/* * Copyright 2009 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "drmP.h" #include "nouveau_drv.h" #include "nouveau_i2c.h" #include "nouveau_connector.h" #include "nouveau_encoder.h" #include "nouveau_crtc.h" /****************************************************************************** * aux channel util functions *****************************************************************************/ #define AUX_DBG(fmt, args...) do { \ if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_AUXCH) { \ NV_PRINTK(KERN_DEBUG, dev, "AUXCH(%d): " fmt, ch, ##args); \ } \ } while (0) #define AUX_ERR(fmt, args...) NV_ERROR(dev, "AUXCH(%d): " fmt, ch, ##args) static void auxch_fini(struct drm_device *dev, int ch) { nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00310000, 0x00000000); } static int auxch_init(struct drm_device *dev, int ch) { const u32 unksel = 1; /* nfi which to use, or if it matters.. */ const u32 ureq = unksel ? 0x00100000 : 0x00200000; const u32 urep = unksel ? 0x01000000 : 0x02000000; u32 ctrl, timeout; /* wait up to 1ms for any previous transaction to be done... */ timeout = 1000; do { ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); udelay(1); if (!timeout--) { AUX_ERR("begin idle timeout 0x%08x", ctrl); return -EBUSY; } } while (ctrl & 0x03010000); /* set some magic, and wait up to 1ms for it to appear */ nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00300000, ureq); timeout = 1000; do { ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); udelay(1); if (!timeout--) { AUX_ERR("magic wait 0x%08x\n", ctrl); auxch_fini(dev, ch); return -EBUSY; } } while ((ctrl & 0x03000000) != urep); return 0; } static int auxch_tx(struct drm_device *dev, int ch, u8 type, u32 addr, u8 *data, u8 size) { u32 ctrl, stat, timeout, retries; u32 xbuf[4] = {}; int ret, i; AUX_DBG("%d: 0x%08x %d\n", type, addr, size); ret = auxch_init(dev, ch); if (ret) goto out; stat = nv_rd32(dev, 0x00e4e8 + (ch * 0x50)); if (!(stat & 0x10000000)) { AUX_DBG("sink not detected\n"); ret = -ENXIO; goto out; } if (!(type & 1)) { memcpy(xbuf, data, size); for (i = 0; i < 16; i += 4) { AUX_DBG("wr 0x%08x\n", xbuf[i / 4]); nv_wr32(dev, 0x00e4c0 + (ch * 0x50) + i, xbuf[i / 4]); } } ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); ctrl &= ~0x0001f0ff; ctrl |= type << 12; ctrl |= size - 1; nv_wr32(dev, 0x00e4e0 + (ch * 0x50), addr); /* retry transaction a number of times on failure... */ ret = -EREMOTEIO; for (retries = 0; retries < 32; retries++) { /* reset, and delay a while if this is a retry */ nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x80000000 | ctrl); nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00000000 | ctrl); if (retries) udelay(400); /* transaction request, wait up to 1ms for it to complete */ nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00010000 | ctrl); timeout = 1000; do { ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); udelay(1); if (!timeout--) { AUX_ERR("tx req timeout 0x%08x\n", ctrl); goto out; } } while (ctrl & 0x00010000); /* read status, and check if transaction completed ok */ stat = nv_mask(dev, 0x00e4e8 + (ch * 0x50), 0, 0); if (!