/** * Copyright (C) ST-Ericsson SA 2010 * Author: Shujuan Chen for ST-Ericsson. * Author: Jonas Linde for ST-Ericsson. * Author: Niklas Hernaeus for ST-Ericsson. * Author: Joakim Bech for ST-Ericsson. * Author: Berne Hebark for ST-Ericsson. * License terms: GNU General Public License (GPL) version 2 */ #include #include #include #include "cryp_p.h" #include "cryp.h" /** * cryp_wait_until_done - wait until the device logic is not busy */ void cryp_wait_until_done(struct cryp_device_data *device_data) { while (cryp_is_logic_busy(device_data)) cpu_relax(); } /** * cryp_check - This routine checks Peripheral and PCell Id * @device_data: Pointer to the device data struct for base address. */ int cryp_check(struct cryp_device_data *device_data) { int peripheralid2 = 0; if (NULL == device_data) return -EINVAL; peripheralid2 = readl_relaxed(&device_data->base->periphId2); if (peripheralid2 != CRYP_PERIPHERAL_ID2_DB8500) return -EPERM; /* Check Peripheral and Pcell Id Register for CRYP */ if ((CRYP_PERIPHERAL_ID0 == readl_relaxed(&device_data->base->periphId0)) && (CRYP_PERIPHERAL_ID1 == readl_relaxed(&device_data->base->periphId1)) && (CRYP_PERIPHERAL_ID3 == readl_relaxed(&device_data->base->periphId3)) && (CRYP_PCELL_ID0 == readl_relaxed(&device_data->base->pcellId0)) && (CRYP_PCELL_ID1 == readl_relaxed(&device_data->base->pcellId1)) && (CRYP_PCELL_ID2 == readl_relaxed(&device_data->base->pcellId2)) && (CRYP_PCELL_ID3 == readl_relaxed(&device_data->base->pcellId3))) { return 0; } return -EPERM; } /** * cryp_activity - This routine enables/disable the cryptography function. * @device_data: Pointer to the device data struct for base address. * @cryp_crypen: Enable/Disable functionality */ void cryp_activity(struct cryp_device_data *device_data, enum cryp_crypen cryp_crypen) { CRYP_PUT_BITS(&device_data->base->cr, cryp_crypen, CRYP_CR_CRYPEN_POS, CRYP_CR_CRYPEN_MASK); } /** * cryp_flush_inoutfifo - Resets both the input and the output FIFOs * @device_data: Pointer to the device data struct for base address. */ void cryp_flush_inoutfifo(struct cryp_device_data *device_data) { /* * We always need to disble the hardware before trying to flush the * FIFO. This is something that isn't written in the design * specification, but we have been informed by the hardware designers * that this must be done. */ cryp_activity(device_data, CRYP_CRYPEN_DISABLE); cryp_wait_until_done(device_data); CRYP_SET_BITS(&device_data->base->cr, CRYP_CR_FFLUSH_MASK); /* * CRYP_SR_INFIFO_READY_MASK is the expected value on the status * register when starting a new calculation, which means Input FIFO is * not full and input FIFO is empty. */ while (readl_relaxed(&device_data->base->sr) != CRYP_SR_INFIFO_READY_MASK) cpu_relax(); } /** * cryp_set_configuration - This routine set the cr CRYP IP * @device_data: Pointer to the device data struct for base address. * @cryp_config: Pointer to the configuration parameter * @control_register: The control register to be written later on. */ int cryp_set_configuration(struct cryp_device_data *device_data, struct cryp_config *cryp_config, u32 *control_register) { u32 cr_for_kse; if (NULL == device_data || NULL == cryp_config) return -EINVAL; *control_register |= (cryp_config->keysize << CRYP_CR_KEYSIZE_POS); /* Prepare key for decryption in AES_ECB and AES_CBC mode. */ if ((CRYP_ALGORITHM_DECRYPT == cryp_config->algodir) && ((CRYP_ALGO_AES_ECB == cryp_config->algomode) || (CRYP_ALGO_AES_CBC == cryp_config->algomode))) { cr_for_kse = *control_register; /* * This seems a bit odd, but it is indeed needed to set this to * encrypt even though it is a decryption that we are doing. It * also mentioned in the design spec that you need to do this. * After the keyprepartion for decrypting is done you should