/* * edac_mc kernel module * (C) 2005-2007 Linux Networx (http://lnxi.com) * * This file may be distributed under the terms of the * GNU General Public License. * * Written Doug Thompson www.softwarebitmaker.com * * (c) 2012-2013 - Mauro Carvalho Chehab * The entire API were re-written, and ported to use struct device * */ #include #include #include #include #include #include #include "edac_core.h" #include "edac_module.h" /* MC EDAC Controls, setable by module parameter, and sysfs */ static int edac_mc_log_ue = 1; static int edac_mc_log_ce = 1; static int edac_mc_panic_on_ue; static int edac_mc_poll_msec = 1000; /* Getter functions for above */ int edac_mc_get_log_ue(void) { return edac_mc_log_ue; } int edac_mc_get_log_ce(void) { return edac_mc_log_ce; } int edac_mc_get_panic_on_ue(void) { return edac_mc_panic_on_ue; } /* this is temporary */ int edac_mc_get_poll_msec(void) { return edac_mc_poll_msec; } static int edac_set_poll_msec(const char *val, struct kernel_param *kp) { long l; int ret; if (!val) return -EINVAL; ret = strict_strtol(val, 0, &l); if (ret == -EINVAL || ((int)l != l)) return -EINVAL; *((int *)kp->arg) = l; /* notify edac_mc engine to reset the poll period */ edac_mc_reset_delay_period(l); return 0; } /* Parameter declarations for above */ module_param(edac_mc_panic_on_ue, int, 0644); MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); module_param(edac_mc_log_ue, int, 0644); MODULE_PARM_DESC(edac_mc_log_ue, "Log uncorrectable error to console: 0=off 1=on"); module_param(edac_mc_log_ce, int, 0644); MODULE_PARM_DESC(edac_mc_log_ce, "Log correctable error to console: 0=off 1=on"); module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int, &edac_mc_poll_msec, 0644); MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); static struct device *mci_pdev; /* * various constants for Memory Controllers */ static const char * const mem_types[] = { [MEM_EMPTY] = "Empty", [MEM_RESERVED] = "Reserved", [MEM_UNKNOWN] = "Unknown", [MEM_FPM] = "FPM", [MEM_EDO] = "EDO", [MEM_BEDO] = "BEDO", [MEM_SDR] = "Unbuffered-SDR", [MEM_RDR] = "Registered-SDR", [MEM_DDR] = "Unbuffered-DDR", [MEM_RDDR] = "Registered-DDR", [MEM_RMBS] = "RMBS", [MEM_DDR2] = "Unbuffered-DDR2", [MEM_FB_DDR2] = "FullyBuffered-DDR2", [MEM_RDDR2] = "Registered-DDR2", [MEM_XDR] = "XDR", [MEM_DDR3] = "Unbuffered-DDR3", [MEM_RDDR3] = "Registered-DDR3" }; static const char * const dev_types[] = { [DEV_UNKNOWN] = "Unknown", [DEV_X1] = "x1", [DEV_X2] = "x2", [DEV_X4] = "x4", [DEV_X8] = "x8", [DEV_X16] = "x16", [DEV_X32] = "x32", [DEV_X64] = "x64" }; static const char * const edac_caps[] = { [EDAC_UNKNOWN] = "Unknown", [EDAC_NONE] = "None", [EDAC_RESERVED] = "Reserved", [EDAC_PARITY] = "PARITY", [EDAC_EC] = "EC", [EDAC_SECDED] = "SECDED", [EDAC_S2ECD2ED] = "S2ECD2ED", [EDAC_S4ECD4ED] = "S4ECD4ED", [EDAC_S8ECD8ED] = "S8ECD8ED", [EDAC_S16ECD16ED] = "S16ECD16ED" }; #ifdef CONFIG_EDAC_LEGACY_SYSFS /* * EDAC sysfs CSROW data structures and methods */ #define to_csrow(k) container_of(k, struct csrow_info, dev) /* * We need it to avoid namespace conflicts between the legacy API * and the per-dimm/per-rank one */ #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) struct dev_ch_attribute { struct device_attribute attr; int channel; }; #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ struct dev_ch_attribute dev_attr_legacy_##_name = \ { __ATTR(_name, _mode, _show, _store), (_var) } #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) /* Set of more default csrow attribute show/store functions */ static ssize_t csrow_ue_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); return sprintf(data, "%u\n", csrow->ue_count); } static ssize_t csrow_ce_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); return sprintf(data, "%u\n", csrow->ce_count); } static ssize_t csrow_size_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); int i; u32 nr_pages = 0; for (i = 0; i < csrow->nr_channels; i++) nr_pages += csrow->channels[i]->dimm->nr_pages; return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); } static