/* * Copyright 2009 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "drmP.h" #include "nouveau_drv.h" #include "nouveau_i2c.h" #include "nouveau_connector.h" #include "nouveau_encoder.h" #include "nouveau_crtc.h" #include "nouveau_gpio.h" /****************************************************************************** * aux channel util functions *****************************************************************************/ #define AUX_DBG(fmt, args...) do { \ if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_AUXCH) { \ NV_PRINTK(KERN_DEBUG, dev, "AUXCH(%d): " fmt, ch, ##args); \ } \ } while (0) #define AUX_ERR(fmt, args...) NV_ERROR(dev, "AUXCH(%d): " fmt, ch, ##args) static void auxch_fini(struct drm_device *dev, int ch) { nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00310000, 0x00000000); } static int auxch_init(struct drm_device *dev, int ch) { const u32 unksel = 1; /* nfi which to use, or if it matters.. */ const u32 ureq = unksel ? 0x00100000 : 0x00200000; const u32 urep = unksel ? 0x01000000 : 0x02000000; u32 ctrl, timeout; /* wait up to 1ms for any previous transaction to be done... */ timeout = 1000; do { ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); udelay(1); if (!timeout--) { AUX_ERR("begin idle timeout 0x%08x", ctrl); return -EBUSY; } } while (ctrl & 0x03010000); /* set some magic, and wait up to 1ms for it to appear */ nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00300000, ureq); timeout = 1000; do { ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); udelay(1); if (!timeout--) { AUX_ERR("magic wait 0x%08x\n", ctrl); auxch_fini(dev, ch); return -EBUSY; } } while ((ctrl & 0x03000000) != urep); return 0; } static int auxch_tx(struct drm_device *dev, int ch, u8 type, u32 addr, u8 *data, u8 size) { u32 ctrl, stat, timeout, retries; u32 xbuf[4] = {}; int ret, i; AUX_DBG("%d: 0x%08x %d\n", type, addr, size); ret = auxch_init(dev, ch); if (ret) goto out; stat = nv_rd32(dev, 0x00e4e8 + (ch * 0x50)); if (!(stat & 0x10000000)) { AUX_DBG("sink not detected\n"); ret = -ENXIO; goto out; } if (!(type & 1)) { memcpy(xbuf, data, size); for (i = 0; i < 16; i += 4) { AUX_DBG("wr 0x%08x\n", xbuf[i / 4]); nv_wr32(dev, 0x00e4c0 + (ch * 0x50) + i, xbuf[i / 4]); } } ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); ctrl &= ~0x0001f0ff; ctrl |= type << 12; ctrl |= size - 1; nv_wr32(dev, 0x00e4e0 + (ch * 0x50), addr); /* retry transaction a number of times on failure... */ ret = -EREMOTEIO; for (retries = 0; retries < 32; retries++) { /* reset, and delay a while if this is a retry */ nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x80000000 | ctrl); nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00000000 | ctrl); if (retries) udelay(400); /* transaction request, wait up to 1ms for it to complete */ nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00010000 | ctrl); timeout = 1000; do { ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50)); udelay(1); if (!timeout--) { AUX_ERR("tx req timeout 0x%08x\n", ctrl); goto out; } } while (ctrl & 0x00010000); /* read status, and check if transaction completed ok */ stat = nv_mask(dev, 0x00e4e8 + (ch * 0x50), 0, 0); if (!