set * algodir back to decryption, which is done outside this if * statement. * * According to design specification we should set mode ECB * during key preparation even though we might be running CBC * when enter this function. * * Writing to KSE_ENABLED will drop CRYPEN when key preparation * is done. Therefore we need to set CRYPEN again outside this * if statement when running decryption. */ cr_for_kse |= ((CRYP_ALGORITHM_ENCRYPT << CRYP_CR_ALGODIR_POS) | (CRYP_ALGO_AES_ECB << CRYP_CR_ALGOMODE_POS) | (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS) | (KSE_ENABLED << CRYP_CR_KSE_POS)); writel_relaxed(cr_for_kse, &device_data->base->cr); cryp_wait_until_done(device_data); } *control_register |= ((cryp_config->algomode << CRYP_CR_ALGOMODE_POS) | (cryp_config->algodir << CRYP_CR_ALGODIR_POS)); return 0; } /** * cryp_configure_protection - set the protection bits in the CRYP logic. * @device_data: Pointer to the device data struct for base address. * @p_protect_config: Pointer to the protection mode and * secure mode configuration */ int cryp_configure_protection(struct cryp_device_data *device_data, struct cryp_protection_config *p_protect_config) { if (NULL == p_protect_config) return -EINVAL; CRYP_WRITE_BIT(&device_data->base->cr, (u32) p_protect_config->secure_access, CRYP_CR_SECURE_MASK); CRYP_PUT_BITS(&device_data->base->cr, p_protect_config->privilege_access, CRYP_CR_PRLG_POS, CRYP_CR_PRLG_MASK); return 0; } /** * cryp_is_logic_busy - returns the busy status of the CRYP logic * @device_data: Pointer to the device data struct for base address. */ int cryp_is_logic_busy(struct cryp_device_data *device_data) { return CRYP_TEST_BITS(&device_data->base->sr, CRYP_SR_BUSY_MASK); } /** * cryp_configure_for_dma - configures the CRYP IP for DMA operation * @device_data: Pointer to the device data struct for base address. * @dma_req: Specifies the DMA request type value. */ void cryp_configure_for_dma(struct cryp_device_data *device_data, enum cryp_dma_req_type dma_req) { CRYP_SET_BITS(&device_data->base->dmacr, (u32) dma_req); } /** * cryp_configure_key_values - configures the key values for CRYP operations * @device_data: Pointer to the device data struct for base address. * @key_reg_index: Key value index register * @key_value: The key value struct */ int cryp_configure_key_values(struct cryp_device_data *device_data, enum cryp_key_reg_index key_reg_index, struct cryp_key_value key_value) { while (cryp_is_logic_busy(device_data)) cpu_relax(); switch (key_reg_index) { case CRYP_KEY_REG_1: writel_relaxed(key_value.key_value_left, &device_data->base->key_1_l); writel_relaxed(key_value.key_value_right, &device_data->base->key_1_r); break; case CRYP_KEY_REG_2: writel_relaxed(key_value.key_value_left, &device_data->base->key_2_l); writel_relaxed(key_value.key_value_right, &device_data->base->key_2_r); break; case CRYP_KEY_REG_3: writel_relaxed(key_value.key_value_left, &device_data->base->key_3_l); writel_relaxed(key_value.key_value_right, &device_data->base->key_3_r); break; case CRYP_KEY_REG_4: writel_relaxed(key_value.key_value_left, &device_data->base->key_4_l); writel_relaxed(key_value.key_value_right, &device_data->base->key_4_r); break; default: return -EINVAL; } return 0; } /** * cryp_configure_init_vector - configures the initialization vector register * @device_data: Pointer to the device data struct for base address. * @init_vector_index: Specifies the index of the init vector. * @init_vector_value: Specifies the value for the init vector. */ int cryp_configure_init_vector(struct cryp_device_data *device_data, enum cryp_init_vector_index init_vector_index, struct cryp_init_vector_value init_vector_value) { while (cryp_is_logic_busy(device_data)) cpu_relax(); switch (init_vector_index) { case