/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse * Christian König */ #include #include #include #include #include "radeon_reg.h" #include "radeon.h" #include "atom.h" /* * IB * IBs (Indirect Buffers) and areas of GPU accessible memory where * commands are stored. You can put a pointer to the IB in the * command ring and the hw will fetch the commands from the IB * and execute them. Generally userspace acceleration drivers * produce command buffers which are send to the kernel and * put in IBs for execution by the requested ring. */ static int radeon_debugfs_sa_init(struct radeon_device *rdev); /** * radeon_ib_get - request an IB (Indirect Buffer) * * @rdev: radeon_device pointer * @ring: ring index the IB is associated with * @ib: IB object returned * @size: requested IB size * * Request an IB (all asics). IBs are allocated using the * suballocator. * Returns 0 on success, error on failure. */ int radeon_ib_get(struct radeon_device *rdev, int ring, struct radeon_ib *ib, struct radeon_vm *vm, unsigned size) { int i, r; r = radeon_sa_bo_new(rdev, &rdev->ring_tmp_bo, &ib->sa_bo, size, 256, true); if (r) { dev_err(rdev->dev, "failed to get a new IB (%d)\n", r); return r; } r = radeon_semaphore_create(rdev, &ib->semaphore); if (r) { return r; } ib->ring = ring; ib->fence = NULL; ib->ptr = radeon_sa_bo_cpu_addr(ib->sa_bo); ib->vm = vm; if (vm) { /* ib pool is bound at RADEON_VA_IB_OFFSET in virtual address * space and soffset is the offset inside the pool bo */ ib->gpu_addr = ib->sa_bo->soffset + RADEON_VA_IB_OFFSET; } else { ib->gpu_addr = radeon_sa_bo_gpu_addr(ib->sa_bo); } ib->is_const_ib = false; for (i = 0; i < RADEON_NUM_RINGS; ++i) ib->sync_to[i] = NULL; return 0; } /** * radeon_ib_free - free an IB (Indirect Buffer) * * @rdev: radeon_device pointer * @ib: IB object to free * * Free an IB (all asics). */ void radeon_ib_free(struct radeon_device *rdev, struct radeon_ib *ib) { radeon_semaphore_free(rdev, &ib->semaphore, ib->fence); radeon_sa_bo_free(rdev, &ib->sa_bo, ib->fence); radeon_fence_unref(&ib->fence); } /** * radeon_ib_sync_to - sync to fence before executing the IB * * @ib: IB object to add fence to * @fence: fence to sync to * * Sync to the fence before executing the IB */ void radeon_ib_sync_to(struct radeon_ib *ib, struct radeon_fence *fence) { struct radeon_fence *other; if (!fence) return; other = ib->sync_to[fence->ring]; ib->sync_to[fence->ring] = radeon_fence_later(fence, other); } /** * radeon_ib_schedule - schedule an IB (Indirect Buffer) on the ring * * @rdev: radeon_device pointer * @ib: IB object to schedule * @const_ib: Const IB to schedule (SI only) * * Schedule an IB on the associated ring (all asics). * Returns 0 on success, error on failure. * * On SI, there are two parallel engines fed from the primary ring, * the CE (Constant Engine) and the DE (Drawing Engine). Since * resource descriptors have moved to memory, the CE allows you to * prime the caches while the DE is updating register state so that * the resource descriptors will be already in cache when the draw is * processed. To accomplish this, the userspace driver submits two * IBs, one for the CE and one for the DE. If there is a CE IB (called * a CONST_IB), it will be put on the ring prior to the DE IB. Prior * to SI there was just a DE IB. */ int radeon_ib_schedule(struct radeon_device *rdev, struct radeon_ib *ib, struct radeon_ib *const_ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; bool need_sync = false; int i, r = 0; if (!ib->length_dw || !ring->ready) { /* TODO: Nothings in the ib we should report. */ dev_err(rdev->dev, "couldn't schedule ib\n"); return -EINVAL; } /* 64 dwords should be enough for fence too */ r = radeon_ring_lock(rdev, ring, 64 + RADEON_NUM_RINGS * 8); if (r) { dev_err(rdev->dev, "scheduling IB failed (%d).