/* * Copyright (C) 2012 Texas Instruments * Author: Rob Clark * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include #include #include #include #include #include #include #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__) struct tda998x_priv { struct i2c_client *cec; uint16_t rev; uint8_t current_page; int dpms; bool is_hdmi_sink; u8 vip_cntrl_0; u8 vip_cntrl_1; u8 vip_cntrl_2; struct tda998x_encoder_params params; }; #define to_tda998x_priv(x) ((struct tda998x_priv *)to_encoder_slave(x)->slave_priv) /* The TDA9988 series of devices use a paged register scheme.. to simplify * things we encode the page # in upper bits of the register #. To read/ * write a given register, we need to make sure CURPAGE register is set * appropriately. Which implies reads/writes are not atomic. Fun! */ #define REG(page, addr) (((page) << 8) | (addr)) #define REG2ADDR(reg) ((reg) & 0xff) #define REG2PAGE(reg) (((reg) >> 8) & 0xff) #define REG_CURPAGE 0xff /* write */ /* Page 00h: General Control */ #define REG_VERSION_LSB REG(0x00, 0x00) /* read */ #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */ # define MAIN_CNTRL0_SR (1 << 0) # define MAIN_CNTRL0_DECS (1 << 1) # define MAIN_CNTRL0_DEHS (1 << 2) # define MAIN_CNTRL0_CECS (1 << 3) # define MAIN_CNTRL0_CEHS (1 << 4) # define MAIN_CNTRL0_SCALER (1 << 7) #define REG_VERSION_MSB REG(0x00, 0x02) /* read */ #define REG_SOFTRESET REG(0x00, 0x0a) /* write */ # define SOFTRESET_AUDIO (1 << 0) # define SOFTRESET_I2C_MASTER (1 << 1) #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */ #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */ #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */ # define I2C_MASTER_DIS_MM (1 << 0) # define I2C_MASTER_DIS_FILT (1 << 1) # define I2C_MASTER_APP_STRT_LAT (1 << 2) #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */ # define FEAT_POWERDOWN_SPDIF (1 << 3) #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */ #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */ #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */ # define INT_FLAGS_2_EDID_BLK_RD (1 << 1) #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */ #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */ #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */ #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */ #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */ #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */ # define VIP_CNTRL_0_MIRR_A (1 << 7) # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4) # define VIP_CNTRL_0_MIRR_B (1 << 3) # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0) #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */ # define VIP_CNTRL_1_MIRR_C (1 << 7) # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4) # define VIP_CNTRL_1_MIRR_D (1 << 3) # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0) #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */ # define VIP_CNTRL_2_MIRR_E (1 << 7) # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4) # define VIP_CNTRL_2_MIRR_F (1 << 3) # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0) #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */ # define VIP_CNTRL_3_X_TGL (1 << 0) # define VIP_CNTRL_3_H_TGL (1 << 1) # define VIP_CNTRL_3_V_TGL (1 << 2) # define VIP_CNTRL_3_EMB (1 << 3) # define VIP_CNTRL_3_SYNC_DE (1 << 4) # define VIP_CNTRL_3_SYNC_HS (1 << 5) # define VIP_CNTRL_3_DE_INT (1 << 6) # define VIP_CNTRL_3_EDGE (1 << 7) #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */ # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0) # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2) # define VIP_CNTRL_4_CCIR656 (1 << 4) # define VIP_CNTRL_4_656_ALT (1 << 5) # define VIP_CNTRL_4_TST_656 (1 << 6) # define VIP_CNTRL_4_TST_PAT (1 << 7) #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */ # define VIP_CNTRL_5_CKCASE (1 << 0) # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1) #define REG_MUX_AP REG(0x00, 0x26) /* read/write */ #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */ #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */ # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0) # define MAT_CONTRL_MAT_BP (1 << 2) #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */ #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */ #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */ #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */ #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */ #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */ #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */ #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */ #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */ #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */ #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */ #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */ #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */ #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */ #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */ #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */ #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */ #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */ #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */ #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */ #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */ #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */ #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */ #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */ #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */ #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */ #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */ #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */ #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */ #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */ #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */ #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */ #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */ #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */ #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */ #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */ #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */ #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */ #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */ #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */ #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */ #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */ # define TBG_CNTRL_0_TOP_TGL (1 << 0) # define TBG_CNTRL_0_TOP_SEL (1 << 1) # define TBG_CNTRL_0_DE_EXT (1 << 2) # define TBG_CNTRL_0_TOP_EXT (1 << 3) # define TBG_CNTRL_0_FRAME_DIS (1 << 5) # define TBG_CNTRL_0_SYNC_MTHD (1 << 6) # define TBG_CNTRL_0_SYNC_ONCE (1 << 7) #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */ # define TBG_CNTRL_1_H_TGL (1 << 0) # define TBG_CNTRL_1_V_TGL (1 << 1) # define TBG_CNTRL_1_TGL_EN (1 << 2) # define TBG_CNTRL_1_X_EXT (1 << 3) # define TBG_CNTRL_1_H_EXT (1 << 4) # define TBG_CNTRL_1_V_EXT (1 << 5) # define TBG_CNTRL_1_DWIN_DIS (1 << 6) #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */ #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */ # define HVF_CNTRL_0_SM (1 << 7) # define HVF_CNTRL_0_RWB (1 << 6) # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2) # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0) #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */ # define HVF_CNTRL_1_FOR (1 << 0) # define HVF_CNTRL_1_YUVBLK (1 << 1) # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2) # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4) # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6) #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */ #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */ # define I2S_FORMAT(x) (((x) & 3) << 0) #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */ # define AIP_CLKSEL_FS(x) (((x) & 3) << 0) # define AIP_CLKSEL_CLK_POL(x) (((x) & 1) << 2) # define AIP_CLKSEL_AIP(x) (((x) & 7) << 3) /* Page 02h: PLL settings */ #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */ # define PLL_SERIAL_1_SRL_FDN (1 << 0) # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1) # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6) #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */ # define PLL_SERIAL_2_SRL_NOSC(x) (((x) & 3) << 0) # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4) #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */ # define PLL_SERIAL_3_SRL_CCIR (1 << 0) # define PLL_SERIAL_3_SRL_DE (1 << 2) # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4) #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */ #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */ #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */ #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */ #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */ #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */ #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */ #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */ #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */ # define AUDIO_DIV_SERCLK_1 0 # define AUDIO_DIV_SERCLK_2 1 # define AUDIO_DIV_SERCLK_4 2 # define AUDIO_DIV_SERCLK_8 3 # define AUDIO_DIV_SERCLK_16 4 # define AUDIO_DIV_SERCLK_32 5 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */ # define SEL_CLK_SEL_CLK1 (1 << 0) # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1) # define SEL_CLK_ENA_SC_CLK (1 << 3) #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */ /* Page 09h: EDID Control */ #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */ /* next 127 successive registers are the EDID block */ #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */ #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */ #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */ #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */ #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */ /* Page 10h: information frames and packets */ #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */ #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */ #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */ #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */ #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */ /* Page 11h: audio settings and content info packets */ #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */ # define AIP_CNTRL_0_RST_FIFO (1 << 0) # define AIP_CNTRL_0_SWAP (1 << 1) # define AIP_CNTRL_0_LAYOUT (1 << 2) # define AIP_CNTRL_0_ACR_MAN (1 << 5) # define AIP_CNTRL_0_RST_CTS (1 << 6) #define REG_CA_I2S REG(0x11, 0x01) /* read/write */ # define CA_I2S_CA_I2S(x) (((x) & 31) << 0) # define CA_I2S_HBR_CHSTAT (1 << 6) #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */ #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */ #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */ #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */ #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */ #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */ #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */ #define REG_CTS_N REG(0x11, 0x0c) /* read/write */ # define CTS_N_K(x) (((x) & 7) << 0) # define CTS_N_M(x) (((x) & 3) << 4) #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */ # define ENC_CNTRL_RST_ENC (1 << 0) # define ENC_CNTRL_RST_SEL (1 << 1) # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2) #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */ # define DIP_FLAGS_ACR (1 << 0) # define DIP_FLAGS_GC (1 << 1) #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */ # define DIP_IF_FLAGS_IF1 (1 << 1) # define DIP_IF_FLAGS_IF2 (1 << 2) # define DIP_IF_FLAGS_IF3 (1 << 3) # define DIP_IF_FLAGS_IF4 (1 << 4) # define DIP_IF_FLAGS_IF5 (1 << 5) #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */ /* Page 12h: HDCP and OTP */ #define REG_TX3 REG(0x12, 0x9a) /* read/write */ #define REG_TX4 REG(0x12, 0x9b) /* read/write */ # define TX4_PD_RAM (1 << 1) #define REG_TX33 REG(0x12, 0xb8) /* read/write */ # define TX33_HDMI (1 << 1) /* Page 13h: Gamut related metadata packets */ /* CEC registers: (not paged) */ #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */ # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7) # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6) # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1) # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0) #define REG_CEC_RXSHPDLEV 0xfe /* read */ # define CEC_RXSHPDLEV_RXSENS (1 << 0) # define CEC_RXSHPDLEV_HPD (1 << 1) #define REG_CEC_ENAMODS 0xff /* read/write */ # define CEC_ENAMODS_DIS_FRO (1 << 6) # define CEC_ENAMODS_DIS_CCLK (1 << 5) # define CEC_ENAMODS_EN_RXSENS (1 << 2) # define CEC_ENAMODS_EN_HDMI (1 << 1) # define CEC_ENAMODS_EN_CEC (1 << 0) /* Device versions: */ #define TDA9989N2 0x0101 #define TDA19989 0x0201 #define TDA19989N2 0x0202 #define TDA19988 0x0301 static void cec_write(struct drm_encoder *encoder, uint16_t addr, uint8_t val) { struct i2c_client *client = to_tda998x_priv(encoder)->cec; uint8_t buf[] = {addr, val}; int ret; ret = i2c_master_send(client, buf, ARRAY_SIZE(buf)); if (ret < 0) dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr); } static uint8_t cec_read(struct drm_encoder *encoder, uint8_t addr) { struct i2c_client *client = to_tda998x_priv(encoder)->cec; uint8_t val; int ret; ret = i2c_master_send(client, &addr, sizeof(addr)); if (ret < 0) goto fail; ret = i2c_master_recv(client, &val, sizeof(val)); if (ret < 0) goto fail; return val; fail: dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr); return 0; } static void set_page(struct drm_encoder *encoder, uint16_t reg) { struct tda998x_priv *priv = to_tda998x_priv(encoder); if (REG2PAGE(reg) != priv->current_page) { struct