/* * Copyright (C) 2000-2002 Andre Hedrick * Copyright (C) 2003 Red Hat * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void SELECT_MASK(ide_drive_t *drive, int mask) { const struct ide_port_ops *port_ops = drive->hwif->port_ops; if (port_ops && port_ops->maskproc) port_ops->maskproc(drive, mask); } u8 ide_read_error(ide_drive_t *drive) { struct ide_taskfile tf; drive->hwif->tp_ops->tf_read(drive, &tf, IDE_VALID_ERROR); return tf.error; } EXPORT_SYMBOL_GPL(ide_read_error); void ide_fix_driveid(u16 *id) { #ifndef __LITTLE_ENDIAN # ifdef __BIG_ENDIAN int i; for (i = 0; i < 256; i++) id[i] = __le16_to_cpu(id[i]); # else # error "Please fix " # endif #endif } /* * ide_fixstring() cleans up and (optionally) byte-swaps a text string, * removing leading/trailing blanks and compressing internal blanks. * It is primarily used to tidy up the model name/number fields as * returned by the ATA_CMD_ID_ATA[PI] commands. */ void ide_fixstring(u8 *s, const int bytecount, const int byteswap) { u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */ if (byteswap) { /* convert from big-endian to host byte order */ for (p = s ; p != end ; p += 2) be16_to_cpus((u16 *) p); } /* strip leading blanks */ p = s; while (s != end && *s == ' ') ++s; /* compress internal blanks and strip trailing blanks */ while (s != end && *s) { if (*s++ != ' ' || (s != end && *s && *s != ' ')) *p++ = *(s-1); } /* wipe out trailing garbage */ while (p != end) *p++ = '\0'; } EXPORT_SYMBOL(ide_fixstring); /* * This routine busy-waits for the drive status to be not "busy". * It then checks the status for all of the "good" bits and none * of the "bad" bits, and if all is okay it returns 0. All other * cases return error -- caller may then invoke ide_error(). * * This routine should get fixed to not hog the cpu during extra long waits.. * That could be done by busy-waiting for the first jiffy or two, and then * setting a timer to wake up at half second intervals thereafter, * until timeout is achieved, before timing out. */ int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat) { ide_hwif_t *hwif = drive->hwif; const struct ide_tp_ops *tp_ops = hwif->tp_ops; unsigned long flags; int i; u8 stat; udelay(1); /* spec allows drive 400ns to assert "BUSY" */ stat = tp_ops->read_status(hwif); if (stat & ATA_BUSY) { local_save_flags(flags); local_irq_enable_in_hardirq(); timeout += jiffies; while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) { if (time_after(jiffies, timeout)) { /* * One last read after the timeout in case * heavy interrupt load made us not make any * progress during the timeout.. */ stat = tp_ops->read_status(hwif); if ((stat & ATA_BUSY) == 0) break; local_irq_restore(flags); *rstat = stat; return -EBUSY; } } local_irq_restore(flags); } /* * Allow status to settle, then read it again. * A few rare drives vastly violate the 400ns spec here, * so we'll wait up to 10usec for a "good" status * rather than expensively fail things immediately. * This fix courtesy of Matthew Faupel & Niccolo Rigacci. */ for (i = 0; i < 10; i++) { udelay(1); stat = tp_ops->read_status(hwif); if (OK_STAT(stat, good, bad)) { *rstat = stat; return 0; } } *rstat = stat; return -EFAULT; } /* * In case of error returns error value after doing "*startstop = ide_error()". * The caller should return the updated value of "startstop" in this case, * "startstop" is unchanged when the function returns 0. */ int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout) { int err; u8 stat; /* bail early if we've exceeded max_failures */ if (drive->max_failures && (drive->failures > drive->max_failures)) { *startstop = ide_stopped; return 1; } err = __ide_wait_stat(drive, good, bad, timeout, &stat); if (err) { char *s = (err == -EBUSY) ? "status timeout" : "status error"; *startstop = ide_error(drive, s, stat); } return err; } EXPORT_SYMBOL(ide_wait_stat); /** * ide_in_drive_list - look for drive in black/white list * @id: drive identifier * @table: list to inspect * * Look for a drive in the blacklist and the whitelist tables * Returns 1 if the drive is found in the table. */ int ide_in_drive_list(u16 *id, const struct drive_list_entry *table) { for ( ; table->id_model; table++) if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) && (!table->id_firmware || strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware))) return 1; return 0; } EXPORT_SYMBOL_GPL(ide_in_drive_list); /* * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid. * Some optical devices with the buggy firmwares have the same problem. */ static const struct drive_list_entry ivb_list[] = { { "QUANTUM FIREBALLlct10 05" , "A03.0900" }, { "QUANTUM FIREBALLlct20 30" , "APL.0900" }, { "TSSTcorp CDDVDW SH-S202J" , "SB00" }, { "TSSTcorp CDDVDW SH-S202J" , "SB01" }, { "TSSTcorp CDDVDW SH-S202N" , "SB00" }, { "TSSTcorp CDDVDW SH-S202N" , "SB01" }, { "TSSTcorp CDDVDW SH-S202H" , "SB00" }, { "TSSTcorp CDDVDW SH-S202H" , "SB01" }, { "SAMSUNG SP0822N" , "WA100-10" }, { NULL , NULL } }; /* * All hosts that use the 80c ribbon must use! * The name is derived from upper byte of word 93 and the 80c ribbon. */ u8 eighty_ninty_three(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; u16 *id = drive->id; int ivb = ide_in_drive_list(id, ivb_list); if (hwif->cbl == ATA_CBL_SATA || hwif->cbl == ATA_CBL_PATA40_SHORT) return 1; if (ivb) printk(KERN_DEBUG "%s: skipping word 93 validity check\n", drive->name); if (ata_id_is_sata(id) && !ivb) return 1; if (hwif->cbl != ATA_CBL_PATA80 && !ivb) goto no_80w; /* * FIXME: * - change master/slave IDENTIFY order * - force bit13 (80c cable present) check also for !ivb devices * (unless the slave device is pre-ATA3) */ if (id[ATA_ID_HW_CONFIG] & 0x4000) return 1; if (ivb) { const char *model = (char *)&id[ATA_ID_PROD]; if (strstr(model, "TSSTcorp CDDVDW SH-S202")) { /* * These ATAPI devices always report 80c cable * so we have to depend on the host in this case. */ if (hwif->cbl == ATA_CBL_PATA80) return 1; } else { /* Depend on the device side cable detection. */ if (id[ATA_ID_HW_CONFIG] & 0x2000) return 1; } } no_80w: if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED) return 0; printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, " "limiting max speed to UDMA33\n", drive->name, hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host"); drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED; return 0; } static const char *nien_quirk_list[] = { "QUANTUM FIREBALLlct08 08", "QUANTUM FIREBALLP KA6.4", "QUANTUM FIREBALLP KA9.1", "QUANTUM FIREBALLP KX13.6", "QUANTUM