(stat & 0x000f0f00)) { ret = 0; break; } AUX_DBG("%02d 0x%08x 0x%08x\n", retries, ctrl, stat); } if (type & 1) { for (i = 0; i < 16; i += 4) { xbuf[i / 4] = nv_rd32(dev, 0x00e4d0 + (ch * 0x50) + i); AUX_DBG("rd 0x%08x\n", xbuf[i / 4]); } memcpy(data, xbuf, size); } out: auxch_fini(dev, ch); return ret; } u8 * nouveau_dp_bios_data(struct drm_device *dev, struct dcb_entry *dcb, u8 **entry) { struct bit_entry d; u8 *table; int i; if (bit_table(dev, 'd', &d)) { NV_ERROR(dev, "BIT 'd' table not found\n"); return NULL; } if (d.version != 1) { NV_ERROR(dev, "BIT 'd' table version %d unknown\n", d.version); return NULL; } table = ROMPTR(dev, d.data[0]); if (!table) { NV_ERROR(dev, "displayport table pointer invalid\n"); return NULL; } switch (table[0]) { case 0x20: case 0x21: case 0x30: case 0x40: break; default: NV_ERROR(dev, "displayport table 0x%02x unknown\n", table[0]); return NULL; } for (i = 0; i < table[3]; i++) { *entry = ROMPTR(dev, table[table[1] + (i * table[2])]); if (*entry && bios_encoder_match(dcb, ROM32((*entry)[0]))) return table; } NV_ERROR(dev, "displayport encoder table not found\n"); return NULL; } /****************************************************************************** * link training *****************************************************************************/ struct dp_state { struct dp_train_func *func; struct dcb_entry *dcb; int auxch; int crtc; u8 *dpcd; int link_nr; u32 link_bw; u8 stat[6]; u8 conf[4]; }; static void dp_set_link_config(struct drm_device *dev, struct dp_state *dp) { u8 sink[2]; NV_DEBUG_KMS(dev, "%d lanes at %d KB/s\n", dp->link_nr, dp->link_bw); /* set desired link configuration on the source */ dp->func->link_set(dev, dp->dcb, dp->crtc, dp->link_nr, dp->link_bw, dp->dpcd[2] & DP_ENHANCED_FRAME_CAP); /* inform the sink of the new configuration */ sink[0] = dp->link_bw / 27000; sink[1] = dp->link_nr; if (dp->dpcd[2] & DP_ENHANCED_FRAME_CAP) sink[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; auxch_tx(dev, dp->auxch, 8, DP_LINK_BW_SET, sink, 2); } static void dp_set_training_pattern(struct drm_device *dev, struct dp_state *dp, u8 pattern) { u8 sink_tp; NV_DEBUG_KMS(dev, "training pattern %d\n", pattern); dp->func->train_set(dev, dp->dcb, pattern); auxch_tx(dev, dp->auxch, 9, DP_TRAINING_PATTERN_SET, &sink_tp, 1); sink_tp &= ~DP_TRAINING_PATTERN_MASK; sink_tp |= pattern; auxch_tx(dev, dp->auxch, 8, DP_TRAINING_PATTERN_SET, &sink_tp, 1); } static int dp_link_train_commit(struct drm_device *dev, struct dp_state *dp) { int i; for (i = 0; i < dp->link_nr; i++) { u8 lane = (dp->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf; u8 lpre = (lane & 0x0c) >> 2; u8 lvsw = (lane & 0x03) >> 0; dp->conf[i] = (lpre << 3) | lvsw; if (lvsw == DP_TRAIN_VOLTAGE_SWING_1200) dp->conf[i] |= DP_TRAIN_MAX_SWING_REACHED; if ((lpre << 3) == DP_TRAIN_PRE_EMPHASIS_9_5) dp->conf[i] |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; NV_DEBUG_KMS(dev, "config lane %d %02x\n", i, dp->conf[i]); dp->func->train_adj(dev, dp->dcb, i, lvsw, lpre); } return auxch_tx(dev, dp->auxch, 8, DP_TRAINING_LANE0_SET, dp->conf, 4); } static int dp_link_train_update(struct drm_device *dev, struct dp_state *dp, u32 delay) { int ret; udelay(delay); ret = auxch_tx(dev, dp->auxch, 9, DP_LANE0_1_STATUS, dp->stat, 6); if (ret) return ret; NV_DEBUG_KMS(dev, "status %02x %02x %02x %02x %02x %02x\n", dp->stat[0], dp->stat[1], dp->stat[2], dp->stat[3], dp->stat[4], dp->stat[5]); return 0; } static int dp_link_train_cr(struct drm_device *dev, struct dp_state *dp) { bool cr_done = false, abort = false; int voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK; int tries = 0, i; dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_1); do { if (dp_link_train_commit(dev, dp) || dp_link_train_update(dev, dp, 100)) break; cr_done = true; for (i = 0; i < dp->link_nr; i++) { u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DP_LANE_CR_DONE)) { cr_done = false; if (dp->conf[i] & DP_TRAIN_MAX_SWING_REACHED) abort = true; break; } } if ((dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) { voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK; tries = 0; } } while (!cr_done && !abort && ++tries < 5); return cr_done ? 