/* * Copyright 2006 Dave Airlie * Copyright © 2006-2007 Intel Corporation * Jesse Barnes * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include "drmP.h" #include "drm.h" #include "drm_crtc.h" #include "intel_drv.h" #include "i915_drm.h" #include "i915_drv.h" #include "intel_sdvo_regs.h" #undef SDVO_DEBUG struct intel_sdvo_priv { struct intel_i2c_chan *i2c_bus; int slaveaddr; int output_device; u16 active_outputs; struct intel_sdvo_caps caps; int pixel_clock_min, pixel_clock_max; int save_sdvo_mult; u16 save_active_outputs; struct intel_sdvo_dtd save_input_dtd_1, save_input_dtd_2; struct intel_sdvo_dtd save_output_dtd[16]; u32 save_SDVOX; }; /** * Writes the SDVOB or SDVOC with the given value, but always writes both * SDVOB and SDVOC to work around apparent hardware issues (according to * comments in the BIOS). */ void intel_sdvo_write_sdvox(struct intel_output *intel_output, u32 val) { struct drm_device *dev = intel_output->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv; u32 bval = val, cval = val; int i; if (sdvo_priv->output_device == SDVOB) { cval = I915_READ(SDVOC); } else { bval = I915_READ(SDVOB); } /* * Write the registers twice for luck. Sometimes, * writing them only once doesn't appear to 'stick'. * The BIOS does this too. Yay, magic */ for (i = 0; i < 2; i++) { I915_WRITE(SDVOB, bval); I915_READ(SDVOB); I915_WRITE(SDVOC, cval); I915_READ(SDVOC); } } static bool intel_sdvo_read_byte(struct intel_output *intel_output, u8 addr, u8 *ch) { struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv; u8 out_buf[2]; u8 buf[2]; int ret; struct i2c_msg msgs[] = { { .addr = sdvo_priv->i2c_bus->slave_addr, .flags = 0, .len = 1, .buf = out_buf, }, { .addr = sdvo_priv->i2c_bus->slave_addr, .flags = I2C_M_RD, .len = 1, .buf = buf, } }; out_buf[0] = addr; out_buf[1] = 0; if ((ret = i2c_transfer(&sdvo_priv->i2c_bus->adapter, msgs, 2)) == 2) { *ch = buf[0]; return true; } DRM_DEBUG("i2c transfer returned %d\n", ret); return false; } static bool intel_sdvo_write_byte(struct intel_output *intel_output, int addr, u8 ch) { u8 out_buf[2]; struct i2c_msg msgs[] = { { .addr = intel_output->i2c_bus->slave_addr, .flags = 0, .len = 2, .buf = out_buf, } }; out_buf[0] = addr; out_buf[1] = ch; if (i2c_transfer(&intel_output->i2c_bus->adapter, msgs, 1) == 1) { return true; } return false; } #define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd} /** Mapping of command numbers to names, for debug output */ const static struct _sdvo_cmd_name { u8 cmd; char *name; } sdvo_cmd_names[] = { SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_RESOLUTION_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH), }; #define SDVO_NAME(dev_priv) ((dev_priv)->output_device == SDVOB ? "SDVOB" : "SDVOC") #define SDVO_PRIV(output) ((struct intel_sdvo_priv *) (output)->dev_priv) #ifdef SDVO_DEBUG static void intel_sdvo_debug_write(struct intel_output *intel_output, u8 cmd, void *args, int args_len) { struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv; int i; DRM_DEBUG("%s: W: %02X ", SDVO_NAME(sdvo_priv), cmd); for (i = 0; i < args_len; i++) printk("%02X ", ((u8 *)args)[i]); for (; i < 8; i++) printk(" "); for (i = 0; i < sizeof(sdvo_cmd_names) / sizeof(sdvo_cmd_names[0]); i++) { if (cmd == sdvo_cmd_names[i].cmd) { printk("(%s)", sdvo_cmd_names[i].name); break; } } if (i == sizeof(sdvo_cmd_names)/ sizeof(sdvo_cmd_names[0])) printk("(%02X)",cmd); printk("\n"); } #else #define intel_sdvo_debug_write(o, c, a, l) #endif