\n", r); return r; } for (i = 0; i < RADEON_NUM_RINGS; ++i) { struct radeon_fence *fence = ib->sync_to[i]; if (radeon_fence_need_sync(fence, ib->ring)) { need_sync = true; radeon_semaphore_sync_rings(rdev, ib->semaphore, fence->ring, ib->ring); radeon_fence_note_sync(fence, ib->ring); } } /* immediately free semaphore when we don't need to sync */ if (!need_sync) { radeon_semaphore_free(rdev, &ib->semaphore, NULL); } /* if we can't remember our last VM flush then flush now! */ /* XXX figure out why we have to flush for every IB */ if (ib->vm /*&& !ib->vm->last_flush*/) { radeon_ring_vm_flush(rdev, ib->ring, ib->vm); } if (const_ib) { radeon_ring_ib_execute(rdev, const_ib->ring, const_ib); radeon_semaphore_free(rdev, &const_ib->semaphore, NULL); } radeon_ring_ib_execute(rdev, ib->ring, ib); r = radeon_fence_emit(rdev, &ib->fence, ib->ring); if (r) { dev_err(rdev->dev, "failed to emit fence for new IB (%d)\n", r); radeon_ring_unlock_undo(rdev, ring); return r; } if (const_ib) { const_ib->fence = radeon_fence_ref(ib->fence); } /* we just flushed the VM, remember that */ if (ib->vm && !ib->vm->last_flush) { ib->vm->last_flush = radeon_fence_ref(ib->fence); } radeon_ring_unlock_commit(rdev, ring); return 0; } /** * radeon_ib_pool_init - Init the IB (Indirect Buffer) pool * * @rdev: radeon_device pointer * * Initialize the suballocator to manage a pool of memory * for use as IBs (all asics). * Returns 0 on success, error on failure. */ int radeon_ib_pool_init(struct radeon_device *rdev) { int r; if (rdev->ib_pool_ready) { return 0; } r = radeon_sa_bo_manager_init(rdev, &rdev->ring_tmp_bo, RADEON_IB_POOL_SIZE*64*1024, RADEON_GEM_DOMAIN_GTT); if (r) { return r; } r = radeon_sa_bo_manager_start(rdev, &rdev->ring_tmp_bo); if (r) { return r; } rdev->ib_pool_ready = true; if (radeon_debugfs_sa_init(rdev)) { dev_err(rdev->dev, "failed to register debugfs file for SA\n"); } return 0; } /** * radeon_ib_pool_fini - Free the IB (Indirect Buffer) pool * * @rdev: radeon_device pointer * * Tear down the suballocator managing the pool of memory * for use as IBs (all asics). */ void radeon_ib_pool_fini(struct radeon_device *rdev) { if (rdev->ib_pool_ready) { radeon_sa_bo_manager_suspend(rdev, &rdev->ring_tmp_bo); radeon_sa_bo_manager_fini(rdev, &rdev->ring_tmp_bo); rdev->ib_pool_ready = false; } } /** * radeon_ib_ring_tests - test IBs on the rings * * @rdev: radeon_device pointer * * Test an IB (Indirect Buffer) on each ring. * If the test fails, disable the ring. * Returns 0 on success, error if the primary GFX ring * IB test fails. */ int radeon_ib_ring_tests(struct radeon_device *rdev) { unsigned i; int r; for (i = 0; i < RADEON_NUM_RINGS; ++i) { struct radeon_ring *ring = &rdev->ring[i]; if (!ring->ready) continue; r = radeon_ib_test(rdev, i, ring); if (r) { ring->ready = false; if (i == RADEON_RING_TYPE_GFX_INDEX) { /* oh, oh, that's really bad */ DRM_ERROR("radeon: failed testing IB on GFX ring (%d).\n", r); rdev->accel_working = false; return r; } else { /* still not good, but we can live with it */ DRM_ERROR("radeon: failed testing IB on ring %d (%d).\n", i, r); } } } return 0; } /* * Rings * Most engines on the GPU are fed via ring buffers. Ring * buffers are areas of GPU accessible memory that the host * writes commands into and the GPU reads commands out of. * There is a rptr (read pointer) that determines where the * GPU is currently reading, and a wptr (write pointer) * which determines where the host has written. When the * pointers are equal, the ring is idle. When the host * writes commands to the ring buffer, it increments the * wptr. The GPU then starts fetching commands and executes * them until the pointers are equal again. */ static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring); /** * radeon_ring_write - write a value to the ring * * @ring: radeon_ring structure holding ring information * @v: dword (dw) value to write * * Write a value to the requested ring buffer (all asics). */ void radeon_ring_write(struct radeon_ring *ring, uint32_t v) { #if DRM_DEBUG_CODE if (ring->count_dw <= 0) { DRM_ERROR("radeon: writing more dwords to the ring than expected!