0 : -1; } static int dp_link_train_eq(struct drm_device *dev, struct dp_state *dp) { bool eq_done, cr_done = true; int tries = 0, i; dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_2); do { if (dp_link_train_update(dev, dp, 400)) break; eq_done = !!(dp->stat[2] & DP_INTERLANE_ALIGN_DONE); for (i = 0; i < dp->link_nr && eq_done; i++) { u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; if (!(lane & DP_LANE_CR_DONE)) cr_done = false; if (!(lane & DP_LANE_CHANNEL_EQ_DONE) || !(lane & DP_LANE_SYMBOL_LOCKED)) eq_done = false; } if (dp_link_train_commit(dev, dp)) break; } while (!eq_done && cr_done && ++tries <= 5); return eq_done ? 0 : -1; } static void dp_set_downspread(struct drm_device *dev, struct dp_state *dp, bool enable) { u16 script = 0x0000; u8 *entry, *table = nouveau_dp_bios_data(dev, dp->dcb, &entry); if (table) { if (table[0] >= 0x20 && table[0] <= 0x30) { if (enable) script = ROM16(entry[12]); else script = ROM16(entry[14]); } else if (table[0] == 0x40) { if (enable) script = ROM16(entry[11]); else script = ROM16(entry[13]); } } nouveau_bios_run_init_table(dev, script, dp->dcb, dp->crtc); } static void dp_link_train_init(struct drm_device *dev, struct dp_state *dp) { u16 script = 0x0000; u8 *entry, *table = nouveau_dp_bios_data(dev, dp->dcb, &entry); if (table) { if (table[0] >= 0x20 && table[0] <= 0x30) script = ROM16(entry[6]); else if (table[0] == 0x40) script = ROM16(entry[5]); } nouveau_bios_run_init_table(dev, script, dp->dcb, dp->crtc); } static void dp_link_train_fini(struct drm_device *dev, struct dp_state *dp) { u16 script = 0x0000; u8 *entry, *table = nouveau_dp_bios_data(dev, dp->dcb, &entry); if (table) { if (table[0] >= 0x20 && table[0] <= 0x30) script = ROM16(entry[8]); else if (table[0] == 0x40) script = ROM16(entry[7]); } nouveau_bios_run_init_table(dev, script, dp->dcb, dp->crtc); } bool nouveau_dp_link_train(struct drm_encoder *encoder, u32 datarate, struct dp_train_func *func) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder); struct drm_device *dev = encoder->dev; struct nouveau_i2c_chan *auxch; const u32 bw_list[] = { 270000, 162000, 0 }; const u32 *link_bw = bw_list; struct dp_state dp; auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index); if (!auxch) return false; dp.func = func; dp.dcb = nv_encoder->dcb; dp.crtc = nv_crtc->index; dp.auxch = auxch->drive; dp.dpcd = nv_encoder->dp.dpcd; /* adjust required bandwidth for 8B/10B coding overhead */ datarate = (datarate / 8) * 10; /* some sinks toggle hotplug in response to some of the actions * we take during link training (DP_SET_POWER is one), we need * to ignore them for the moment to avoid races. */ nouveau_gpio_irq(dev, 0, nv_connector->hpd, 0xff, false); /* enable down-spreading, if possible */ dp_set_downspread(dev, &dp, nv_encoder->dp.dpcd[3] & 1); /* execute pre-train script from vbios */ dp_link_train_init(dev, &dp); /* start off at highest link rate supported by encoder and display */ while (*link_bw > nv_encoder->dp.link_bw) link_bw++; while (link_bw[0]) { /* find minimum required lane count at this link rate */ dp.link_nr = nv_encoder->dp.link_nr; while ((dp.link_nr >> 1) * link_bw[0] > datarate) dp.link_nr >>= 1; /* drop link rate to minimum with this lane count */ while ((link_bw[1] * dp.link_nr) > datarate) link_bw++; dp.link_bw = link_bw[0]; /* program selected link configuration */ dp_set_link_config(dev, &dp); /* attempt to train the link at this configuration */ memset(dp.stat, 0x00, sizeof(dp.stat)); if (!dp_link_train_cr(dev, &dp) && !dp_link_train_eq(dev, &dp)) break; /* retry at lower rate */ link_bw++; } /* finish link training */ dp_set_training_pattern(dev, &dp, DP_TRAINING_PATTERN_DISABLE); /* execute post-train script from vbios */ dp_link_train_fini(dev, &dp); /* re-enable hotplug detect */ nouveau_gpio_irq(dev, 0, nv_connector->hpd, 0xff, true); return true; } void nouveau_dp_dpms(struct drm_encoder *encoder, int mode, u32 datarate, struct dp_train_func *func) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_i2c_chan *auxch; u8 status; auxch = nouveau_i2c_find(encoder->dev, nv_encoder->dcb->i2c_index); if (!auxch) return; if (mode == DRM_MODE_DPMS_ON) status = DP_SET_POWER_D0; else status = DP_SET_POWER_D3; nouveau_dp_auxch(auxch, 8, DP_SET_POWER, &status, 1); if (mode == DRM_MODE_DPMS_ON) nouveau_dp_link_train(encoder, datarate, func); } static void nouveau_dp_probe_oui(struct drm_device *dev, struct nouveau_i2c_chan *auxch, u8 *dpcd) { u8 buf[3]; if (!(dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT)) return; if (!auxch_tx(dev, auxch->drive, 9, DP_SINK_OUI, buf, 3)) NV_DEBUG_KMS(dev, "Sink OUI: %02hx%02hx%02hx\n", buf[0], buf[1], buf[2]); if (!auxch_tx(dev, auxch->drive, 9, DP_BRANCH_OUI, buf, 3)) NV_DEBUG_KMS(dev, "Branch OUI: %02hx%02hx%02hx\n", buf[0], buf[1], buf[2]); } bool nouveau_dp_detect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct nouveau_i2c_chan *auxch; u8 *dpcd = nv_encoder->dp.dpcd; int ret; auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index); if (!auxch) return false; ret = auxch_tx(dev, auxch->drive, 9, DP_DPCD_REV, dpcd, 8); if (ret) return false; nv_encoder->dp.link_bw = 27000 * dpcd[1]; nv_encoder->dp.link_nr = dpcd[2] & DP_MAX_LANE_COUNT_MASK; NV_DEBUG_KMS(dev, "display: %dx%d dpcd 0x%02x\n", nv_encoder->dp.link_nr, nv_encoder->dp.link_bw, dpcd[0]); NV_DEBUG_KMS(dev, "encoder: %dx%d\n", nv_encoder->dcb->dpconf.link_nr, nv_encoder->dcb->dpconf.link_bw); if (nv_encoder->dcb->dpconf.link_nr < nv_encoder->dp.link_nr) nv_encoder->dp.link_nr = nv_encoder->dcb->dpconf.link_nr; if (nv_encoder->dcb->dpconf.link_bw < nv_encoder->dp.link_bw) nv_encoder->dp.link_bw = nv_encoder->dcb->dpconf.link_bw; NV_DEBUG_KMS(dev, "maximum: %dx%d\n", nv_encoder->dp.link_nr, nv_encoder->dp.link_bw); nouveau_dp_probe_oui(dev, auxch, dpcd); return true; } int nouveau_dp_auxch(struct nouveau_i2c_chan *auxch, int cmd, int addr, uint8_t *data, int data_nr) { return auxch_tx(auxch->dev, auxch->drive, cmd, addr, data, data_nr); } static int nouveau_dp_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct nouveau_i2c_chan *auxch = (struct nouveau_i2c_chan *)adap; struct i2c_msg *msg = msgs; int ret, mcnt = num; while (mcnt--) { u8 remaining = msg->len; u8 *ptr = msg->buf; while (remaining) { u8 cnt = (remaining > 16) ? 16 : remaining; u8 cmd; if (msg->flags & I2C_M_RD) cmd = AUX_I2C_READ; else cmd = AUX_I2C_WRITE; if (mcnt || remaining > 16) cmd |= AUX_I2C_MOT; ret = nouveau_dp_auxch(auxch, cmd, msg->addr, ptr, cnt); if (ret < 0) return ret; ptr += cnt; remaining -= cnt; } msg++; } return num; } static u32 nouveau_dp_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } const struct i2c_algorithm nouveau_dp_i2c_algo = { .master_xfer = nouveau_dp_i2c_xfer, .functionality = nouveau_dp_i2c_func };