(stat & 0x000f0f00)) { ret = 0; break; } AUX_DBG("%02d 0x%08x 0x%08x\n", retries, ctrl, stat); } if (type & 1) { for (i = 0; i < 16; i += 4) { xbuf[i / 4] = nv_rd32(dev, 0x00e4d0 + (ch * 0x50) + i); AUX_DBG("rd 0x%08x\n", xbuf[i / 4]); } memcpy(data, xbuf, size); } out: auxch_fini(dev, ch); return ret; } static u32 dp_link_bw_get(struct drm_device *dev, int or, int link) { u32 ctrl = nv_rd32(dev, 0x614300 + (or * 0x800)); if (!(ctrl & 0x000c0000)) return 162000; return 270000; } static int dp_lane_count_get(struct drm_device *dev, int or, int link) { u32 ctrl = nv_rd32(dev, NV50_SOR_DP_CTRL(or, link)); switch (ctrl & 0x000f0000) { case 0x00010000: return 1; case 0x00030000: return 2; default: return 4; } } void nouveau_dp_tu_update(struct drm_device *dev, int or, int link, u32 clk, u32 bpp) { const u32 symbol = 100000; int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0; int TU, VTUi, VTUf, VTUa; u64 link_data_rate, link_ratio, unk; u32 best_diff = 64 * symbol; u32 link_nr, link_bw, r; /* calculate packed data rate for each lane */ link_nr = dp_lane_count_get(dev, or, link); link_data_rate = (clk * bpp / 8) / link_nr; /* calculate ratio of packed data rate to link symbol rate */ link_bw = dp_link_bw_get(dev, or, link); link_ratio = link_data_rate * symbol; r = do_div(link_ratio, link_bw); for (TU = 64; TU >= 32; TU--) { /* calculate average number of valid symbols in each TU */ u32 tu_valid = link_ratio * TU; u32 calc, diff; /* find a hw representation for the fraction.. */ VTUi = tu_valid / symbol; calc = VTUi * symbol; diff = tu_valid - calc; if (diff) { if (diff >= (symbol / 2)) { VTUf = symbol / (symbol - diff); if (symbol - (VTUf * diff)) VTUf++; if (VTUf <= 15) { VTUa = 1; calc += symbol - (symbol / VTUf); } else { VTUa = 0; VTUf = 1; calc += symbol; } } else { VTUa = 0; VTUf = min((int)(symbol / diff), 15); calc += symbol / VTUf; } diff = calc - tu_valid; } else { /* no remainder, but the hw doesn't like the fractional * part to be zero. decrement the integer part and * have the fraction add a whole symbol back */ VTUa = 0; VTUf = 1; VTUi--; } if (diff < best_diff) { best_diff = diff; bestTU = TU; bestVTUa = VTUa; bestVTUf = VTUf; bestVTUi = VTUi; if (diff == 0) break; } } if (!bestTU) { NV_ERROR(dev, "DP: unable to find suitable config\n"); return; } /* XXX close to vbios numbers, but not right */ unk = (symbol - link_ratio) * bestTU; unk *= link_ratio; r = do_div(unk, symbol); r = do_div(unk, symbol); unk += 6; nv_mask(dev, NV50_SOR_DP_CTRL(or, link), 0x000001fc, bestTU << 2); nv_mask(dev, NV50_SOR_DP_SCFG(or, link), 0x010f7f3f, bestVTUa << 24 | bestVTUf << 16 | bestVTUi << 8 | unk); } u8 * nouveau_dp_bios_data(struct drm_device *dev, struct dcb_entry *dcb, u8 **entry) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvbios *bios = &dev_priv->vbios; struct bit_entry d; u8 *table; int i; if (bit_table(dev, 'd', &d)) { NV_ERROR(dev, "BIT 'd' table not found\n"); return NULL; } if (d.version != 1) { NV_ERROR(dev, "BIT 'd' table version %d unknown\n", d.version); return NULL; } table = ROMPTR(bios, d.data[0]); if (!table) { NV_ERROR(dev, "displayport table pointer invalid\n"); return NULL; } switch (table[0]) { case 0x20: case 0x21: case 0x30: break; default: NV_ERROR(dev, "displayport table 0x%02x unknown\n", table[0]); return NULL; } for (i = 0; i < table[3]; i++) { *entry = ROMPTR(bios, table[table[1] + (i * table[2])]); if (*entry && bios_encoder_match(dcb, ROM32((*entry)[0]))) return table; } NV_ERROR(dev, "displayport encoder table not found\n"); return