static void intel_sdvo_write_cmd(struct intel_output *intel_output, u8 cmd, void *args, int args_len) { int i; intel_sdvo_debug_write(intel_output, cmd, args, args_len); for (i = 0; i < args_len; i++) { intel_sdvo_write_byte(intel_output, SDVO_I2C_ARG_0 - i, ((u8*)args)[i]); } intel_sdvo_write_byte(intel_output, SDVO_I2C_OPCODE, cmd); } #ifdef SDVO_DEBUG static const char *cmd_status_names[] = { "Power on", "Success", "Not supported", "Invalid arg", "Pending", "Target not specified", "Scaling not supported" }; static void intel_sdvo_debug_response(struct intel_output *intel_output, void *response, int response_len, u8 status) { struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv; DRM_DEBUG("%s: R: ", SDVO_NAME(sdvo_priv)); for (i = 0; i < response_len; i++) printk("%02X ", ((u8 *)response)[i]); for (; i < 8; i++) printk(" "); if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP) printk("(%s)", cmd_status_names[status]); else printk("(??? %d)", status); printk("\n"); } #else #define intel_sdvo_debug_response(o, r, l, s) #endif static u8 intel_sdvo_read_response(struct intel_output *intel_output, void *response, int response_len) { int i; u8 status; u8 retry = 50; while (retry--) { /* Read the command response */ for (i = 0; i < response_len; i++) { intel_sdvo_read_byte(intel_output, SDVO_I2C_RETURN_0 + i, &((u8 *)response)[i]); } /* read the return status */ intel_sdvo_read_byte(intel_output, SDVO_I2C_CMD_STATUS, &status); intel_sdvo_debug_response(intel_output, response, response_len, status); if (status != SDVO_CMD_STATUS_PENDING) return status; mdelay(50); } return status; } int intel_sdvo_get_pixel_multiplier(struct drm_display_mode *mode) { if (mode->clock >= 100000) return 1; else if (mode->clock >= 50000) return 2; else return 4; } /** * Don't check status code from this as it switches the bus back to the * SDVO chips which defeats the purpose of doing a bus switch in the first * place. */ void intel_sdvo_set_control_bus_switch(struct intel_output *intel_output, u8 target) { intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_CONTROL_BUS_SWITCH, &target, 1); } static bool intel_sdvo_set_target_input(struct intel_output *intel_output, bool target_0, bool target_1) { struct intel_sdvo_set_target_input_args targets = {0}; u8 status; if (target_0 && target_1) return SDVO_CMD_STATUS_NOTSUPP; if (target_1) targets.target_1 = 1; intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_TARGET_INPUT, &targets, sizeof(targets)); status = intel_sdvo_read_response(intel_output, NULL, 0); return (status == SDVO_CMD_STATUS_SUCCESS); } /** * Return whether each input is trained. * * This function is making an assumption about the layout of the response, * which should be checked against the docs. */ static bool intel_sdvo_get_trained_inputs(struct intel_output *intel_output, bool *input_1, bool *input_2) { struct intel_sdvo_get_trained_inputs_response response; u8 status; intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_TRAINED_INPUTS, NULL, 0); status = intel_sdvo_read_response(intel_output, &response, sizeof(response)); if (status != SDVO_CMD_STATUS_SUCCESS) return false; *input_1 = response.input0_trained; *input_2 = response.input1_trained; return true; } static bool intel_sdvo_get_active_outputs(struct intel_output *intel_output, u16 *outputs) { u8 status; intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_OUTPUTS, NULL, 0); status = intel_sdvo_read_response(intel_output, outputs, sizeof(*outputs)); return (status == SDVO_CMD_STATUS_SUCCESS); } static bool intel_sdvo_set_active_outputs(struct intel_output *intel_output, u16 outputs) { u8 status; intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_OUTPUTS, &outputs, sizeof(outputs)); status = intel_sdvo_read_response(intel_output, NULL, 0); return (status == SDVO_CMD_STATUS_SUCCESS); } static bool intel_sdvo_set_encoder_power_state(struct intel_output *intel_output, int mode) { u8 status, state = SDVO_ENCODER_STATE_ON; switch (mode) { case DRM_MODE_DPMS_ON: state = SDVO_ENCODER_STATE_ON; break; case DRM_MODE_DPMS_STANDBY: state = SDVO_ENCODER_STATE_STANDBY; break; case DRM_MODE_DPMS_SUSPEND: state = SDVO_ENCODER_STATE_SUSPEND; break; case DRM_MODE_DPMS_OFF: state = SDVO_ENCODER_STATE_OFF; break; } intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ENCODER_POWER_STATE, &state, sizeof(state)); status = intel_sdvo_read_response(intel_output, NULL, 0); return (status == SDVO_CMD_STATUS_SUCCESS); } static bool intel_sdvo_get_input_pixel_clock_range(struct intel_output *intel_output, int *clock_min, int *clock_max) { struct intel_sdvo_pixel_clock_range clocks; u8 status; intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE, NULL, 0); status = intel_sdvo_read_response(intel_output, &clocks, sizeof(clocks)); if (status != SDVO_CMD_STATUS_SUCCESS) return false; /* Convert the values from units of 10 kHz to kHz. */ *clock_min = clocks.min * 10; *clock_max = clocks.max * 10; return true; } static bool intel_sdvo_set_target_output(struct intel_output *intel_output, u16 outputs) { u8 status; intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_TARGET_OUTPUT, &outputs, sizeof(outputs)); status = intel_sdvo_read_response(intel_output, NULL, 0); return (status == SDVO_CMD_STATUS_SUCCESS); } static bool intel_sdvo_get_timing(struct intel_output *intel_output, u8 cmd, struct intel_sdvo_dtd *dtd) { u8 status; intel_sdvo_write_cmd(intel_output, cmd, NULL, 0); status = intel_sdvo_read_response(intel_output, &dtd->part1, sizeof(dtd->part1)); if (status != SDVO_CMD_STATUS_SUCCESS) return false; intel_sdvo_write_cmd(intel_output, cmd + 1, NULL, 0); status = intel_sdvo_read_response(intel_output, &dtd->part2, sizeof(dtd->part2)); if (status != SDVO_CMD_STATUS_SUCCESS) return false; return true; } static bool intel_sdvo_get_input_timing(struct intel_output *intel_output, struct intel_sdvo_dtd *dtd) { return intel_sdvo_get_timing(intel_output, SDVO_CMD_GET_INPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_get_output_timing(struct intel_output *intel_output, struct intel_sdvo_dtd *dtd) { return intel_sdvo_get_timing(intel_output, SDVO_CMD_GET_OUTPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_set_timing(struct intel_output *intel_output, u8 cmd, struct intel_sdvo_dtd *dtd) { u8 status; intel_sdvo_write_cmd(intel_output, cmd, &dtd->part1, sizeof(dtd->part1)); status = intel_sdvo_read_response(intel_output, NULL, 0); if (status != SDVO_CMD_STATUS_SUCCESS) return false; intel_sdvo_write_cmd(intel_output, cmd + 1, &dtd->part2, sizeof(dtd->part2)); status = intel_sdvo_read_response(intel_output, NULL, 0); if (status != SDVO_CMD_STATUS_SUCCESS) return false; return true; } static bool intel_sdvo_set_input_timing(struct intel_output *intel_output, struct intel_sdvo_dtd *dtd) { return intel_sdvo_set_timing(intel_output, SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_set_output_timing(struct intel_output *intel_output, struct intel_sdvo_dtd *dtd) { return intel_sdvo_set_timing(intel_output, SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd); } static int intel_sdvo_get_clock_rate_mult(struct intel_output *intel_output) { u8 response, status; intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_CLOCK_RATE_MULT, NULL, 0); status = intel_sdvo_read_response(intel_output, &response, 1); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG("Couldn't get SDVO clock rate multiplier\n"); return SDVO_CLOCK_RATE_MULT_1X; } else { DRM_DEBUG("Current clock rate multiplier: %d\n", response); } return response; } static bool intel_sdvo_set_clock_rate_mult(struct intel_output *intel_output, u8 val) { u8 status; intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1); status = intel_sdvo_read_response(intel_output, NULL, 0); if (status != SDVO_CMD_STATUS_SUCCESS) return false; return true; } static bool intel_sdvo_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { /* Make the CRTC code factor in the SDVO pixel multiplier. The SDVO * device will be told of the multiplier during mode_set. */ adjusted_mode->clock *= intel_sdvo_get_pixel_multiplier(mode); return true; } static void intel_sdvo_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = encoder->crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_output *intel_output = enc_to_intel_output(encoder); struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv; u16 width, height; u16 h_blank_len, h_sync_len, v_blank_len, v_sync_len; u16 h_sync_offset, v_sync_offset; u32 sdvox; struct intel_sdvo_dtd output_dtd; int sdvo_pixel_multiply; if (!mode) return; width = mode->crtc_hdisplay; height = mode->crtc_vdisplay; /* do some mode translations */ h_blank_len = mode->crtc_hblank_end - mode->crtc_hblank_start; h_sync_len = mode->crtc_hsync_end - mode->crtc_hsync_start; v_blank_len = mode->crtc_vblank_end - mode->crtc_vblank_start; v_sync_len = mode->crtc_vsync_end - mode->crtc_vsync_start; h_sync_offset = mode->crtc_hsync_start - mode->crtc_hblank_start; v_sync_offset = mode->crtc_vsync_start - mode->crtc_vblank_start; output_dtd.part1.clock = mode->clock / 10; output_dtd.part1.h_active = width & 0xff; output_dtd.part1.h_blank = h_blank_len & 0xff; output_dtd.part1.h_high = (((width >> 8) & 0xf) << 4) | ((h_blank_len >> 8) & 0xf); output_dtd.part1.v_active = height & 0xff; output_dtd.part1.v_blank = v_blank_len & 0xff; output_dtd.part1.v_high = (((height >> 8) & 0xf) << 4) | ((v_blank_len >> 8) & 0xf); output_dtd.part2.h_sync_off = h_sync_offset; output_dtd.part2.h_sync_width = h_sync_len & 0xff; output_dtd.part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 | (v_sync_len & 0xf); output_dtd.part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) | ((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) | ((v_sync_len & 0x30) >> 4); output_dtd.part2.dtd_flags = 0x18; if (mode->flags & DRM_MODE_FLAG_PHSYNC) output_dtd.part2.dtd_flags |= 0x2; if (mode->flags & DRM_MODE_FLAG_PVSYNC) output_dtd.part2.dtd_flags |= 0x4; output_dtd.part2.sdvo_flags = 0; output_dtd.part2.v_sync_off_high = v_sync_offset & 0xc0; output_dtd.part2.reserved = 0; /* Set the output timing to the screen */ intel_sdvo_set_target_output(intel_output, sdvo_priv->active_outputs); intel_sdvo_set_output_timing(intel_output, &output_dtd); /* Set the input timing to the screen. Assume always input 0. */ intel_sdvo_set_target_input(intel_output, true, false); /* We would like to use i830_sdvo_create_preferred_input_timing() to * provide the device with a timing it can support, if it supports that * feature. However, presumably we would need to adjust the CRTC to * output the preferred timing, and we don't support that currently. */ intel_sdvo_set_input_timing(intel_output, &output_dtd); switch (intel_sdvo_get_pixel_multiplier(mode)) { case 1: intel_sdvo_set_clock_rate_mult(intel_output, SDVO_CLOCK_RATE_MULT_1X); break; case 2: intel_sdvo_set_clock_rate_mult(intel_output, SDVO_CLOCK_RATE_MULT_2X); break; case 4: intel_sdvo_set_clock_rate_mult(intel_output, SDVO_CLOCK_RATE_MULT_4X); break; } /* Set the SDVO control regs. */ if (0/*IS_I965GM(dev)*/) { sdvox = SDVO_BORDER_ENABLE; } else { sdvox = I915_READ(sdvo_priv->output_device); switch (sdvo_priv->output_device) { case SDVOB: sdvox &= SDVOB_PRESERVE_MASK; break; case SDVOC: sdvox &= SDVOC_PRESERVE_MASK; break; } sdvox |= (9 << 19) | SDVO_BORDER_ENABLE; } if (intel_crtc->pipe == 1) sdvox |= SDVO_PIPE_B_SELECT; sdvo_pixel_multiply = intel_sdvo_get_pixel_multiplier(mode); if (IS_I965G(dev)) { /* done in crtc_mode_set as the dpll_md reg must be written early */ } else if (IS_I945G(dev) || IS_I945GM(dev)) { /* done in crtc_mode_set as it lives inside the dpll register */ } else { sdvox |= (sdvo_pixel_multiply - 1) << SDVO_PORT_MULTIPLY_SHIFT; } intel_sdvo_write_sdvox(intel_output, sdvox); } static void intel_sdvo_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_output *intel_output = enc_to_intel_output(encoder); struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv; u32 temp; if (mode != DRM_MODE_DPMS_ON) { intel_sdvo_set_active_outputs(intel_output, 0); if (0) intel_sdvo_set_encoder_power_state(intel_output, mode); if (mode == DRM_MODE_DPMS_OFF) { temp = I915_READ(sdvo_priv->output_device); if ((temp & SDVO_ENABLE) != 0) { intel_sdvo_write_sdvox(intel_output, temp & ~SDVO_ENABLE); } } } else { bool input1, input2; int i; u8 status; temp = I915_READ(sdvo_priv->output_device); if ((temp & SDVO_ENABLE) == 0) intel_sdvo_write_sdvox(intel_output, temp | SDVO_ENABLE); for (i = 0; i < 2; i++) intel_wait_for_vblank(dev); status = intel_sdvo_get_trained_inputs(intel_output, &input1, &input2); /* Warn if the device reported failure to sync. * A lot of SDVO devices fail to notify of sync, but it's * a given it the status is a success, we succeeded. */ if (status == SDVO_CMD_STATUS_SUCCESS && !input1) { DRM_DEBUG("First %s output reported failure to sync\n", SDVO_NAME(sdvo_priv)); } if (0) intel_sdvo_set_encoder_power_state(intel_output, mode); intel_sdvo_set_active_outputs(intel_output, sdvo_priv->active_outputs); } return; } static void intel_sdvo_save(struct drm_connector *connector) { struct drm_device *dev = connector->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_output *intel_output = to_intel_output(connector); struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv; int o; sdvo_priv->save_sdvo_mult = intel_sdvo_get_clock_rate_mult(intel_output); intel_sdvo_get_active_outputs(intel_output, &sdvo_priv->save_active_outputs); if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) { intel_sdvo_set_target_input(intel_output, true, false); intel_sdvo_get_input_timing(intel_output, &sdvo_priv->save_input_dtd_1); } if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) { intel_sdvo_set_target_input(intel_output, false, true); intel_sdvo_get_input_timing(intel_output, &sdvo_priv->save_input_dtd_2); } for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++) { u16 this_output = (1 << o); if (sdvo_priv->caps.output_flags & this_output) { intel_sdvo_set_target_output(intel_output, this_output); intel_sdvo_get_output_timing(intel_output, &sdvo_priv->save_output_dtd[o]); } } sdvo_priv->save_SDVOX = I915_READ(sdvo_priv->output_device); } static void intel_sdvo_restore(struct drm_connector *connector) { struct drm_device *dev = connector->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_output *intel_output = to_intel_output(connector); struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv; int o; int i; bool input1, input2; u8 status; intel_sdvo_set_active_outputs(intel_output, 0); for (o = SDVO_OUTPUT_FIRST; o <= SDVO_OUTPUT_LAST; o++) { u16 this_output = (1 << o); if (sdvo_priv->caps.output_flags & this_output) { intel_sdvo_set_target_output(intel_output, this_output); intel_sdvo_set_output_timing(intel_output, &sdvo_priv->save_output_dtd[o]); } } if (sdvo_priv->caps.sdvo_inputs_mask & 0x1) { intel_sdvo_set_target_input(intel_output, true, false); intel_sdvo_set_input_timing(intel_output, &sdvo_priv->save_input_dtd_1); } if (sdvo_priv->caps.sdvo_inputs_mask & 0x2) { intel_sdvo_set_target_input(intel_output, false, true); intel_sdvo_set_input_timing(intel_output, &sdvo_priv->save_input_dtd_2); } intel_sdvo_set_clock_rate_mult(intel_output, sdvo_priv->save_sdvo_mult); I915_WRITE(sdvo_priv->output_device, sdvo_priv->save_SDVOX); if (sdvo_priv->save_SDVOX & SDVO_ENABLE) { for (i = 0; i < 2; i++) intel_wait_for_vblank(dev); status = intel_sdvo_get_trained_inputs(intel_output, &input1, &input2); if (status == SDVO_CMD_STATUS_SUCCESS && !input1) DRM_DEBUG("First %s output reported failure to sync\n", SDVO_NAME(sdvo_priv)); } intel_sdvo_set_active_outputs(intel_output, sdvo_priv->save_active_outputs); } static int intel_sdvo_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_output *intel_output = to_intel_output(connector); struct intel_sdvo_priv *sdvo_priv = intel_output->dev_priv; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; if (sdvo_priv->pixel_clock_min > mode->clock) return MODE_CLOCK_LOW; if (sdvo_priv->pixel_clock_max < mode->clock) return MODE_CLOCK_HIGH; return MODE_OK; } static bool intel_sdvo_get_capabilities(struct intel_output *intel_output, struct intel_sdvo_caps *caps) { u8 status; intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_DEVICE_CAPS, NULL, 0); status = intel_sdvo_read_response(intel_output, caps, sizeof(*caps)); if (status != SDVO_CMD_STATUS_SUCCESS) return false; return true; } struct drm_connector* intel_sdvo_find(struct drm_device *dev, int sdvoB) { struct drm_connector *connector = NULL; struct intel_output *iout = NULL; struct intel_sdvo_priv *sdvo; /* find the sdvo connector */ list_for_each_entry(connector, &dev->mode_config.connector_list, head) { iout = to_intel_output(connector); if (iout->type != INTEL_OUTPUT_SDVO) continue; sdvo = iout->dev_priv; if (sdvo->output_device == SDVOB && sdvoB) return connector; if (sdvo->output_device == SDVOC && !sdvoB) return connector; } return NULL; } int intel_sdvo_supports_hotplug(struct drm_connector *connector) { u8 response[2]; u8 status; struct intel_output *intel_output; DRM_DEBUG("\n"); if (!connector) return 0; intel_output = to_intel_output(connector); intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0); status = intel_sdvo_read_response(intel_output, &response, 2); if (response[0] !