#include "drmP.h" #include "nouveau_drv.h" #include "nouveau_drm.h" static struct drm_mm_node * nv20_fb_alloc_tag(struct drm_device *dev, uint32_t size) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; struct drm_mm_node *mem; int ret; ret = drm_mm_pre_get(&pfb->tag_heap); if (ret) return NULL; spin_lock(&dev_priv->tile.lock); mem = drm_mm_search_free(&pfb->tag_heap, size, 0, 0); if (mem) mem = drm_mm_get_block_atomic(mem, size, 0); spin_unlock(&dev_priv->tile.lock); return mem; } static void nv20_fb_free_tag(struct drm_device *dev, struct drm_mm_node **pmem) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct drm_mm_node *mem = *pmem; if (mem) { spin_lock(&dev_priv->tile.lock); drm_mm_put_block(mem); spin_unlock(&dev_priv->tile.lock); *pmem = NULL; } } void nv20_fb_init_tile_region(struct drm_device *dev, int i, uint32_t addr, uint32_t size, uint32_t pitch, uint32_t flags) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i]; int bpp = (flags & NOUVEAU_GEM_TILE_32BPP ? 32 : 16); tile->addr = 0x00000001 | addr; tile->limit = max(1u, addr + size) - 1; tile->pitch = pitch; /* Allocate some of the on-die tag memory, used to store Z * compression meta-data (most likely just a bitmap determining * if a given tile is compressed or not). */ if (flags & NOUVEAU_GEM_TILE_ZETA) { tile->tag_mem = nv20_fb_alloc_tag(dev, size / 256); if (tile->tag_mem) { /* Enable Z compression */ tile->zcomp = tile->tag_mem->start; if (dev_priv->chipset >= 0x25) { if (bpp == 16) tile->zcomp |= NV25_PFB_ZCOMP_MODE_16; else tile->zcomp |= NV25_PFB_ZCOMP_MODE_32; } else { tile->zcomp |= NV20_PFB_ZCOMP_EN; if (bpp != 16) tile->zcomp |= NV20_PFB_ZCOMP_MODE_32; } } tile->addr |= 2; } } void nv20_fb_free_tile_region(struct drm_device *dev, int i) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i]; tile->addr = tile->limit = tile->pitch = tile->zcomp = 0; nv20_fb_free_tag(dev, &tile->tag_mem); } void nv20_fb_set_tile_region(struct drm_device *dev, int i) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i]; nv_wr32(dev, NV10_PFB_TLIMIT(i), tile->limit); nv_wr32(dev, NV10_PFB_TSIZE(i), tile->pitch); nv_wr32(dev, NV10_PFB_TILE(i), tile->addr); nv_wr32(dev, NV20_PFB_ZCOMP(i), tile->zcomp); } int nv20_fb_vram_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; u32 mem_size = nv_rd32(dev, 0x10020c); u32 pbus1218 = nv_rd32(dev, 0x001218); dev_priv->vram_size = mem_size & 0xff000000; switch (pbus1218 & 0x00000300) { case 0x00000000: dev_priv->vram_type = NV_MEM_TYPE_SDRAM; break; case 0x00000100: dev_priv->vram_type = NV_MEM_TYPE_DDR1; break; case 0x00000200: dev_priv->vram_type = NV_MEM_TYPE_GDDR3; break; case 0x00000300: dev_priv->vram_type = NV_MEM_TYPE_GDDR2; break; } return 0; } int nv20_fb_init(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; int i; if (dev_priv->chipset >= 0x25) drm_mm_init(&pfb->tag_heap, 0, 64 * 1024); else drm_mm_init(&pfb->tag_heap, 0, 32 * 1024); /* Turn all the tiling regions off. */ pfb->num_tiles = NV10_PFB_TILE__SIZE; for (i = 0; i < pfb->num_tiles; i++) pfb->set_tile_region(dev, i); return 0; } void nv20_fb_takedown(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_fb_engine *pfb = &dev_priv->engine.fb; int i; for (i = 0; i < pfb->num_tiles; i++) pfb->free_tile_region(dev, i); drm_mm_takedown(&pfb->tag_heap); }