i2c_client *client = drm_i2c_encoder_get_client(encoder); uint8_t buf[] = { REG_CURPAGE, REG2PAGE(reg) }; int ret = i2c_master_send(client, buf, sizeof(buf)); if (ret < 0) dev_err(&client->dev, "Error %d writing to REG_CURPAGE\n", ret); priv->current_page = REG2PAGE(reg); } } static int reg_read_range(struct drm_encoder *encoder, uint16_t reg, char *buf, int cnt) { struct i2c_client *client = drm_i2c_encoder_get_client(encoder); uint8_t addr = REG2ADDR(reg); int ret; set_page(encoder, reg); ret = i2c_master_send(client, &addr, sizeof(addr)); if (ret < 0) goto fail; ret = i2c_master_recv(client, buf, cnt); if (ret < 0) goto fail; return ret; fail: dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg); return ret; } static void reg_write_range(struct drm_encoder *encoder, uint16_t reg, uint8_t *p, int cnt) { struct i2c_client *client = drm_i2c_encoder_get_client(encoder); uint8_t buf[cnt+1]; int ret; buf[0] = REG2ADDR(reg); memcpy(&buf[1], p, cnt); set_page(encoder, reg); ret = i2c_master_send(client, buf, cnt + 1); if (ret < 0) dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); } static uint8_t reg_read(struct drm_encoder *encoder, uint16_t reg) { uint8_t val = 0; reg_read_range(encoder, reg, &val, sizeof(val)); return val; } static void reg_write(struct drm_encoder *encoder, uint16_t reg, uint8_t val) { struct i2c_client *client = drm_i2c_encoder_get_client(encoder); uint8_t buf[] = {REG2ADDR(reg), val}; int ret; set_page(encoder, reg); ret = i2c_master_send(client, buf, ARRAY_SIZE(buf)); if (ret < 0) dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); } static void reg_write16(struct drm_encoder *encoder, uint16_t reg, uint16_t val) { struct i2c_client *client = drm_i2c_encoder_get_client(encoder); uint8_t buf[] = {REG2ADDR(reg), val >> 8, val}; int ret; set_page(encoder, reg); ret = i2c_master_send(client, buf, ARRAY_SIZE(buf)); if (ret < 0) dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); } static void reg_set(struct drm_encoder *encoder, uint16_t reg, uint8_t val) { reg_write(encoder, reg, reg_read(encoder, reg) | val); } static void reg_clear(struct drm_encoder *encoder, uint16_t reg, uint8_t val) { reg_write(encoder, reg, reg_read(encoder, reg) & ~val); } static void tda998x_reset(struct drm_encoder *encoder) { /* reset audio and i2c master: */ reg_set(encoder, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER); msleep(50); reg_clear(encoder, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER); msleep(50); /* reset transmitter: */ reg_set(encoder, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); reg_clear(encoder, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); /* PLL registers common configuration */ reg_write(encoder, REG_PLL_SERIAL_1, 0x00); reg_write(encoder, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1)); reg_write(encoder, REG_PLL_SERIAL_3, 0x00); reg_write(encoder, REG_SERIALIZER, 0x00); reg_write(encoder, REG_BUFFER_OUT, 0x00); reg_write(encoder, REG_PLL_SCG1, 0x00); reg_write(encoder, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8); reg_write(encoder, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK); reg_write(encoder, REG_PLL_SCGN1, 0xfa); reg_write(encoder, REG_PLL_SCGN2, 0x00); reg_write(encoder, REG_PLL_SCGR1, 0x5b); reg_write(encoder, REG_PLL_SCGR2, 0x00); reg_write(encoder, REG_PLL_SCG2, 0x10); /* Write the default value MUX register */ reg_write(encoder, REG_MUX_VP_VIP_OUT, 0x24); } static uint8_t tda998x_cksum(uint8_t *buf, size_t bytes) { uint8_t sum = 0; while (bytes--) sum += *buf++; return (255 - sum) + 1; } #define HB(x) (x) #define PB(x) (HB(2) + 1 + (x)) static void tda998x_write_if(struct drm_encoder *encoder, uint8_t bit, uint16_t addr, uint8_t *buf, size_t size) { buf[PB(0)] = tda998x_cksum(buf, size); reg_clear(encoder, REG_DIP_IF_FLAGS, bit); reg_write_range(encoder, addr, buf, size); reg_set(encoder, REG_DIP_IF_FLAGS, bit); } static void tda998x_write_aif(struct drm_encoder *encoder, struct tda998x_encoder_params *p) { uint8_t buf[PB(5) + 1]; buf[HB(0)] = 0x84; buf[HB(1)] = 0x01; buf[HB(2)] = 10; buf[PB(0)] = 0; buf[PB(1)] = p->audio_frame[1] & 0x07; /* CC */ buf[PB(2)] = p->audio_frame[2] & 0x1c; /* SF */ buf[PB(4)] = p->audio_frame[4]; buf[PB(5)] = p->audio_frame[5] & 0xf8; /* DM_INH + LSV */ tda998x_write_if(encoder, DIP_IF_FLAGS_IF4, REG_IF4_HB0, buf, sizeof(buf)); } static void tda998x_write_avi(struct drm_encoder *encoder, struct drm_display_mode *mode) { uint8_t buf[PB(13) + 1]; memset(buf, 0, sizeof(buf)); buf[HB(0)] = 0x82; buf[HB(1)] = 0x02; buf[HB(2)] = 13; buf[PB(1)] = HDMI_SCAN_MODE_UNDERSCAN; buf[PB(3)] = HDMI_QUANTIZATION_RANGE_FULL << 2; buf[PB(4)] = drm_match_cea_mode(mode); tda998x_write_if(encoder, DIP_IF_FLAGS_IF2, REG_IF2_HB0, buf, sizeof(buf)); } static void tda998x_audio_mute(struct drm_encoder *encoder, bool on) { if (on) { reg_set(encoder, REG_SOFTRESET, SOFTRESET_AUDIO); reg_clear(encoder, REG_SOFTRESET, SOFTRESET_AUDIO); reg_set(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); } else { reg_clear(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); } } static void tda998x_configure_audio(struct drm_encoder *encoder, struct drm_display_mode *mode, struct tda998x_encoder_params *p) { uint8_t buf[6], clksel_aip, clksel_fs, ca_i2s, cts_n, adiv; uint32_t n; /* Enable audio ports */ reg_write(encoder, REG_ENA_AP, p->audio_cfg); reg_write(encoder, REG_ENA_ACLK, p->audio_clk_cfg); /* Set audio input source */ switch (p->audio_format) { case AFMT_SPDIF: reg_write(encoder, REG_MUX_AP, 0x40); clksel_aip = AIP_CLKSEL_AIP(0); /* FS64SPDIF */ clksel_fs = AIP_CLKSEL_FS(2); cts_n = CTS_N_M(3) | CTS_N_K(3); ca_i2s = 0; break; case AFMT_I2S: reg_write(encoder, REG_MUX_AP, 0x64); clksel_aip = AIP_CLKSEL_AIP(1); /* ACLK */ clksel_fs = AIP_CLKSEL_FS(0); cts_n = CTS_N_M(3) | CTS_N_K(3); ca_i2s = CA_I2S_CA_I2S(0); break; default: BUG(); return; } reg_write(encoder, REG_AIP_CLKSEL, clksel_aip); reg_clear(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT); /* Enable automatic CTS generation */ reg_clear(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_ACR_MAN); reg_write(encoder, REG_CTS_N, cts_n); /* * Audio input somehow depends on HDMI line rate which is * related to pixclk. Testing showed that modes with pixclk * >100MHz need a larger divider while <40MHz need the default. * There is no detailed info in the datasheet, so we just * assume 100MHz requires larger divider. */ if (mode->clock > 100000) adiv = AUDIO_DIV_SERCLK_16; else adiv = AUDIO_DIV_SERCLK_8; reg_write(encoder, REG_AUDIO_DIV, adiv); /* * This is the approximate value of N, which happens to be * the recommended values for non-coherent clocks. */ n = 128 * p->audio_sample_rate / 1000; /* Write the CTS and N values */ buf[0] = 0x44; buf[1] = 0x42; buf[2] = 0x01; buf[3] = n; buf[4] = n >> 8; buf[5] = n >> 16; reg_write_range(encoder, REG_ACR_CTS_0, buf, 6); /* Set CTS clock reference */ reg_write(encoder, REG_AIP_CLKSEL, clksel_aip | clksel_fs); /* Reset CTS generator */ reg_set(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); reg_clear(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); /* Write the channel status */ buf[0] = 0x04; buf[1] = 0x00; buf[2] = 0x00; buf[3] = 0xf1; reg_write_range(encoder, REG_CH_STAT_B(0), buf, 4); tda998x_audio_mute(encoder, true); mdelay(20); tda998x_audio_mute(encoder, false); /* Write the audio information packet */ tda998x_write_aif(encoder, p); } /* DRM encoder functions */ static void tda998x_encoder_set_config(struct drm_encoder *encoder, void *params) { struct tda998x_priv *priv = to_tda998x_priv(encoder); struct tda998x_encoder_params *p = params; priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) | (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) | VIP_CNTRL_0_SWAP_B(p->swap_b) | (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0); priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) | (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) | VIP_CNTRL_1_SWAP_D(p->swap_d) | (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0); priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) | (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) | VIP_CNTRL_2_SWAP_F(p->swap_f) | (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0); priv->params = *p; } static void tda998x_encoder_dpms(struct drm_encoder *encoder, int mode) { struct tda998x_priv *priv = to_tda998x_priv(encoder); /* we only care about on or off: */ if (mode != DRM_MODE_DPMS_ON) mode = DRM_MODE_DPMS_OFF; if (mode == priv->dpms) return; switch (mode) { case DRM_MODE_DPMS_ON: /* enable video ports, audio will be enabled later */ reg_write(encoder, REG_ENA_VP_0, 0xff); reg_write(encoder, REG_ENA_VP_1, 0xff); reg_write(encoder, REG_ENA_VP_2, 0xff); /* set muxing after enabling ports: */ reg_write(encoder, REG_VIP_CNTRL_0, priv->vip_cntrl_0); reg_write(encoder, REG_VIP_CNTRL_1, priv->vip_cntrl_1); reg_write(encoder, REG_VIP_CNTRL_2, priv->vip_cntrl_2); break; case DRM_MODE_DPMS_OFF: /* disable video ports */ reg_write(encoder, REG_ENA_VP_0, 0x00); reg_write(encoder, REG_ENA_VP_1, 0x00); reg_write(encoder, REG_ENA_VP_2, 0x00); break; } priv->dpms = mode; } static void tda998x_encoder_save(struct drm_encoder *encoder) { DBG(""); } static