/* * Intel D82875P Memory Controller kernel module * (C) 2003 Linux Networx (http://lnxi.com) * This file may be distributed under the terms of the * GNU General Public License. * * Written by Thayne Harbaugh * Contributors: * Wang Zhenyu at intel.com * * $Id: edac_i82875p.c,v 1.5.2.11 2005/10/05 00:43:44 dsp_llnl Exp $ * * Note: E7210 appears same as D82875P - zhenyu.z.wang at intel.com */ #include #include #include #include #include #include "edac_core.h" #define I82875P_REVISION " Ver: 2.0.2" #define EDAC_MOD_STR "i82875p_edac" #define i82875p_printk(level, fmt, arg...) \ edac_printk(level, "i82875p", fmt, ##arg) #define i82875p_mc_printk(mci, level, fmt, arg...) \ edac_mc_chipset_printk(mci, level, "i82875p", fmt, ##arg) #ifndef PCI_DEVICE_ID_INTEL_82875_0 #define PCI_DEVICE_ID_INTEL_82875_0 0x2578 #endif /* PCI_DEVICE_ID_INTEL_82875_0 */ #ifndef PCI_DEVICE_ID_INTEL_82875_6 #define PCI_DEVICE_ID_INTEL_82875_6 0x257e #endif /* PCI_DEVICE_ID_INTEL_82875_6 */ /* four csrows in dual channel, eight in single channel */ #define I82875P_NR_CSROWS(nr_chans) (8/(nr_chans)) /* Intel 82875p register addresses - device 0 function 0 - DRAM Controller */ #define I82875P_EAP 0x58 /* Error Address Pointer (32b) * * 31:12 block address * 11:0 reserved */ #define I82875P_DERRSYN 0x5c /* DRAM Error Syndrome (8b) * * 7:0 DRAM ECC Syndrome */ #define I82875P_DES 0x5d /* DRAM Error Status (8b) * * 7:1 reserved * 0 Error channel 0/1 */ #define I82875P_ERRSTS 0xc8 /* Error Status Register (16b) * * 15:10 reserved * 9 non-DRAM lock error (ndlock) * 8 Sftwr Generated SMI * 7 ECC UE * 6 reserved * 5 MCH detects unimplemented cycle * 4 AGP access outside GA * 3 Invalid AGP access * 2 Invalid GA translation table * 1 Unsupported AGP command * 0 ECC CE */ #define I82875P_ERRCMD 0xca /* Error Command (16b) * * 15:10 reserved * 9 SERR on non-DRAM lock * 8 SERR on ECC UE * 7 SERR on ECC CE * 6 target abort on high exception * 5 detect unimplemented cyc * 4 AGP access outside of GA * 3 SERR on invalid AGP access * 2 invalid translation table * 1 SERR on unsupported AGP command * 0 reserved */ /* Intel 82875p register addresses - device 6 function 0 - DRAM Controller */ #define I82875P_PCICMD6 0x04 /* PCI Command Register (16b) * * 15:10 reserved * 9 fast back-to-back - ro 0 * 8 SERR enable - ro 0 * 7 addr/data stepping - ro 0 * 6 parity err enable - ro 0 * 5 VGA palette snoop - ro 0 * 4 mem wr & invalidate - ro 0 * 3 special cycle - ro 0 * 2 bus master - ro 0 * 1 mem access dev6 - 0(dis),1(en) * 0 IO access dev3 - 0(dis),1(en) */ #define I82875P_BAR6 0x10 /* Mem Delays Base ADDR Reg (32b) * * 31:12 mem base addr [31:12] * 11:4 address mask - ro 0 * 3 prefetchable - ro 0(non),1(pre) * 2:1 mem type - ro 0 * 0 mem space - ro 0 */ /* Intel 82875p MMIO register space - device 0 function 0 - MMR space */ #define I82875P_DRB_SHIFT 26 /* 64MiB grain */ #define I82875P_DRB 0x00 /* DRAM Row Boundary (8b x 8) * * 7 reserved * 6:0 64MiB row boundary addr */ #define I82875P_DRA 0x10 /* DRAM Row Attribute (4b x 8) * * 7 reserved * 6:4 row attr row 1 * 3 reserved * 2:0 row attr row 0 * * 000 = 4KiB * 001 = 8KiB * 010 = 16KiB * 011 = 32KiB */ #define I82875P_DRC 0x68 /* DRAM Controller Mode (32b) * * 31:30 reserved * 29 init complete * 28:23 reserved * 22:21 nr chan 00=1,01=2 * 20 reserved * 19:18 Data Integ Mode 00=none,01=ecc * 17:11 reserved * 10:8 refresh mode * 7 reserved * 6:4 mode select * 3:2 reserved * 1:0 DRAM type 01=DDR */ enum i82875p_chips { I82875P = 0, }; struct i82875p_pvt { struct pci_dev *ovrfl_pdev; void __iomem *ovrfl_window; }; struct i82875p_dev_info { const char *ctl_name; }; struct i82875p_error_info { u16 errsts; u32 eap; u8 des; u8 derrsyn; u16 errsts2; }; static const struct i82875p_dev_info i82875p_devs[] = { [I82875P] = { .ctl_name = "i82875p"}, }; static struct pci_dev *mci_pdev; /* init dev: in case that AGP code has * already registered driver */ static struct edac_pci_ctl_info *i82875p_pci; static void i82875p_get_error_info(struct mem_ctl_info *mci, struct i82875p_error_info *info) { struct pci_dev *pdev; pdev = to_pci_dev(mci->dev); /* * This is a mess because there is no atomic way to read all the * registers at once and the registers can transition from CE being * overwritten by UE. */ pci_read_config_word(pdev, I82875P_ERRSTS, &info->errsts); if (!(info->errsts & 0x0081)) return; pci_read_config_dword(pdev, I82875P_EAP, &info->eap); pci_read_config_byte(pdev, I82875P_DES, &info->des); pci_read_config_byte(pdev, I82875P_DERRSYN, &info->derrsyn); pci_read_config_word(pdev, I82875P_ERRSTS, &info->errsts2); /* * If the error is the same then we can for both reads then * the first set of reads is valid. If there is a change then * there is a CE no info and the second set of reads is valid * and should be UE info. */ if ((info->errsts ^ info->errsts2) & 0x0081) { pci_read_config_dword(pdev, I82875P_EAP, &info->eap); pci_read_config_byte(pdev, I82875P_DES, &info->des); pci_read_config_byte(pdev, I82875P_DERRSYN, &info->derrsyn); } pci_write_bits16(pdev, I82875P_ERRSTS, 0x0081, 0x0081); } static int i82875p_process_error_info(struct mem_ctl_info *mci, struct i82875p_error_info *info, int handle_errors) { int row, multi_chan; multi_chan = mci->csrows[0].nr_channels - 1; if (!(info->errsts & 0x0081)) return 0; if (!handle_errors) return 1; if ((info->errsts ^ info->errsts2) & 0x0081) { edac_mc_handle_ce_no_info(mci, "UE overwrote CE"); info->errsts = info->errsts2; } info->eap >>= PAGE_SHIFT; row = edac_mc_find_csrow_by_page(mci, info->eap); if (info->errsts & 0x0080) edac_mc_handle_ue(mci, info->eap, 0, row, "i82875p UE"); else edac_mc_handle_ce(mci, info->eap, 0, info->derrsyn, row, multi_chan ? (info->des & 0x1) : 0, "i82875p CE"); return 1; } static void i82875p_check(struct mem_ctl_info *mci) { struct i82875p_error_info info; debugf1("MC%d: %s()\n", mci->mc_idx, __func__); i82875p_get_error_info(mci, &info); i82875p_process_error_info(mci, &info, 1); } /* Return 0 on success or 1 on failure. */ static int i82875p_setup_overfl_dev(struct pci_dev *pdev, struct pci_dev **ovrfl_pdev, void __iomem **ovrfl_window) { struct pci_dev *dev; void __iomem *window; int err; *ovrfl_pdev = NULL; *ovrfl_window = NULL; dev = pci_get_device(PCI_VEND_DEV(INTEL, 82875_6), NULL); if (dev == NULL) { /* Intel tells BIOS developers to hide device 6 which * configures the overflow device access containing * the DRBs - this is where we expose device 6. * http://www.x86-secret.com/articles/tweak/pat/patsecrets-2.htm */ pci_write_bits8(pdev, 0xf4, 0x2, 0x2); dev = pci_scan_single_device(pdev->bus, PCI_DEVFN(6, 0)); if (dev == NULL) return 1; err = pci_bus_add_device(dev); if (err) { i82875p_printk(KERN_ERR, "%s(): pci_bus_add_device() Failed\n", __func__); } pci_bus_assign_resources(dev->bus); } *ovrfl_pdev = dev; if (pci_enable_device(dev)) { i82875p_printk(KERN_ERR, "%s(): Failed to enable overflow " "device\n", __func__); return 1; } if (pci_request_regions(dev, pci_name(dev))) { #ifdef CORRECT_BIOS goto fail0; #endif } /* cache is irrelevant for PCI bus reads/writes */ window = pci_ioremap_bar(dev, 0); if (window == NULL) { i82875p_printk(KERN_ERR, "%s(): Failed to ioremap bar6\n", __func__); goto fail1; } *ovrfl_window = window; return 0; fail1: pci_release_regions(dev); #ifdef CORRECT_BIOS fail0: pci_disable_device(dev); #endif /* NOTE: the ovrfl proc entry and pci_dev are intentionally left */ return 1; } /* Return 1 if dual channel mode is active. Else return 0. */ static inline int dual_channel_active(u32 drc) { return (drc >> 21) & 0x1; } static void i82875p_init_csrows(struct mem_ctl_info *mci, struct pci_dev *pdev, void __iomem * ovrfl_window, u32 drc) { struct csrow_info *csrow; unsigned long last_cumul_size; u8 value; u32 drc_ddim; /* DRAM Data Integrity Mode 0=none,2=edac */ u32 cumul_size; int index; drc_ddim = (drc >> 18) & 0x1; last_cumul_size = 0; /* The dram row boundary (DRB) reg values are boundary address * for each DRAM row with a granularity of 32 or 64MB (single/dual * channel operation). DRB regs are cumulative; therefore DRB7 will * contain the total memory contained in all eight rows. */ for (index = 0; index < mci->nr_csrows; index++) { csrow = &mci->csrows[index]; value = readb(ovrfl_window + I82875P_DRB + index); cumul_size = value << (I82875P_DRB_SHIFT - PAGE_SHIFT); debugf3("%s(): (%d) cumul_size 0x%x\n", __func__, index, cumul_size); if (cumul_size == last_cumul_size) continue; /* not populated */ csrow->first_page = last_cumul_size; csrow->last_page = cumul_size - 1; csrow->nr_pages = cumul_size - last_cumul_size; last_cumul_size = cumul_size; csrow->grain = 1 << 12; /* I82875P_EAP has 4KiB reolution */ csrow->mtype = MEM_DDR; csrow->dtype = DEV_UNKNOWN; csrow->edac_mode = drc_ddim ? EDAC_SECDED : EDAC_NONE; } } static int i82875p_probe1(struct pci_dev *pdev, int dev_idx) { int rc = -ENODEV; struct mem_ctl_info *mci; struct i82875p_pvt *pvt; struct pci_dev *ovrfl_pdev; void __iomem *ovrfl_window; u32 drc; u32 nr_chans; struct i82875p_error_info discard; debugf0("%s()\n", __func__); ovrfl_pdev = pci_get_device(PCI_VEND_DEV(INTEL, 82875_6), NULL); if (i82875p_setup_overfl_dev(pdev, &ovrfl_pdev, &ovrfl_window)) return -ENODEV; drc = readl(ovrfl_window + I82875P_DRC); nr_chans = dual_channel_active(drc) + 1; mci = edac_mc_alloc(sizeof(*pvt), I82875P_NR_CSROWS(nr_chans), nr_chans, 0); if (!mci) { rc = -ENOMEM; goto fail0; } /* Keeps mci available after edac_mc_del_mc() till edac_mc_free() */ kobject_get(&mci->edac_mci_kobj); debugf3("%s(): init mci\n", __func__); mci->dev = &pdev->dev; mci->mtype_cap = MEM_FLAG_DDR; mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_UNKNOWN; mci->mod_name = EDAC_MOD_STR; mci->mod_ver = I82875P_REVISION; mci->ctl_name = i82875p_devs[dev_idx].ctl_name; mci->dev_name = pci_name(pdev); mci->edac_check = i82875p_check; mci->ctl_page_to_phys = NULL; debugf3("%s(): init pvt\n", __func__); pvt = (struct i82875p_pvt *)mci->pvt_info; pvt->ovrfl_pdev = ovrfl_pdev; pvt->ovrfl_window = ovrfl_window; i82875p_init_csrows(mci, pdev, ovrfl_window, drc); i82875p_get_error_info(mci, &discard); /* clear counters */ /* Here we assume that we will never see multiple instances of this * type of memory controller. The ID is therefore hardcoded to 0. */ if (edac_mc_add_mc(mci)) { debugf3("%s(): failed edac_mc_add_mc()\n", __func__); goto fail1; } /* allocating generic PCI control info */ i82875p_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); if (!i82875p_pci) { printk(KERN_WARNING "%s(): Unable to create PCI control\n", __func__); printk(KERN_WARNING "%s(): PCI error report via EDAC not setup\n", __func__); } /* get this far and it's successful */ debugf3("%s(): success\n", __func__); return 0; fail1: kobject_put(&mci->edac_mci_kobj); edac_mc_free(mci); fail0: iounmap(ovrfl_window); pci_release_regions(ovrfl_pdev); pci_disable_device(ovrfl_pdev); /* NOTE: the ovrfl proc entry and pci_dev are intentionally left */ return rc; } /* returns count (>= 0), or negative on error */ static int __devinit i82875p_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int rc; debugf0("%s()\n", __func__); i82875p_printk(KERN_INFO, "i82875p init one\n"); if (pci_enable_device(pdev) < 0) return -EIO; rc = i82875p_probe1(pdev, ent->driver_data); if (mci_pdev == NULL) mci_pdev = pci_dev_get(pdev); return rc; } static void __devexit i82875p_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; struct i82875p_pvt *pvt = NULL; debugf0("%s()\n", __func__); if (i82875p_pci) edac_pci_release_generic_ctl(i82875p_pci); if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL) return; pvt = (struct i82875p_pvt *)mci->pvt_info; if (pvt->ovrfl_window) iounmap(pvt->ovrfl_window); if (pvt->ovrfl_pdev) { #ifdef CORRECT_BIOS pci_release_regions(pvt->ovrfl_pdev); #endif /*CORRECT_BIOS */ pci_disable_device(pvt->ovrfl_pdev); pci_dev_put(pvt->ovrfl_pdev); } edac_mc_free(mci); } static const struct pci_device_id i82875p_pci_tbl[] __devinitdata = { { PCI_VEND_DEV(INTEL, 82875_0), PCI_ANY_ID, PCI_ANY_ID, 0, 0, I82875P}, { 0, } /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, i82875p_pci_tbl); static struct pci_driver i82875p_driver = { .name = EDAC_MOD_STR, .probe = i82875p_init_one, .remove = __devexit_p(i82875p_remove_one), .id_table = i82875p_pci_tbl, }; static int __init i82875p_init(void) { int pci_rc; debugf3("%s()\n", __func__); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); pci_rc = pci_register_driver(&i82875p_driver); if (pci_rc < 0) goto fail0; if (mci_pdev == NULL) { mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82875_0, NULL); if (!mci_pdev) { debugf0("875p pci_get_device fail\n"); pci_rc = -ENODEV; goto fail1; } pci_rc = i82875p_init_one(mci_pdev, i82875p_pci_tbl); if (pci_rc < 0) { debugf0("875p init fail\n"); pci_rc = -ENODEV; goto fail1; } } return 0; fail1: pci_unregister_driver(&i82875p_driver); fail0: if (mci_pdev != NULL) pci_dev_put(mci_pdev); return pci_rc; } static void __exit i82875p_exit(void) { debugf3("%s()\n", __func__); i82875p_remove_one(mci_pdev); pci_dev_put(mci_pdev); pci_unregister_driver(&i82875p_driver); } module_init(i82875p_init); module_exit(i82875p_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh"); MODULE_DESCRIPTION("MC support for Intel 82875 memory hub controllers"); module_param(edac_op_state, int, 0444); MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");