBCER_UART_CLK_EN); /* Same clock is used for APB and outward bus */ clk_register_clkdev(clk, NULL, "uart0"); clk_register_clkdev(clk, "apb_pclk", "uart0"); clk = syscon_clk_register(NULL, "gpio_clk", "slow_clk", 0, false, syscon_vbase + U300_SYSCON_RSR, 4, syscon_vbase + U300_SYSCON_CESR, 4, U300_SYSCON_SBCER_GPIO_CLK_EN); clk_register_clkdev(clk, NULL, "u300-gpio"); clk = syscon_clk_register(NULL, "keypad_clk", "slow_clk", 0, false, syscon_vbase + U300_SYSCON_RSR, 5, syscon_vbase + U300_SYSCON_CESR, 6, U300_SYSCON_SBCER_KEYPAD_CLK_EN); clk_register_clkdev(clk, NULL, "coh901461-keypad"); clk = syscon_clk_register(NULL, "rtc_clk", "slow_clk", 0, true, syscon_vbase + U300_SYSCON_RSR, 6, /* No clock enable register bit */ NULL, 0, 0xFFFFU); clk_register_clkdev(clk, NULL, "rtc-coh901331"); clk = syscon_clk_register(NULL, "app_tmr_clk", "slow_clk", 0, false, syscon_vbase + U300_SYSCON_RSR, 7, syscon_vbase + U300_SYSCON_CESR, 7, U300_SYSCON_SBCER_APP_TMR_CLK_EN); clk_register_clkdev(clk, NULL, "apptimer"); clk = syscon_clk_register(NULL, "acc_tmr_clk", "slow_clk", 0, false, syscon_vbase + U300_SYSCON_RSR, 8, syscon_vbase + U300_SYSCON_CESR, 8, U300_SYSCON_SBCER_ACC_TMR_CLK_EN); clk_register_clkdev(clk, NULL, "timer"); /* Then this special MMC/SD clock */ clk = mclk_clk_register(NULL, "mmc_clk", "mmc_p_clk", false); clk_register_clkdev(clk, NULL, "mmci"); }