ssize_t csrow_mem_type_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]); } static ssize_t csrow_dev_type_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); } static ssize_t csrow_edac_mode_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); } /* show/store functions for DIMM Label attributes */ static ssize_t channel_dimm_label_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); unsigned chan = to_channel(mattr); struct rank_info *rank = csrow->channels[chan]; /* if field has not been initialized, there is nothing to send */ if (!rank->dimm->label[0]) return 0; return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", rank->dimm->label); } static ssize_t channel_dimm_label_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct csrow_info *csrow = to_csrow(dev); unsigned chan = to_channel(mattr); struct rank_info *rank = csrow->channels[chan]; ssize_t max_size = 0; max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1); strncpy(rank->dimm->label, data, max_size); rank->dimm->label[max_size] = '\0'; return max_size; } /* show function for dynamic chX_ce_count attribute */ static ssize_t channel_ce_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); unsigned chan = to_channel(mattr); struct rank_info *rank = csrow->channels[chan]; return sprintf(data, "%u\n", rank->ce_count); } /* cwrow/attribute files */ DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); /* default attributes of the CSROW object */ static struct attribute *csrow_attrs[] = { &dev_attr_legacy_dev_type.attr, &dev_attr_legacy_mem_type.attr, &dev_attr_legacy_edac_mode.attr, &dev_attr_legacy_size_mb.attr, &dev_attr_legacy_ue_count.attr, &dev_attr_legacy_ce_count.attr, NULL, }; static struct attribute_group csrow_attr_grp = { .attrs = csrow_attrs, }; static const struct attribute_group *csrow_attr_groups[] = { &csrow_attr_grp, NULL }; static void csrow_attr_release(struct device *dev) { struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); kfree(csrow); } static struct device_type csrow_attr_type = { .groups = csrow_attr_groups, .release = csrow_attr_release, }; /* * possible dynamic channel DIMM Label attribute files * */ #define EDAC_NR_CHANNELS 6 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 0); DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 1); DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 2); DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 3); DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 4); DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 5); /* Total possible dynamic DIMM Label attribute file table */ static struct device_attribute *dynamic_csrow_dimm_attr[] = { &dev_attr_legacy_ch0_dimm_label.attr, &dev_attr_legacy_ch1_dimm_label.attr, &dev_attr_legacy_ch2_dimm_label.attr, &dev_attr_legacy_ch3_dimm_label.attr, &dev_attr_legacy_ch4_dimm_label.attr, &dev_attr_legacy_ch5_dimm_label.attr }; /* possible dynamic channel ce_count attribute files */ DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, channel_ce_count_show, NULL, 0); DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, channel_ce_count_show, NULL, 1); DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, channel_ce_count_show, NULL, 2); DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, channel_ce_count_show, NULL, 3); DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, channel_ce_count_show, NULL, 4); DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, channel_ce_count_show, NULL, 5); /* Total possible dynamic ce_count attribute file table */ static struct device_attribute *dynamic_csrow_ce_count_attr[] = { &dev_attr_legacy_ch0_ce_count.attr, &dev_attr_legacy_ch1_ce_count.attr, &dev_attr_legacy_ch2_ce_count.attr, &dev_attr_legacy_ch3_ce_count.attr, &dev_attr_legacy_ch4_ce_count.attr, &dev_attr_legacy_ch5_ce_count.attr }; static inline int nr_pages_per_csrow(struct csrow_info *csrow) { int chan, nr_pages = 0; for (chan = 0; chan < csrow->nr_channels; chan++) nr_pages += csrow->channels[chan]->dimm->nr_pages; return