\n"); } #endif ring->ring[ring->wptr++] = v; ring->wptr &= ring->ptr_mask; ring->count_dw--; ring->ring_free_dw--; } /** * radeon_ring_supports_scratch_reg - check if the ring supports * writing to scratch registers * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if a specific ring supports writing to scratch registers (all asics). * Returns true if the ring supports writing to scratch regs, false if not. */ bool radeon_ring_supports_scratch_reg(struct radeon_device *rdev, struct radeon_ring *ring) { switch (ring->idx) { case RADEON_RING_TYPE_GFX_INDEX: case CAYMAN_RING_TYPE_CP1_INDEX: case CAYMAN_RING_TYPE_CP2_INDEX: return true; default: return false; } } /** * radeon_ring_free_size - update the free size * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Update the free dw slots in the ring buffer (all asics). */ void radeon_ring_free_size(struct radeon_device *rdev, struct radeon_ring *ring) { u32 rptr; if (rdev->wb.enabled && ring != &rdev->ring[R600_RING_TYPE_UVD_INDEX]) rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]); else rptr = RREG32(ring->rptr_reg); ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift; /* This works because ring_size is a power of 2 */ ring->ring_free_dw = (ring->rptr + (ring->ring_size / 4)); ring->ring_free_dw -= ring->wptr; ring->ring_free_dw &= ring->ptr_mask; if (!ring->ring_free_dw) { ring->ring_free_dw = ring->ring_size / 4; } } /** * radeon_ring_alloc - allocate space on the ring buffer * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * @ndw: number of dwords to allocate in the ring buffer * * Allocate @ndw dwords in the ring buffer (all asics). * Returns 0 on success, error on failure. */ int radeon_ring_alloc(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw) { int r; /* make sure we aren't trying to allocate more space than there is on the ring */ if (ndw > (ring->ring_size / 4)) return -ENOMEM; /* Align requested size with padding so unlock_commit can * pad safely */ ndw = (ndw + ring->align_mask) & ~ring->align_mask; while (ndw > (ring->ring_free_dw - 1)) { radeon_ring_free_size(rdev, ring); if (ndw < ring->ring_free_dw) { break; } r = radeon_fence_wait_next_locked(rdev, ring->idx); if (r) return r; } ring->count_dw = ndw; ring->wptr_old = ring->wptr; return 0; } /** * radeon_ring_lock - lock the ring and allocate space on it * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * @ndw: number of dwords to allocate in the ring buffer * * Lock the ring and allocate @ndw dwords in the ring buffer * (all asics). * Returns 0 on success, error on failure. */ int radeon_ring_lock(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ndw) { int r; mutex_lock(&rdev->ring_lock); r = radeon_ring_alloc(rdev, ring, ndw); if (r) { mutex_unlock(&rdev->ring_lock); return r; } return 0; } /** * radeon_ring_commit - tell the GPU to execute the new * commands on the ring buffer * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Update the wptr (write pointer) to tell the GPU to * execute new commands on the ring buffer (all asics). */ void radeon_ring_commit(struct radeon_device *rdev, struct radeon_ring *ring) { /* We pad to match fetch size */ while (ring->wptr & ring->align_mask) { radeon_ring_write(ring, ring->nop); } DRM_MEMORYBARRIER(); WREG32(ring->wptr_reg, (ring->wptr << ring->ptr_reg_shift) & ring->ptr_reg_mask); (void)RREG32(ring->wptr_reg); } /** * radeon_ring_unlock_commit - tell the GPU to execute the new * commands on the ring buffer and unlock it * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Call radeon_ring_commit() then unlock the ring (all asics). */ void radeon_ring_unlock_commit(struct radeon_device *rdev, struct radeon_ring *ring) { radeon_ring_commit(rdev, ring); mutex_unlock(&rdev->ring_lock); } /** * radeon_ring_undo - reset the wptr * * @ring: radeon_ring structure holding ring information * * Reset the driver's copy of the wptr (all asics). */ void radeon_ring_undo(struct radeon_ring *ring) { ring->wptr = ring->wptr_old; } /** * radeon_ring_unlock_undo - reset the wptr and unlock the ring * * @ring: radeon_ring structure holding ring information * * Call radeon_ring_undo() then unlock the ring (all asics). */ void radeon_ring_unlock_undo(struct radeon_device *rdev, struct radeon_ring *ring) { radeon_ring_undo(ring); mutex_unlock(&rdev->ring_lock); } /** * radeon_ring_force_activity - add some nop packets to the ring * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Add some nop packets to the ring to force activity (all asics). * Used for lockup detection to see if the rptr is advancing. */ void radeon_ring_force_activity(struct radeon_device *rdev, struct radeon_ring *ring) { int r; radeon_ring_free_size(rdev, ring); if (ring->rptr == ring->wptr) { r = radeon_ring_alloc(rdev, ring, 1); if (!r) { radeon_ring_write(ring, ring->nop); radeon_ring_commit(rdev, ring); } } } /** * radeon_ring_lockup_update - update lockup variables * * @ring: radeon_ring structure holding ring information * * Update the last rptr value and timestamp (all asics). */ void radeon_ring_lockup_update(struct radeon_ring *ring) { ring->last_rptr = ring->rptr; ring->last_activity = jiffies; } /** * radeon_ring_test_lockup() - check if ring is lockedup by recording information * @rdev: radeon device structure * @ring: radeon_ring structure holding ring information * * We don't need to initialize the lockup tracking information as we will either * have CP rptr to a different value of jiffies wrap around which will force * initialization of the lockup tracking informations. * * A possible false positivie is if we get call after while and last_cp_rptr == * the current CP rptr, even if it's unlikely it might happen. To avoid this * if the elapsed time since last call is bigger than 2 second than we return * false and update the tracking information. Due to this the caller must call * radeon_ring_test_lockup several time in less than 2sec for lockup to be reported * the fencing code should be cautious about that. * * Caller should write to the ring to force CP to do something so we don't get * false positive when CP is just gived nothing to do. * **/ bool radeon_ring_test_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { unsigned long cjiffies, elapsed; uint32_t rptr; cjiffies = jiffies; if (!time_after(cjiffies, ring->last_activity)) { /* likely a wrap around */ radeon_ring_lockup_update(ring); return false; } rptr = RREG32(ring->rptr_reg); ring->rptr = (rptr & ring->ptr_reg_mask) >> ring->ptr_reg_shift; if (ring->rptr != ring->last_rptr) { /* CP is still working no lockup */ radeon_ring_lockup_update(ring); return false; } elapsed = jiffies_to_msecs(cjiffies - ring->last_activity); if (radeon_lockup_timeout && elapsed >= radeon_lockup_timeout) { dev_err(rdev->dev, "GPU lockup CP stall for more than %lumsec\n", elapsed); return true; } /* give a chance to the GPU ... */ return false; } /** * radeon_ring_backup - Back up the content of a ring * * @rdev: radeon_device pointer * @ring: the ring we want to back up * * Saves all unprocessed commits from a ring, returns the number of dwords saved. */ unsigned radeon_ring_backup(struct radeon_device *rdev, struct radeon_ring *ring, uint32_t **data) { unsigned size, ptr, i; /* just in case lock the ring */ mutex_lock(&rdev->ring_lock); *data = NULL; if (ring->ring_obj == NULL) { mutex_unlock(&rdev->ring_lock); return 0; } /* it doesn't make sense to save anything if all fences are signaled */ if (!radeon_fence_count_emitted(rdev, ring->idx)) { mutex_unlock(&rdev->ring_lock); return 0; } /* calculate the number of dw on the ring */ if (ring->rptr_save_reg) ptr = RREG32(ring->rptr_save_reg); else if (rdev->wb.enabled) ptr = le32_to_cpu(*ring->next_rptr_cpu_addr); else { /* no way to read back the next rptr */ mutex_unlock(&rdev->ring_lock); return 0; } size = ring->wptr + (ring->ring_size / 4); size -= ptr; size &= ring->ptr_mask; if (size == 0) { mutex_unlock(&rdev->ring_lock); return 0; } /* and then save the content of the ring */ *data = kmalloc_array(size, sizeof(uint32_t), GFP_KERNEL); if (!*data) { mutex_unlock(&rdev->ring_lock); return 0; } for (i = 0; i < size; ++i) { (*data)[i] = ring->ring[ptr++]; ptr &= ring->ptr_mask; } mutex_unlock(&rdev->ring_lock); return size; } /** * radeon_ring_restore - append saved commands to the ring again * * @rdev: radeon_device pointer * @ring: ring to append commands to * @size: number of dwords we want to write * @data: saved commands * * Allocates space on the ring and restore the previously saved commands. */ int radeon_ring_restore(struct radeon_device *rdev, struct radeon_ring *ring, unsigned size, uint32_t *data) { int i, r; if (!size || !data) return 0; /* restore the saved ring content */ r = radeon_ring_lock(rdev, ring, size); if (r) return r; for (i = 0; i < size; ++i) { radeon_ring_write(ring, data[i]); } radeon_ring_unlock_commit(rdev, ring); kfree(data); return 0; } /** * radeon_ring_init - init driver ring struct. * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * @ring_size: size of the ring * @rptr_offs: offset of the rptr writeback location in the WB buffer * @rptr_reg: MMIO offset of the rptr register * @wptr_reg: MMIO offset of the wptr register * @ptr_reg_shift: bit offset of the rptr/wptr values * @ptr_reg_mask: bit mask of the rptr/wptr values * @nop: nop packet for this ring * * Initialize the driver information for the selected ring (all asics). * Returns 0 on success, error on failure. */ int radeon_ring_init(struct radeon_device *rdev, struct radeon_ring *ring, unsigned ring_size, unsigned rptr_offs, unsigned rptr_reg, unsigned wptr_reg, u32 ptr_reg_shift, u32 ptr_reg_mask, u32 nop) { int r; ring->ring_size = ring_size; ring->rptr_offs = rptr_offs; ring->rptr_reg = rptr_reg; ring->wptr_reg = wptr_reg; ring->ptr_reg_shift = ptr_reg_shift; ring->ptr_reg_mask = ptr_reg_mask; ring->nop = nop; /* Allocate ring buffer */ if (ring->ring_obj == NULL) { r = radeon_bo_create(rdev, ring->ring_size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT, NULL, &ring->ring_obj); if (r) { dev_err(rdev->dev, "(%d) ring create failed\n", r); return r; } r = radeon_bo_reserve(ring->ring_obj, false); if (unlikely(r != 0)) return r; r = radeon_bo_pin(ring->ring_obj, RADEON_GEM_DOMAIN_GTT, &ring->gpu_addr); if (r) { radeon_bo_unreserve(ring->ring_obj); dev_err(rdev->dev, "(%d) ring pin failed\n", r); return r; } r = radeon_bo_kmap(ring->ring_obj, (void **)&ring->ring); radeon_bo_unreserve(ring->ring_obj); if (r) { dev_err(rdev->dev, "(%d) ring map failed\n", r); return r; } } ring->ptr_mask = (ring->ring_size / 4) - 1; ring->ring_free_dw = ring->ring_size / 4; if (rdev->wb.enabled) { u32 index = RADEON_WB_RING0_NEXT_RPTR + (ring->idx * 4); ring->next_rptr_gpu_addr = rdev->wb.gpu_addr + index; ring->next_rptr_cpu_addr = &rdev->wb.wb[index/4]; } if (radeon_debugfs_ring_init(rdev, ring)) { DRM_ERROR("Failed to register debugfs file for rings !