CRYP_INIT_VECTOR_INDEX_0: writel_relaxed(init_vector_value.init_value_left, &device_data->base->init_vect_0_l); writel_relaxed(init_vector_value.init_value_right, &device_data->base->init_vect_0_r); break; case CRYP_INIT_VECTOR_INDEX_1: writel_relaxed(init_vector_value.init_value_left, &device_data->base->init_vect_1_l); writel_relaxed(init_vector_value.init_value_right, &device_data->base->init_vect_1_r); break; default: return -EINVAL; } return 0; } /** * cryp_save_device_context - Store hardware registers and * other device context parameter * @device_data: Pointer to the device data struct for base address. * @ctx: Crypto device context */ void cryp_save_device_context(struct cryp_device_data *device_data, struct cryp_device_context *ctx, int cryp_mode) { enum cryp_algo_mode algomode; struct cryp_register __iomem *src_reg = device_data->base; struct cryp_config *config = (struct cryp_config *)device_data->current_ctx; /* * Always start by disable the hardware and wait for it to finish the * ongoing calculations before trying to reprogram it. */ cryp_activity(device_data, CRYP_CRYPEN_DISABLE); cryp_wait_until_done(device_data); if (cryp_mode == CRYP_MODE_DMA) cryp_configure_for_dma(device_data, CRYP_DMA_DISABLE_BOTH); if (CRYP_TEST_BITS(&src_reg->sr, CRYP_SR_IFEM_MASK) == 0) ctx->din = readl_relaxed(&src_reg->din); ctx->cr = readl_relaxed(&src_reg->cr) & CRYP_CR_CONTEXT_SAVE_MASK; switch (config->keysize) { case CRYP_KEY_SIZE_256: ctx->key_4_l = readl_relaxed(&src_reg->key_4_l); ctx->key_4_r = readl_relaxed(&src_reg->key_4_r); case CRYP_KEY_SIZE_192: ctx->key_3_l = readl_relaxed(&src_reg->key_3_l); ctx->key_3_r = readl_relaxed(&src_reg->key_3_r); case CRYP_KEY_SIZE_128: ctx->key_2_l = readl_relaxed(&src_reg->key_2_l); ctx->key_2_r = readl_relaxed(&src_reg->key_2_r); default: ctx->key_1_l = readl_relaxed(&src_reg->key_1_l); ctx->key_1_r = readl_relaxed(&src_reg->key_1_r); } /* Save IV for CBC mode for both AES and DES. */ algomode = ((ctx->cr & CRYP_CR_ALGOMODE_MASK) >> CRYP_CR_ALGOMODE_POS); if (algomode == CRYP_ALGO_TDES_CBC || algomode == CRYP_ALGO_DES_CBC || algomode == CRYP_ALGO_AES_CBC) { ctx->init_vect_0_l = readl_relaxed(&src_reg->init_vect_0_l); ctx->init_vect_0_r = readl_relaxed(&src_reg->init_vect_0_r); ctx->init_vect_1_l = readl_relaxed(&src_reg->init_vect_1_l); ctx->init_vect_1_r = readl_relaxed(&src_reg->init_vect_1_r); } } /** * cryp_restore_device_context - Restore hardware registers and * other device context parameter * @device_data: Pointer to the device data struct for base address. * @ctx: Crypto device context */ void cryp_restore_device_context(struct cryp_device_data *device_data, struct cryp_device_context *ctx) { struct cryp_register __iomem *reg = device_data->base; struct cryp_config *config = (struct cryp_config *)device_data->current_ctx; /* * Fall through for all items in switch statement. DES is captured in * the default. */ switch (config->keysize) { case CRYP_KEY_SIZE_256: writel_relaxed(ctx->key_4_l, ®->key_4_l); writel_relaxed(ctx->key_4_r, ®->key_4_r); case CRYP_KEY_SIZE_192: writel_relaxed(ctx->key_3_l, ®->key_3_l); writel_relaxed(ctx->key_3_r, ®->key_3_r); case CRYP_KEY_SIZE_128: writel_relaxed(ctx->key_2_l, ®->key_2_l); writel_relaxed(ctx->key_2_r, ®->key_2_r); default: writel_relaxed(ctx->key_1_l, ®->key_1_l); writel_relaxed(ctx->key_1_r, ®->key_1_r); } /* Restore IV for CBC mode for AES and DES. */ if (config->algomode == CRYP_ALGO_TDES_CBC || config->algomode == CRYP_ALGO_DES_CBC || config->algomode == CRYP_ALGO_AES_CBC) { writel_relaxed(ctx->init_vect_0_l, ®->init_vect_0_l); writel_relaxed(ctx->init_vect_0_r, ®->init_vect_0_r); writel_relaxed(ctx->init_vect_1_l, ®->init_vect_1_l); writel_relaxed(ctx->init_vect_1_r, ®->init_vect_1_r); } }