void tda998x_encoder_restore(struct drm_encoder *encoder) { DBG(""); } static bool tda998x_encoder_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static int tda998x_encoder_mode_valid(struct drm_encoder *encoder, struct drm_display_mode *mode) { return MODE_OK; } static void tda998x_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct tda998x_priv *priv = to_tda998x_priv(encoder); uint16_t ref_pix, ref_line, n_pix, n_line; uint16_t hs_pix_s, hs_pix_e; uint16_t vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e; uint16_t vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e; uint16_t vwin1_line_s, vwin1_line_e; uint16_t vwin2_line_s, vwin2_line_e; uint16_t de_pix_s, de_pix_e; uint8_t reg, div, rep; /* * Internally TDA998x is using ITU-R BT.656 style sync but * we get VESA style sync. TDA998x is using a reference pixel * relative to ITU to sync to the input frame and for output * sync generation. Currently, we are using reference detection * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point * which is position of rising VS with coincident rising HS. * * Now there is some issues to take care of: * - HDMI data islands require sync-before-active * - TDA998x register values must be > 0 to be enabled * - REFLINE needs an additional offset of +1 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB * * So we add +1 to all horizontal and vertical register values, * plus an additional +3 for REFPIX as we are using RGB input only. */ n_pix = mode->htotal; n_line = mode->vtotal; hs_pix_e = mode->hsync_end - mode->hdisplay; hs_pix_s = mode->hsync_start - mode->hdisplay; de_pix_e = mode->htotal; de_pix_s = mode->htotal - mode->hdisplay; ref_pix = 3 + hs_pix_s; /* * Attached LCD controllers may generate broken sync. Allow * those to adjust the position of the rising VS edge by adding * HSKEW to ref_pix. */ if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW) ref_pix += adjusted_mode->hskew; if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) { ref_line = 1 + mode->vsync_start - mode->vdisplay; vwin1_line_s = mode->vtotal - mode->vdisplay - 1; vwin1_line_e = vwin1_line_s + mode->vdisplay; vs1_pix_s = vs1_pix_e = hs_pix_s; vs1_line_s = mode->vsync_start - mode->vdisplay; vs1_line_e = vs1_line_s + mode->vsync_end - mode->vsync_start; vwin2_line_s = vwin2_line_e = 0; vs2_pix_s = vs2_pix_e = 0; vs2_line_s = vs2_line_e = 0; } else { ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2; vwin1_line_s = (mode->vtotal - mode->vdisplay)/2; vwin1_line_e = vwin1_line_s + mode->vdisplay/2; vs1_pix_s = vs1_pix_e = hs_pix_s; vs1_line_s = (mode->vsync_start - mode->vdisplay)/2; vs1_line_e = vs1_line_s + (mode->vsync_end - mode->vsync_start)/2; vwin2_line_s = vwin1_line_s + mode->vtotal/2; vwin2_line_e = vwin2_line_s + mode->vdisplay/2; vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2; vs2_line_s = vs1_line_s + mode->vtotal/2 ; vs2_line_e = vs2_line_s + (mode->vsync_end - mode->vsync_start)/2; } div = 148500 / mode->clock; /* mute the audio FIFO: */ reg_set(encoder, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); /* set HDMI HDCP mode off: */ reg_set(encoder, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS); reg_clear(encoder, REG_TX33, TX33_HDMI); reg_write(encoder, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0)); /* no pre-filter or interpolator: */ reg_write(encoder, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) | HVF_CNTRL_0_INTPOL(0)); reg_write(encoder, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0)); reg_write(encoder, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) | VIP_CNTRL_4_BLC(0)); reg_clear(encoder, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR); reg_clear(encoder, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ); reg_clear(encoder, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_DE); reg_write(encoder, REG_SERIALIZER, 0); reg_write(encoder, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0)); /* TODO enable pixel repeat for pixel rates less than 25Msamp/s */ rep = 0; reg_write(encoder, REG_RPT_CNTRL, 0); reg_write(encoder, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) | SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK); reg_write(encoder, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) | PLL_SERIAL_2_SRL_PR(rep)); /* set color matrix bypass flag: */ reg_set(encoder, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP); /* set BIAS tmds value: */ reg_write(encoder, REG_ANA_GENERAL, 0x09); reg_clear(encoder, REG_TBG_CNTRL_0, TBG_CNTRL_0_SYNC_MTHD); /* * Sync on rising HSYNC/VSYNC */ reg_write(encoder, REG_VIP_CNTRL_3, 