NULL; } /****************************************************************************** * link training *****************************************************************************/ struct dp_state { struct dcb_entry *dcb; u8 *table; u8 *entry; int auxch; int crtc; int or; int link; u8 *dpcd; int link_nr; u32 link_bw; u8 stat[6]; u8 conf[4]; }; static void dp_set_link_config(struct drm_device *dev, struct dp_state *dp) { struct drm_nouveau_private *dev_priv = dev->dev_private; int or = dp->or, link = dp->link; u8 *entry, sink[2]; u32 dp_ctrl; u16 script; NV_DEBUG_KMS(dev, "%d lanes at %d KB/s\n", dp->link_nr, dp->link_bw); /* set selected link rate on source */ switch (dp->link_bw) { case 270000: nv_mask(dev, 0x614300 + (or * 0x800), 0x000c0000, 0x00040000); sink[0] = DP_LINK_BW_2_7; break; default: nv_mask(dev, 0x614300 + (or * 0x800), 0x000c0000, 0x00000000); sink[0] = DP_LINK_BW_1_62; break; } /* offset +0x0a of each dp encoder table entry is a pointer to another * table, that has (among other things) pointers to more scripts that * need to be executed, this time depending on link speed. */ entry = ROMPTR(&dev_priv->vbios, dp->entry[10]); if (entry) { if (dp->table[0] < 0x30) { while (dp->link_bw < (ROM16(entry[0]) * 10)) entry += 4; script = ROM16(entry[2]); } else { while (dp->link_bw < (entry[0] * 27000)) entry += 3; script = ROM16(entry[1]); } nouveau_bios_run_init_table(dev, script, dp->dcb, dp->crtc); } /* configure lane count on the source */ dp_ctrl = ((1 << dp->link_nr) - 1) << 16; sink[1] = dp->link_nr; if (dp->dpcd[2] & DP_ENHANCED_FRAME_CAP) { dp_ctrl |= 0x00004000; sink[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; } nv_mask(dev, NV50_SOR_DP_CTRL(or, link), 0x001f4000, dp_ctrl); /* inform the sink of the new configuration */ auxch_tx(dev, dp->auxch, 8, DP_LINK_BW_SET, sink, 2); } static void dp_set_training_pattern(struct drm_device *dev, struct dp_state *dp, u8 tp) { u8 sink_tp; NV_DEBUG_KMS(dev, "training pattern %d\n", tp); nv_mask(dev, NV50_SOR_DP_CTRL(dp->or, dp->link), 0x0f000000, tp << 24); auxch_tx(dev, dp->auxch, 9, DP_TRAINING_PATTERN_SET, &sink_tp, 1); sink_tp &= ~DP_TRAINING_PATTERN_MASK; sink_tp |= tp; auxch_tx(dev, dp->auxch, 8, DP_TRAINING_PATTERN_SET, &sink_tp, 1); } static const u8 nv50_lane_map[] = { 16, 8, 0, 24 }; static const u8 nvaf_lane_map[] = { 24, 16, 8, 0 }; static int dp_link_train_commit(struct drm_device *dev, struct dp_state *dp) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 mask = 0, drv = 0, pre = 0, unk = 0; const u8 *shifts; int link = dp->link; int or = dp->or; int i; if (dev_priv->chipset != 0xaf) shifts = nv50_lane_map; else shifts = nvaf_lane_map; for (i = 0; i < dp->link_nr; i++) { u8 *conf = dp->entry + dp->table[4]; u8 lane = (dp->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf; u8 lpre = (lane & 0x0c) >> 2; u8 lvsw = (lane & 0x03) >> 0; mask |= 0xff << shifts[i]; unk |= 1 << (shifts[i] >> 3); dp->conf[i] = (lpre << 3) | lvsw; if (lvsw == DP_TRAIN_VOLTAGE_SWING_1200) dp->conf[i] |= DP_TRAIN_MAX_SWING_REACHED; if (lpre == DP_TRAIN_PRE_EMPHASIS_9_5) dp->conf[i] |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; NV_DEBUG_KMS(dev, "config lane %d %02x\n", i, dp->conf[i]); if (dp->table[0] < 0x30) { u8 *last = conf + (dp->entry[4] * dp->table[5]); while (lvsw != conf[0] || lpre != conf[1]) { conf += dp->table[5]; if (conf >= last) return -EINVAL; } conf += 2; } else { /* no lookup table anymore, set entries for each * combination of voltage swing and pre-emphasis * level allowed by the DP spec. */ switch (lvsw) { case 0: lpre += 0; break; case 1: lpre += 4; break; case 2: lpre += 7; break; case 3: lpre += 9; break; } conf = conf + (lpre * dp->table[5]); conf++; } drv |= conf[0] << shifts[i]; pre |= conf[1] << shifts[i]; unk = (unk & ~0x0000ff00) | (conf[2] << 8); } nv_mask(dev, NV50_SOR_DP_UNK118(or, link), mask, drv); nv_mask(dev, NV50_SOR_DP_UNK120(or, link), mask, pre); nv_mask(dev, NV50_SOR_DP_UNK130(or, link), 0x0000ff0f, unk); return auxch_tx(dev, dp->auxch, 8, DP_TRAINING_LANE0_SET, dp->conf, 4); } static int dp_link_train_update(struct drm_device *dev, struct dp_state *dp, u32 delay) { int ret; udelay(delay); ret = auxch_tx(dev, dp->auxch, 9, DP_LANE0_1_STATUS, dp->stat, 6); if (ret) return ret; NV_DEBUG_KMS(dev, "status %02x %02x %02x %02x %02x %02x\n", dp->stat[0], dp->stat[1], dp->stat[2], dp->stat[3], dp->stat[4], dp->stat[5]); return 0; } static int dp_link_train_cr(struct drm_device *dev, struct dp_state *dp) { bool cr_done = false, abort = false; int voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK; int tries = 0, i; dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_1); do { if (dp_link_train_commit(dev, dp) || dp_link_train_update(dev, dp, 100)) break; cr_done = true; for (i = 0; i < dp->link_nr; i++) { u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DP_LANE_CR_DONE)) { cr_done = false; if (dp->conf[i] & DP_TRAIN_MAX_SWING_REACHED) abort = true; break; } } if ((dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) { voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK; tries = 0; } } while (!cr_done && !abort && ++tries < 5); return cr_done ? 0 : -1; } static int dp_link_train_eq(struct drm_device *dev, struct dp_state *dp) { bool eq_done, cr_done = true; int tries = 0, i; dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_2); do { if (dp_link_train_update(dev, dp, 400)) break; eq_done = !!(dp->stat[2] & DP_INTERLANE_ALIGN_DONE); for (i = 0; i < dp->link_nr && eq_done; i++) { u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DP_LANE_CR_DONE)) cr_done = false; if (!(lane & DP_LANE_CHANNEL_EQ_DONE) || !(lane & DP_LANE_SYMBOL_LOCKED)) eq_done = false; } if (dp_link_train_commit(dev, dp)) break; } while (!eq_done && cr_done && ++tries <= 5); return eq_done ? 0 : -1; } bool nouveau_dp_link_train(struct drm_encoder *encoder, u32 datarate) { struct drm_nouveau_private *dev_priv = encoder->dev->dev_private; struct nouveau_gpio_engine *pgpio = &dev_priv->engine.gpio; struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder); struct drm_device *dev = encoder->dev; struct nouveau_i2c_chan *auxch; const u32 bw_list[] = { 270000, 162000, 0 }; const u32 *link_bw = bw_list; struct dp_state dp; auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index); if (!auxch) return false; dp.table = nouveau_dp_bios_data(dev, nv_encoder->dcb, &dp.entry); if (!dp.table) return -EINVAL; dp.dcb = nv_encoder->dcb; dp.crtc = nv_crtc->index; dp.auxch = auxch->rd; dp.or = nv_encoder->or; dp.link = !