=0) return 1; return 0; } void intel_sdvo_set_hotplug(struct drm_connector *connector, int on) { u8 response[2]; u8 status; struct intel_output *intel_output = to_intel_output(connector); intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0); intel_sdvo_read_response(intel_output, &response, 2); if (on) { intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0); status = intel_sdvo_read_response(intel_output, &response, 2); intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2); } else { response[0] = 0; response[1] = 0; intel_sdvo_write_cmd(intel_output, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2); } intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0); intel_sdvo_read_response(intel_output, &response, 2); } static enum drm_connector_status intel_sdvo_detect(struct drm_connector *connector) { u8 response[2]; u8 status; struct intel_output *intel_output = to_intel_output(connector); intel_sdvo_write_cmd(intel_output, SDVO_CMD_GET_ATTACHED_DISPLAYS, NULL, 0); status = intel_sdvo_read_response(intel_output, &response, 2); DRM_DEBUG("SDVO response %d %d\n", response[0], response[1]); if ((response[0] != 0) || (response[1] != 0)) return connector_status_connected; else return connector_status_disconnected; } static int intel_sdvo_get_modes(struct drm_connector *connector) { struct intel_output *intel_output = to_intel_output(connector); /* set the bus switch and get the modes */ intel_sdvo_set_control_bus_switch(intel_output, SDVO_CONTROL_BUS_DDC2); intel_ddc_get_modes(intel_output); if (list_empty(&connector->probed_modes)) return 0; return 1; } static void intel_sdvo_destroy(struct drm_connector *connector) { struct intel_output *intel_output = to_intel_output(connector); if (intel_output->i2c_bus) intel_i2c_destroy(intel_output->i2c_bus); drm_sysfs_connector_remove(connector); drm_connector_cleanup(connector); kfree(intel_output); } static const struct drm_encoder_helper_funcs intel_sdvo_helper_funcs = { .dpms = intel_sdvo_dpms, .mode_fixup = intel_sdvo_mode_fixup, .prepare = intel_encoder_prepare, .mode_set = intel_sdvo_mode_set, .commit = intel_encoder_commit, }; static const struct drm_connector_funcs intel_sdvo_connector_funcs = { .save = intel_sdvo_save, .restore = intel_sdvo_restore, .detect = intel_sdvo_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = intel_sdvo_destroy, }; static const struct drm_connector_helper_funcs intel_sdvo_connector_helper_funcs = { .get_modes = intel_sdvo_get_modes, .mode_valid = intel_sdvo_mode_valid, .best_encoder = intel_best_encoder, }; void intel_sdvo_enc_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); } static const struct drm_encoder_funcs intel_sdvo_enc_funcs = { .destroy = intel_sdvo_enc_destroy, }; void intel_sdvo_init(struct drm_device *dev, int output_device) { struct drm_connector *connector; struct intel_output *intel_output; struct intel_sdvo_priv *sdvo_priv; struct intel_i2c_chan *i2cbus = NULL; int connector_type; u8 ch[0x40]; int i; int encoder_type, output_id; intel_output = kcalloc(sizeof(struct intel_output)+sizeof(struct intel_sdvo_priv), 1, GFP_KERNEL); if (!intel_output) { return; } connector = &intel_output->base; drm_connector_init(dev, connector, &intel_sdvo_connector_funcs, DRM_MODE_CONNECTOR_Unknown); drm_connector_helper_add(connector, &intel_sdvo_connector_helper_funcs); sdvo_priv = (struct intel_sdvo_priv *)(intel_output + 1); intel_output->type = INTEL_OUTPUT_SDVO; connector->interlace_allowed = 0; connector->doublescan_allowed = 0; /* setup the DDC bus. */ if (output_device == SDVOB) i2cbus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOB"); else i2cbus = intel_i2c_create(dev, GPIOE, "SDVOCTRL_E for SDVOC"); if (!i2cbus) goto err_connector; sdvo_priv->i2c_bus = i2cbus; if (output_device == SDVOB) { output_id = 1; sdvo_priv->i2c_bus->slave_addr = 0x38; } else { output_id = 2; sdvo_priv->i2c_bus->slave_addr = 0x39; } sdvo_priv->output_device = output_device; intel_output->i2c_bus = i2cbus; intel_output->dev_priv = sdvo_priv; /* Read the regs to test if we can talk to the device */ for (i = 0; i < 0x40; i++) { if (!intel_sdvo_read_byte(intel_output, i, &ch[i])) { DRM_DEBUG("No SDVO device found on SDVO%c\n", output_device == SDVOB ? 'B' : 'C'); goto err_i2c; } } intel_sdvo_get_capabilities(intel_output, &sdvo_priv->caps); memset(&sdvo_priv->active_outputs, 0, sizeof(sdvo_priv->active_outputs)); /* TODO, CVBS, SVID, YPRPB & SCART outputs. */ if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_RGB0) { sdvo_priv->active_outputs = SDVO_OUTPUT_RGB0; connector->display_info.subpixel_order = SubPixelHorizontalRGB; encoder_type = DRM_MODE_ENCODER_DAC; connector_type = DRM_MODE_CONNECTOR_VGA; } else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_RGB1) { sdvo_priv->active_outputs = SDVO_OUTPUT_RGB1; connector->display_info.subpixel_order = SubPixelHorizontalRGB; encoder_type = DRM_MODE_ENCODER_DAC; connector_type = DRM_MODE_CONNECTOR_VGA; } else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_TMDS0) { sdvo_priv->active_outputs = SDVO_OUTPUT_TMDS0; connector->display_info.subpixel_order = SubPixelHorizontalRGB; encoder_type = DRM_MODE_ENCODER_TMDS; connector_type = DRM_MODE_CONNECTOR_DVID; } else if (sdvo_priv->caps.output_flags & SDVO_OUTPUT_TMDS1) { sdvo_priv->active_outputs = SDVO_OUTPUT_TMDS1; connector->display_info.subpixel_order = SubPixelHorizontalRGB; encoder_type = DRM_MODE_ENCODER_TMDS; connector_type = DRM_MODE_CONNECTOR_DVID; } else { unsigned char bytes[2]; memcpy (bytes, &sdvo_priv->caps.output_flags, 2); DRM_DEBUG("%s: No active RGB or TMDS outputs (0x%02x%02x)\n", SDVO_NAME(sdvo_priv), bytes[0], bytes[1]); goto err_i2c; } drm_encoder_init(dev, &intel_output->enc, &intel_sdvo_enc_funcs, encoder_type); drm_encoder_helper_add(&intel_output->enc, &intel_sdvo_helper_funcs); connector->connector_type = connector_type; drm_mode_connector_attach_encoder(&intel_output->base, &intel_output->enc); drm_sysfs_connector_add(connector); /* Set the input timing to the screen. Assume always input 0. */ intel_sdvo_set_target_input(intel_output, true, false); intel_sdvo_get_input_pixel_clock_range(intel_output, &sdvo_priv->pixel_clock_min, &sdvo_priv->pixel_clock_max); DRM_DEBUG("%s device VID/DID: %02X:%02X.%02X, " "clock range %dMHz - %dMHz, " "input 1: %c, input 2: %c, " "output 1: %c, output 2: %c\n", SDVO_NAME(sdvo_priv), sdvo_priv->caps.vendor_id, sdvo_priv->caps.device_id, sdvo_priv->caps.device_rev_id, sdvo_priv->pixel_clock_min / 1000, sdvo_priv->pixel_clock_max / 1000, (sdvo_priv->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N', (sdvo_priv->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N', /* check currently supported outputs */ sdvo_priv->caps.output_flags & (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N', sdvo_priv->caps.output_flags & (SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N'); intel_output->ddc_bus = i2cbus; return; err_i2c: intel_i2c_destroy(intel_output->i2c_bus); err_connector: drm_connector_cleanup(connector); kfree(intel_output); return; }