0); reg_set(encoder, REG_VIP_CNTRL_3, VIP_CNTRL_3_SYNC_HS); /* * TDA19988 requires high-active sync at input stage, * so invert low-active sync provided by master encoder here */ if (mode->flags & DRM_MODE_FLAG_NHSYNC) reg_set(encoder, REG_VIP_CNTRL_3, VIP_CNTRL_3_H_TGL); if (mode->flags & DRM_MODE_FLAG_NVSYNC) reg_set(encoder, REG_VIP_CNTRL_3, VIP_CNTRL_3_V_TGL); /* * Always generate sync polarity relative to input sync and * revert input stage toggled sync at output stage */ reg = TBG_CNTRL_1_TGL_EN; if (mode->flags & DRM_MODE_FLAG_NHSYNC) reg |= TBG_CNTRL_1_H_TGL; if (mode->flags & DRM_MODE_FLAG_NVSYNC) reg |= TBG_CNTRL_1_V_TGL; reg_write(encoder, REG_TBG_CNTRL_1, reg); reg_write(encoder, REG_VIDFORMAT, 0x00); reg_write16(encoder, REG_REFPIX_MSB, ref_pix); reg_write16(encoder, REG_REFLINE_MSB, ref_line); reg_write16(encoder, REG_NPIX_MSB, n_pix); reg_write16(encoder, REG_NLINE_MSB, n_line); reg_write16(encoder, REG_VS_LINE_STRT_1_MSB, vs1_line_s); reg_write16(encoder, REG_VS_PIX_STRT_1_MSB, vs1_pix_s); reg_write16(encoder, REG_VS_LINE_END_1_MSB, vs1_line_e); reg_write16(encoder, REG_VS_PIX_END_1_MSB, vs1_pix_e); reg_write16(encoder, REG_VS_LINE_STRT_2_MSB, vs2_line_s); reg_write16(encoder, REG_VS_PIX_STRT_2_MSB, vs2_pix_s); reg_write16(encoder, REG_VS_LINE_END_2_MSB, vs2_line_e); reg_write16(encoder, REG_VS_PIX_END_2_MSB, vs2_pix_e); reg_write16(encoder, REG_HS_PIX_START_MSB, hs_pix_s); reg_write16(encoder, REG_HS_PIX_STOP_MSB, hs_pix_e); reg_write16(encoder, REG_VWIN_START_1_MSB, vwin1_line_s); reg_write16(encoder, REG_VWIN_END_1_MSB, vwin1_line_e); reg_write16(encoder, REG_VWIN_START_2_MSB, vwin2_line_s); reg_write16(encoder, REG_VWIN_END_2_MSB, vwin2_line_e); reg_write16(encoder, REG_DE_START_MSB, de_pix_s); reg_write16(encoder, REG_DE_STOP_MSB, de_pix_e); if (priv->rev == TDA19988) { /* let incoming pixels fill the active space (if any) */ reg_write(encoder, REG_ENABLE_SPACE, 0x01); } /* must be last register set: */ reg_clear(encoder, REG_TBG_CNTRL_0, TBG_CNTRL_0_SYNC_ONCE); /* Only setup the info frames if the sink is HDMI */ if (priv->is_hdmi_sink) { /* We need to turn HDMI HDCP stuff on to get audio through */ reg_clear(encoder, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS); reg_write(encoder, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1)); reg_set(encoder, REG_TX33, TX33_HDMI); tda998x_write_avi(encoder, adjusted_mode); if (priv->params.audio_cfg) tda998x_configure_audio(encoder, adjusted_mode, &priv->params); } } static enum drm_connector_status tda998x_encoder_detect(struct drm_encoder *encoder, struct drm_connector *connector) { uint8_t val = cec_read(encoder, REG_CEC_RXSHPDLEV); return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected : connector_status_disconnected; } static int read_edid_block(struct drm_encoder *encoder, uint8_t *buf, int blk) { uint8_t offset, segptr; int ret, i; /* enable EDID read irq: */ reg_set(encoder, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); offset = (blk & 1) ? 128 : 0; segptr = blk / 2; reg_write(encoder, REG_DDC_ADDR, 0xa0); reg_write(encoder, REG_DDC_OFFS, offset); reg_write(encoder, REG_DDC_SEGM_ADDR, 0x60); reg_write(encoder, REG_DDC_SEGM, segptr); /* enable reading EDID: */ reg_write(encoder, REG_EDID_CTRL, 0x1); /* flag must be cleared by sw: */ reg_write(encoder, REG_EDID_CTRL, 0x0); /* wait for block read to complete: */ for (i = 100; i > 0; i--) { uint8_t val = reg_read(encoder, REG_INT_FLAGS_2); if (val & INT_FLAGS_2_EDID_BLK_RD) break; msleep(1); } if (i == 0) return -ETIMEDOUT; ret = reg_read_range(encoder, REG_EDID_DATA_0, buf, EDID_LENGTH); if (ret != EDID_LENGTH) { dev_err(encoder->dev->dev, "failed to read edid block %d: %d", blk, ret); return ret; } reg_clear(encoder, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); return 0; } static uint8_t * do_get_edid(struct drm_encoder *encoder) { struct tda998x_priv *priv = to_tda998x_priv(encoder); int j = 0, valid_extensions = 0; uint8_t *block, *new; bool print_bad_edid = drm_debug & DRM_UT_KMS; if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL) return NULL; if (priv->rev == TDA19988) reg_clear(encoder, REG_TX4, TX4_PD_RAM); /* base block fetch */ if (read_edid_block(encoder, block, 0)) goto fail; if (!drm_edid_block_valid(block, 0, print_bad_edid)) goto fail; /* if there's no extensions, we're done */ if (block[0x7e] == 0) goto done; new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL); if (!new) goto fail; block = new; for (j = 1; j <= block[0x7e]; j++) { uint8_t *ext_block = block + (valid_extensions + 1) * EDID_LENGTH; if (read_edid_block(encoder, ext_block, j)) goto fail; if (!drm_edid_block_valid(ext_block, j, print_bad_edid)) goto fail; valid_extensions++; } if (valid_extensions != block[0x7e]) { block[EDID_LENGTH-1] += block[0x7e] - valid_extensions; block[0x7e] = valid_extensions; new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL); if (!new) goto fail; block = new; } done: if (priv->rev == TDA19988) reg_set(encoder, REG_TX4, TX4_PD_RAM); return block; fail: if (priv->rev == TDA19988) reg_set(encoder, REG_TX4, TX4_PD_RAM); dev_warn(encoder->dev->dev, "failed to read EDID\n"); kfree(block); return NULL; } static int tda998x_encoder_get_modes(struct drm_encoder *encoder, struct drm_connector *connector) { struct tda998x_priv *priv = to_tda998x_priv(encoder); struct edid *edid = (struct edid *)do_get_edid(encoder); int n = 0; if (edid) { drm_mode_connector_update_edid_property(connector, edid); n = drm_add_edid_modes(connector, edid); priv->is_hdmi_sink = drm_detect_hdmi_monitor(edid); kfree(edid); } return n; } static int tda998x_encoder_create_resources(struct drm_encoder *encoder, struct drm_connector *connector) { DBG(""); return 0; } static int tda998x_encoder_set_property(struct drm_encoder *encoder, struct drm_connector *connector, struct drm_property *property, uint64_t val) { DBG(""); return 0; } static void tda998x_encoder_destroy(struct drm_encoder *encoder) { struct tda998x_priv *priv = to_tda998x_priv(encoder); drm_i2c_encoder_destroy(encoder); kfree(priv); } static struct drm_encoder_slave_funcs tda998x_encoder_funcs = { .set_config = tda998x_encoder_set_config, .destroy = tda998x_encoder_destroy, .dpms = tda998x_encoder_dpms, .save = tda998x_encoder_save, .restore = tda998x_encoder_restore, .mode_fixup = tda998x_encoder_mode_fixup, .mode_valid = tda998x_encoder_mode_valid, .mode_set = tda998x_encoder_mode_set, .detect = tda998x_encoder_detect, .get_modes = tda998x_encoder_get_modes, .create_resources = tda998x_encoder_create_resources, .set_property = tda998x_encoder_set_property, }; /* I2C driver functions */ static int tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id) { return 0; } static int tda998x_remove(struct i2c_client *client) { return 0; } static int tda998x_encoder_init(struct i2c_client *client, struct drm_device *dev, struct drm_encoder_slave *encoder_slave) { struct drm_encoder *encoder = &encoder_slave->base; struct tda998x_priv *priv; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3); priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1); priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5); priv->current_page = 0; priv->cec = i2c_new_dummy(client->adapter, 0x34); priv->dpms = DRM_MODE_DPMS_OFF; encoder_slave->slave_priv = priv; encoder_slave->slave_funcs = &tda998x_encoder_funcs; /* wake up the device: */ cec_write(encoder, REG_CEC_ENAMODS, CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI); tda998x_reset(encoder); /* read version: */ priv->rev = reg_read(encoder, REG_VERSION_LSB) | reg_read(encoder, REG_VERSION_MSB) << 8; /* mask off feature bits: */ priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */ switch (priv->rev) { case TDA9989N2: dev_info(dev->dev, "found TDA9989 n2"); break; case TDA19989: dev_info(dev->dev, "found TDA19989"); break; case TDA19989N2: dev_info(dev->dev, "found TDA19989 n2"); break; case TDA19988: dev_info(dev->dev, "found TDA19988"); break; default: DBG("found unsupported device: %04x", priv->rev); goto fail; } /* after reset, enable DDC: */ reg_write(encoder, REG_DDC_DISABLE, 0x00); /* set clock on DDC channel: */ reg_write(encoder, REG_TX3, 39); /* if necessary, disable multi-master: */ if (priv->rev == TDA19989) reg_set(encoder, REG_I2C_MASTER, I2C_MASTER_DIS_MM); cec_write(encoder, REG_CEC_FRO_IM_CLK_CTRL, CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL); return 0; fail: /* if encoder_init fails, the encoder slave is never registered, * so cleanup here: */ if (priv->cec) i2c_unregister_device(priv->cec); kfree(priv); encoder_slave->slave_priv = NULL; encoder_slave->slave_funcs = NULL; return -ENXIO; } static struct i2c_device_id tda998x_ids[] = { { "tda998x", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, tda998x_ids); static struct drm_i2c_encoder_driver tda998x_driver = { .i2c_driver = { .probe = tda998x_probe, .remove = tda998x_remove, .driver = { .name = "tda998x", }, .id_table = tda998x_ids, }, .encoder_init = tda998x_encoder_init, }; /* Module initialization */ static int __init tda998x_init(void) { DBG(""); return drm_i2c_encoder_register(THIS_MODULE, &tda998x_driver); } static void __exit tda998x_exit(void) { DBG(""); drm_i2c_encoder_unregister(&tda998x_driver); } MODULE_AUTHOR("Rob Clark