(nv_encoder->dcb->sorconf.link & 1); dp.dpcd = nv_encoder->dp.dpcd; /* some sinks toggle hotplug in response to some of the actions * we take during link training (DP_SET_POWER is one), we need * to ignore them for the moment to avoid races. */ pgpio->irq_enable(dev, nv_connector->dcb->gpio_tag, false); /* enable down-spreading, if possible */ if (dp.table[1] >= 16) { u16 script = ROM16(dp.entry[14]); if (nv_encoder->dp.dpcd[3] & 1) script = ROM16(dp.entry[12]); nouveau_bios_run_init_table(dev, script, dp.dcb, dp.crtc); } /* execute pre-train script from vbios */ nouveau_bios_run_init_table(dev, ROM16(dp.entry[6]), dp.dcb, dp.crtc); /* start off at highest link rate supported by encoder and display */ while (*link_bw > nv_encoder->dp.link_bw) link_bw++; while (link_bw[0]) { /* find minimum required lane count at this link rate */ dp.link_nr = nv_encoder->dp.link_nr; while ((dp.link_nr >> 1) * link_bw[0] > datarate) dp.link_nr >>= 1; /* drop link rate to minimum with this lane count */ while ((link_bw[1] * dp.link_nr) > datarate) link_bw++; dp.link_bw = link_bw[0]; /* program selected link configuration */ dp_set_link_config(dev, &dp); /* attempt to train the link at this configuration */ memset(dp.stat, 0x00, sizeof(dp.stat)); if (!dp_link_train_cr(dev, &dp) && !dp_link_train_eq(dev, &dp)) break; /* retry at lower rate */ link_bw++; } /* finish link training */ dp_set_training_pattern(dev, &dp, DP_TRAINING_PATTERN_DISABLE); /* execute post-train script from vbios */ nouveau_bios_run_init_table(dev, ROM16(dp.entry[8]), dp.dcb, dp.crtc); /* re-enable hotplug detect */ pgpio->irq_enable(dev, nv_connector->dcb->gpio_tag, true); return true; } bool nouveau_dp_detect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct nouveau_i2c_chan *auxch; u8 *dpcd = nv_encoder->dp.dpcd; int ret; auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index); if (!auxch) return false; ret = auxch_tx(dev, auxch->rd, 9, DP_DPCD_REV, dpcd, 8); if (ret) return false; nv_encoder->dp.link_bw = 27000 * dpcd[1]; nv_encoder->dp.link_nr = dpcd[2] & DP_MAX_LANE_COUNT_MASK; NV_DEBUG_KMS(dev, "display: %dx%d dpcd 0x%02x\n", nv_encoder->dp.link_nr, nv_encoder->dp.link_bw, dpcd[0]); NV_DEBUG_KMS(dev, "encoder: %dx%d\n", nv_encoder->dcb->dpconf.link_nr, nv_encoder->dcb->dpconf.link_bw); if (nv_encoder->dcb->dpconf.link_nr < nv_encoder->dp.link_nr) nv_encoder->dp.link_nr = nv_encoder->dcb->dpconf.link_nr; if (nv_encoder->dcb->dpconf.link_bw < nv_encoder->dp.link_bw) nv_encoder->dp.link_bw = nv_encoder->dcb->dpconf.link_bw; NV_DEBUG_KMS(dev, "maximum: %dx%d\n", nv_encoder->dp.link_nr, nv_encoder->dp.link_bw); return true; } int nouveau_dp_auxch(struct nouveau_i2c_chan *auxch, int cmd, int addr, uint8_t *data, int data_nr) { return auxch_tx(auxch->dev, auxch->rd, cmd, addr, data, data_nr); } static int nouveau_dp_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct nouveau_i2c_chan *auxch = (struct nouveau_i2c_chan *)adap; struct i2c_msg *msg = msgs; int ret, mcnt = num; while (mcnt--) { u8 remaining = msg->len; u8 *ptr = msg->buf; while (remaining) { u8 cnt = (remaining > 16) ? 16 : remaining; u8 cmd; if (msg->flags & I2C_M_RD) cmd = AUX_I2C_READ; else cmd = AUX_I2C_WRITE; if (mcnt || remaining > 16) cmd |= AUX_I2C_MOT; ret = nouveau_dp_auxch(auxch, cmd, msg->addr, ptr, cnt); if (ret < 0) return ret; ptr += cnt; remaining -= cnt; } msg++; } return num; } static u32 nouveau_dp_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } const struct i2c_algorithm nouveau_dp_i2c_algo = { .master_xfer = nouveau_dp_i2c_xfer, .functionality = nouveau_dp_i2c_func };