\n"); } radeon_ring_lockup_update(ring); return 0; } /** * radeon_ring_fini - tear down the driver ring struct. * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Tear down the driver information for the selected ring (all asics). */ void radeon_ring_fini(struct radeon_device *rdev, struct radeon_ring *ring) { int r; struct radeon_bo *ring_obj; mutex_lock(&rdev->ring_lock); ring_obj = ring->ring_obj; ring->ready = false; ring->ring = NULL; ring->ring_obj = NULL; mutex_unlock(&rdev->ring_lock); if (ring_obj) { r = radeon_bo_reserve(ring_obj, false); if (likely(r == 0)) { radeon_bo_kunmap(ring_obj); radeon_bo_unpin(ring_obj); radeon_bo_unreserve(ring_obj); } radeon_bo_unref(&ring_obj); } } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int radeon_debugfs_ring_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; int ridx = *(int*)node->info_ent->data; struct radeon_ring *ring = &rdev->ring[ridx]; unsigned count, i, j; u32 tmp; radeon_ring_free_size(rdev, ring); count = (ring->ring_size / 4) - ring->ring_free_dw; tmp = RREG32(ring->wptr_reg) >> ring->ptr_reg_shift; seq_printf(m, "wptr(0x%04x): 0x%08x [%5d]\n", ring->wptr_reg, tmp, tmp); tmp = RREG32(ring->rptr_reg) >> ring->ptr_reg_shift; seq_printf(m, "rptr(0x%04x): 0x%08x [%5d]\n", ring->rptr_reg, tmp, tmp); if (ring->rptr_save_reg) { seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg, RREG32(ring->rptr_save_reg)); } seq_printf(m, "driver's copy of the wptr: 0x%08x [%5d]\n", ring->wptr, ring->wptr); seq_printf(m, "driver's copy of the rptr: 0x%08x [%5d]\n", ring->rptr, ring->rptr); seq_printf(m, "last semaphore signal addr : 0x%016llx\n", ring->last_semaphore_signal_addr); seq_printf(m, "last semaphore wait addr : 0x%016llx\n", ring->last_semaphore_wait_addr); seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw); seq_printf(m, "%u dwords in ring\n", count); /* print 8 dw before current rptr as often it's the last executed * packet that is the root issue */ i = (ring->rptr + ring->ptr_mask + 1 - 32) & ring->ptr_mask; for (j = 0; j <= (count + 32); j++) { seq_printf(m, "r[%5d]=0x%08x\n", i, ring->ring[i]); i = (i + 1) & ring->ptr_mask; } return 0; } static int radeon_gfx_index = RADEON_RING_TYPE_GFX_INDEX; static int cayman_cp1_index = CAYMAN_RING_TYPE_CP1_INDEX; static int cayman_cp2_index = CAYMAN_RING_TYPE_CP2_INDEX; static int radeon_dma1_index = R600_RING_TYPE_DMA_INDEX; static int radeon_dma2_index = CAYMAN_RING_TYPE_DMA1_INDEX; static int r600_uvd_index = R600_RING_TYPE_UVD_INDEX; static struct drm_info_list radeon_debugfs_ring_info_list[] = { {"radeon_ring_gfx", radeon_debugfs_ring_info, 0, &radeon_gfx_index}, {"radeon_ring_cp1", radeon_debugfs_ring_info, 0, &cayman_cp1_index}, {"radeon_ring_cp2", radeon_debugfs_ring_info, 0, &cayman_cp2_index}, {"radeon_ring_dma1", radeon_debugfs_ring_info, 0, &radeon_dma1_index}, {"radeon_ring_dma2", radeon_debugfs_ring_info, 0, &radeon_dma2_index}, {"radeon_ring_uvd", radeon_debugfs_ring_info, 0, &r600_uvd_index}, }; static int radeon_debugfs_sa_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; radeon_sa_bo_dump_debug_info(&rdev->ring_tmp_bo, m); return 0; } static struct drm_info_list radeon_debugfs_sa_list[] = { {"radeon_sa_info", &radeon_debugfs_sa_info, 0, NULL}, }; #endif static int radeon_debugfs_ring_init(struct radeon_device *rdev, struct radeon_ring *ring) { #if defined(CONFIG_DEBUG_FS) unsigned i; for (i = 0; i < ARRAY_SIZE(radeon_debugfs_ring_info_list); ++i) { struct drm_info_list *info = &radeon_debugfs_ring_info_list[i]; int ridx = *(int*)radeon_debugfs_ring_info_list[i].data; unsigned r; if (&rdev->ring[ridx] != ring) continue; r = radeon_debugfs_add_files(rdev, info, 1); if (r) return r; } #endif return 0; } static int radeon_debugfs_sa_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, radeon_debugfs_sa_list, 1); #else return 0; #endif }