nr_pages; } /* Create a CSROW object under specifed edac_mc_device */ static int edac_create_csrow_object(struct mem_ctl_info *mci, struct csrow_info *csrow, int index) { int err, chan; if (csrow->nr_channels >= EDAC_NR_CHANNELS) return -ENODEV; csrow->dev.type = &csrow_attr_type; csrow->dev.bus = &mci->bus; device_initialize(&csrow->dev); csrow->dev.parent = &mci->dev; csrow->mci = mci; dev_set_name(&csrow->dev, "csrow%d", index); dev_set_drvdata(&csrow->dev, csrow); edac_dbg(0, "creating (virtual) csrow node %s\n", dev_name(&csrow->dev)); err = device_add(&csrow->dev); if (err < 0) return err; for (chan = 0; chan < csrow->nr_channels; chan++) { /* Only expose populated DIMMs */ if (!csrow->channels[chan]->dimm->nr_pages) continue; err = device_create_file(&csrow->dev, dynamic_csrow_dimm_attr[chan]); if (err < 0) goto error; err = device_create_file(&csrow->dev, dynamic_csrow_ce_count_attr[chan]); if (err < 0) { device_remove_file(&csrow->dev, dynamic_csrow_dimm_attr[chan]); goto error; } } return 0; error: for (--chan; chan >= 0; chan--) { device_remove_file(&csrow->dev, dynamic_csrow_dimm_attr[chan]); device_remove_file(&csrow->dev, dynamic_csrow_ce_count_attr[chan]); } put_device(&csrow->dev); return err; } /* Create a CSROW object under specifed edac_mc_device */ static int edac_create_csrow_objects(struct mem_ctl_info *mci) { int err, i, chan; struct csrow_info *csrow; for (i = 0; i < mci->nr_csrows; i++) { csrow = mci->csrows[i]; if (!nr_pages_per_csrow(csrow)) continue; err = edac_create_csrow_object(mci, mci->csrows[i], i); if (err < 0) { edac_dbg(1, "failure: create csrow objects for csrow %d\n", i); goto error; } } return 0; error: for (--i; i >= 0; i--) { csrow = mci->csrows[i]; if (!nr_pages_per_csrow(csrow)) continue; for (chan = csrow->nr_channels - 1; chan >= 0; chan--) { if (!csrow->channels[chan]->dimm->nr_pages) continue; device_remove_file(&csrow->dev, dynamic_csrow_dimm_attr[chan]); device_remove_file(&csrow->dev, dynamic_csrow_ce_count_attr[chan]); } put_device(&mci->csrows[i]->dev); } return err; } static void edac_delete_csrow_objects(struct mem_ctl_info *mci) { int i, chan; struct csrow_info *csrow; for (i = mci->nr_csrows - 1; i >= 0; i--) { csrow = mci->csrows[i]; if (!nr_pages_per_csrow(csrow)) continue; for (chan = csrow->nr_channels - 1; chan >= 0; chan--) { if (!csrow->channels[chan]->dimm->nr_pages) continue; edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n", i, chan); device_remove_file(&csrow->dev, dynamic_csrow_dimm_attr[chan]); device_remove_file(&csrow->dev, dynamic_csrow_ce_count_attr[chan]); } device_unregister(&mci->csrows[i]->dev); } } #endif /* * Per-dimm (or per-rank) devices */ #define to_dimm(k) container_of(k, struct dimm_info, dev) /* show/store functions for DIMM Label attributes */ static ssize_t dimmdev_location_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return edac_dimm_info_location(dimm, data, PAGE_SIZE); } static ssize_t dimmdev_label_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); /* if field has not been initialized, there is nothing to send */ if (!dimm->label[0]) return 0; return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label); } static ssize_t dimmdev_label_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct dimm_info *dimm = to_dimm(dev); ssize_t max_size = 0; max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1); strncpy(dimm->label, data, max_size); dimm->label[max_size] = '\0'; return max_size; } static ssize_t dimmdev_size_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); } static ssize_t dimmdev_mem_type_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return sprintf(data, "%s\n", mem_types[dimm->mtype]); } static ssize_t dimmdev_dev_type_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return sprintf(data, "%s\n", dev_types[dimm->dtype]); } static ssize_t dimmdev_edac_mode_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); } /* dimm/rank attribute files */ static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, dimmdev_label_show, dimmdev_label_store); static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); /* attributes of the dimm/rank object */ static struct attribute *dimm_attrs[] = { &dev_attr_dimm_label.attr, &dev_attr_dimm_location.attr, &dev_attr_size.attr, &dev_attr_dimm_mem_type.attr, &dev_attr_dimm_dev_type.attr, &dev_attr_dimm_edac_mode.attr, NULL, }; static struct attribute_group dimm_attr_grp = { .attrs = dimm_attrs, }; static const struct attribute_group *dimm_attr_groups[] = { &dimm_attr_grp, NULL }; static void dimm_attr_release(struct device *dev) { struct dimm_info *dimm = container_of(dev, struct dimm_info, dev); edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev)); kfree(dimm); } static struct device_type dimm_attr_type = { .groups = dimm_attr_groups, .release = dimm_attr_release, }; /* Create a DIMM object under specifed memory controller device */ static int edac_create_dimm_object(struct mem_ctl_info *mci, struct dimm_info *dimm, int index) { int err; dimm->mci = mci; dimm->dev.type = &dimm_attr_type; dimm->dev.bus = &mci->bus; device_initialize(&dimm->dev); dimm->dev.parent = &mci->dev; if (mci->csbased) dev_set_name(&dimm->dev, "rank%d", index); else dev_set_name(&dimm->dev, "dimm%d", index); dev_set_drvdata(&dimm->dev, dimm); pm_runtime_forbid(&mci->dev); err = device_add(&dimm->dev); edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev)); return err; } /* * Memory controller device */ #define to_mci(k) container_of(k, struct mem_ctl_info, dev) static ssize_t mci_reset_counters_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); int cnt, row, chan, i; mci->ue_mc = 0; mci->ce_mc = 0; mci->ue_noinfo_count = 0; mci->ce_noinfo_count = 0; for (row = 0; row < mci->nr_csrows; row++) { struct csrow_info *ri = mci->csrows[row]; ri->ue_count = 0; ri->ce_count = 0; for (chan = 0; chan < ri->nr_channels; chan++) ri->channels[chan]->ce_count = 0; } cnt = 1; for (i = 0; i < mci->n_layers; i++) { cnt *= mci->layers[i].size; memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32)); memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32)); } mci->start_time = jiffies; return count; } /* Memory scrubbing interface: * * A MC driver can limit the scrubbing bandwidth based on the CPU type. * Therefore, ->set_sdram_scrub_rate should be made to return the actual * bandwidth that is accepted or 0 when scrubbing is to be disabled. * * Negative value still means that an error has occurred while setting * the scrub rate. */ static ssize_t mci_sdram_scrub_rate_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); unsigned long bandwidth = 0; int new_bw = 0; if (strict_strtoul(data, 10, &bandwidth) < 0) return -EINVAL; new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); if (new_bw < 0) { edac_printk(KERN_WARNING, EDAC_MC, "Error setting scrub rate to: %lu\n", bandwidth); return -EINVAL; } return count; } /* * ->get_sdram_scrub_rate() return value semantics same as above. */ static ssize_t mci_sdram_scrub_rate_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); int bandwidth = 0; bandwidth = mci->get_sdram_scrub_rate(mci); if (bandwidth < 0) { edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); return bandwidth; } return sprintf(data, "%d\n", bandwidth); } /* default attribute files for the MCI object */ static ssize_t mci_ue_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%d\n", mci->ue_mc); } static ssize_t mci_ce_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%d\n", mci->ce_mc); } static ssize_t mci_ce_noinfo_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%d\n", mci->ce_noinfo_count); } static ssize_t mci_ue_noinfo_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%d\n", mci->ue_noinfo_count); } static ssize_t mci_seconds_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); } static ssize_t mci_ctl_name_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%s\n", mci->ctl_name); } static ssize_t mci_size_mb_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); int total_pages = 0, csrow_idx, j; for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { struct csrow_info *csrow = mci->csrows[csrow_idx]; for (j = 0; j < csrow->nr_channels; j++) { struct dimm_info *dimm = csrow->channels[j]->dimm; total_pages += dimm->nr_pages; } } return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); } static ssize_t mci_max_location_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); int i; char *p = data; for (i = 0; i < mci->n_layers; i++) { p += sprintf(p, "%s %d ", edac_layer_name[mci->layers[i].type], mci->layers[i].size - 1); } return p - data; } #ifdef CONFIG_EDAC_DEBUG static ssize_t edac_fake_inject_write(struct file *file, const char __user *data, size_t count, loff_t *ppos) { struct device *dev = file->private_data; struct mem_ctl_info *mci = to_mci(dev); static enum hw_event_mc_err_type type; u16 errcount = mci->fake_inject_count; if (!errcount) errcount = 1; type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED : HW_EVENT_ERR_CORRECTED; printk(KERN_DEBUG "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n", errcount, (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE", errcount > 1 ? "s" : "", mci->fake_inject_layer[0], mci->fake_inject_layer[1], mci->fake_inject_layer[2] ); edac_mc_handle_error(type, mci, errcount, 0, 0, 0, mci->fake_inject_layer[0], mci->fake_inject_layer[1], mci->fake_inject_layer[2], "FAKE ERROR", "for EDAC testing only"); return count; } static const struct file_operations debug_fake_inject_fops = { .open = simple_open, .write = edac_fake_inject_write, .llseek = generic_file_llseek, }; #endif /* default Control file */ DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); /* default Attribute files */ DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); /* memory scrubber attribute file */ DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL); static struct attribute *mci_attrs[] = { &dev_attr_reset_counters.attr, &dev_attr_mc_name.attr, &dev_attr_size_mb.attr, &dev_attr_seconds_since_reset.attr, &dev_attr_ue_noinfo_count.attr, &dev_attr_ce_noinfo_count.attr, &dev_attr_ue_count.attr, &dev_attr_ce_count.attr, &dev_attr_max_location.attr, NULL }; static struct attribute_group mci_attr_grp = { .attrs = mci_attrs, }; static const struct attribute_group *mci_attr_groups[] = { &mci_attr_grp, NULL }; static void mci_attr_release(struct device *dev) { struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); kfree(mci); } static struct device_type mci_attr_type = { .groups = mci_attr_groups, .release = mci_attr_release, }; #ifdef CONFIG_EDAC_DEBUG static struct dentry *edac_debugfs; int __init edac_debugfs_init(void) { edac_debugfs = debugfs_create_dir("edac", NULL); if (IS_ERR(edac_debugfs)) { edac_debugfs = NULL; return -ENOMEM; } return 0; } void __exit edac_debugfs_exit(void) { debugfs_remove(edac_debugfs); } int edac_create_debug_nodes(struct mem_ctl_info *mci) { struct dentry *d, *parent; char name[80]; int i; if (!edac_debugfs) return -ENODEV; d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs); if (!d) return -ENOMEM; parent = d; for (i = 0; i < mci->n_layers; i++) { sprintf(name, "fake_inject_%s", edac_layer_name[mci->layers[i].type]); d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent, &mci->fake_inject_layer[i]); if (!d) goto nomem; } d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent, &mci->fake_inject_ue); if (!d) goto nomem; d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent, &mci->fake_inject_count); if (!d) goto nomem; d = debugfs_create_file("fake_inject", S_IWUSR, parent, &mci->dev, &debug_fake_inject_fops); if (!d) goto nomem; mci->debugfs = parent; return 0; nomem: debugfs_remove(mci->debugfs); return -ENOMEM; } #endif /* * Create a new Memory Controller kobject instance, * mc under the 'mc' directory * * Return: * 0 Success * !0 Failure */ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci) { int i, err; /* * The memory controller needs its own bus, in order to avoid * namespace conflicts at /sys/bus/edac. */ mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx); if (!mci->bus.name) return -ENOMEM; edac_dbg(0, "creating bus %s\n", mci->bus.name); err = bus_register(&mci->bus); if (err < 0) return err; /* get the /sys/devices/system/edac subsys reference */ mci->dev.type = &mci_attr_type; device_initialize(&mci->dev); mci->dev.parent = mci_pdev; mci->dev.bus = &mci->bus; dev_set_name(&mci->dev, "mc%d", mci->mc_idx); dev_set_drvdata(&mci->dev, mci); pm_runtime_forbid(&mci->dev); edac_dbg(0, "creating device %s\n", dev_name(&mci->dev)); err = device_add(&mci->dev); if (err < 0) { edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); bus_unregister(&mci->bus); kfree(mci->bus.name); return err; } if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) { if (mci->get_sdram_scrub_rate) { dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO; dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show; } if (mci->set_sdram_scrub_rate) { dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR; dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store; } err = device_create_file(&mci->dev, &dev_attr_sdram_scrub_rate); if (err) { edac_dbg(1, "failure: create sdram_scrub_rate\n"); goto fail2; } } /* * Create the dimm/rank devices */ for (i = 0; i < mci->tot_dimms; i++) { struct dimm_info *dimm = mci->dimms[i]; /* Only expose populated DIMMs */ if (dimm->nr_pages == 0) continue; #ifdef CONFIG_EDAC_DEBUG edac_dbg(1, "creating dimm%d, located at ", i); if (edac_debug_level >= 1) { int lay; for (lay = 0; lay < mci->n_layers; lay++) printk(KERN_CONT "%s %d ", edac_layer_name[mci->layers[lay].type], dimm->location[lay]); printk(KERN_CONT "\n"); } #endif err = edac_create_dimm_object(mci, dimm, i); if (err) { edac_dbg(1, "failure: create dimm %d obj\n", i); goto fail; } } #ifdef CONFIG_EDAC_LEGACY_SYSFS err = edac_create_csrow_objects(mci); if (err < 0) goto fail; #endif #ifdef CONFIG_EDAC_DEBUG edac_create_debug_nodes(mci); #endif return 0; fail: for (i--; i >= 0; i--) { struct dimm_info *dimm = mci->dimms[i]; if (dimm->nr_pages == 0) continue; device_unregister(&dimm->dev); } fail2: device_unregister(&mci->dev); bus_unregister(&mci->bus); kfree(mci->bus.name); return err; } /* * remove a Memory Controller instance */ void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) { int i; edac_dbg(0, "\n"); #ifdef CONFIG_EDAC_DEBUG debugfs_remove(mci->debugfs); #endif #ifdef CONFIG_EDAC_LEGACY_SYSFS edac_delete_csrow_objects(mci); #endif for (i = 0; i < mci->tot_dimms; i++) { struct dimm_info *dimm = mci->dimms[i]; if (dimm->nr_pages == 0) continue; edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev)); device_unregister(&dimm->dev); } } void edac_unregister_sysfs(struct mem_ctl_info *mci) { edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev)); device_unregister(&mci->dev); bus_unregister(&mci->bus); kfree(mci->bus.name); } static void mc_attr_release(struct device *dev) { /* * There's no container structure here, as this is just the mci * parent device, used to create the /sys/devices/mc sysfs node. * So, there are no attributes on it. */ edac_dbg(1, "Releasing device %s\n", dev_name(dev)); kfree(dev); } static struct device_type mc_attr_type = { .release = mc_attr_release, }; /* * Init/exit code for the module. Basically, creates/removes /sys/class/rc */ int __init edac_mc_sysfs_init(void) { struct bus_type *edac_subsys; int err; /* get the /sys/devices/system/edac subsys reference */ edac_subsys = edac_get_sysfs_subsys(); if (edac_subsys == NULL) { edac_dbg(1, "no edac_subsys\n"); err = -EINVAL; goto out; } mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); if (!mci_pdev) { err = -ENOMEM; goto out_put_sysfs; } mci_pdev->bus = edac_subsys; mci_pdev->type = &mc_attr_type; device_initialize(mci_pdev); dev_set_name(mci_pdev, "mc"); err = device_add(mci_pdev); if (err < 0) goto out_dev_free; edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); return 0; out_dev_free: kfree(mci_pdev); out_put_sysfs: edac_put_sysfs_subsys(); out: return err; } void __exit edac_mc_sysfs_exit(void) { device_unregister(mci_pdev); edac_put_sysfs_subsys(); }