FIREBALLP KX20.5", "QUANTUM FIREBALLP KX27.3", "QUANTUM FIREBALLP LM20.4", "QUANTUM FIREBALLP LM20.5", "FUJITSU MHZ2160BH G2", NULL }; void ide_check_nien_quirk_list(ide_drive_t *drive) { const char **list, *m = (char *)&drive->id[ATA_ID_PROD]; for (list = nien_quirk_list; *list != NULL; list++) if (strstr(m, *list) != NULL) { drive->dev_flags |= IDE_DFLAG_NIEN_QUIRK; return; } } int ide_driveid_update(ide_drive_t *drive) { u16 *id; int rc; id = kmalloc(SECTOR_SIZE, GFP_ATOMIC); if (id == NULL) return 0; SELECT_MASK(drive, 1); rc = ide_dev_read_id(drive, ATA_CMD_ID_ATA, id, 1); SELECT_MASK(drive, 0); if (rc) goto out_err; drive->id[ATA_ID_UDMA_MODES] = id[ATA_ID_UDMA_MODES]; drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES]; drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES]; drive->id[ATA_ID_CFA_MODES] = id[ATA_ID_CFA_MODES]; /* anything more ? */ kfree(id); return 1; out_err: if (rc == 2) printk(KERN_ERR "%s: %s: bad status\n", drive->name, __func__); kfree(id); return 0; } int ide_config_drive_speed(ide_drive_t *drive, u8 speed) { ide_hwif_t *hwif = drive->hwif; const struct ide_tp_ops *tp_ops = hwif->tp_ops; struct ide_taskfile tf; u16 *id = drive->id, i; int error = 0; u8 stat; #ifdef CONFIG_BLK_DEV_IDEDMA if (hwif->dma_ops) /* check if host supports DMA */ hwif->dma_ops->dma_host_set(drive, 0); #endif /* Skip setting PIO flow-control modes on pre-EIDE drives */ if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0) goto skip; /* * Don't use ide_wait_cmd here - it will * attempt to set_geometry and recalibrate, * but for some reason these don't work at * this point (lost interrupt). */ udelay(1); tp_ops->dev_select(drive); SELECT_MASK(drive, 1); udelay(1); tp_ops->write_devctl(hwif, ATA_NIEN | ATA_DEVCTL_OBS); memset(&tf, 0, sizeof(tf)); tf.feature = SETFEATURES_XFER; tf.nsect = speed; tp_ops->tf_load(drive, &tf, IDE_VALID_FEATURE | IDE_VALID_NSECT); tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES); if (drive->dev_flags & IDE_DFLAG_NIEN_QUIRK) tp_ops->write_devctl(hwif, ATA_DEVCTL_OBS); error = __ide_wait_stat(drive, drive->ready_stat, ATA_BUSY | ATA_DRQ | ATA_ERR, WAIT_CMD, &stat); SELECT_MASK(drive, 0); if (error) { (void) ide_dump_status(drive, "set_drive_speed_status", stat); return error; } if (speed >= XFER_SW_DMA_0) { id[ATA_ID_UDMA_MODES] &= ~0xFF00; id[ATA_ID_MWDMA_MODES] &= ~0x0700; id[ATA_ID_SWDMA_MODES] &= ~0x0700; if (ata_id_is_cfa(id)) id[ATA_ID_CFA_MODES] &= ~0x0E00; } else if (ata_id_is_cfa(id)) id[ATA_ID_CFA_MODES] &= ~0x01C0; skip: #ifdef CONFIG_BLK_DEV_IDEDMA if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA)) hwif->dma_ops->dma_host_set(drive, 1); else if (hwif->dma_ops) /* check if host supports DMA */ ide_dma_off_quietly(drive); #endif if (speed >= XFER_UDMA_0) { i = 1 << (speed - XFER_UDMA_0); id[ATA_ID_UDMA_MODES] |= (i << 8 | i); } else if (ata_id_is_cfa(id) && speed >= XFER_MW_DMA_3) { i = speed - XFER_MW_DMA_2; id[ATA_ID_CFA_MODES] |= i << 9; } else if (speed >= XFER_MW_DMA_0) { i = 1 << (speed - XFER_MW_DMA_0); id[ATA_ID_MWDMA_MODES] |= (i << 8 | i); } else if (speed >= XFER_SW_DMA_0) { i = 1 << (speed - XFER_SW_DMA_0); id[ATA_ID_SWDMA_MODES] |= (i << 8 | i); } else if (ata_id_is_cfa(id) && speed >= XFER_PIO_5) { i = speed - XFER_PIO_4; id[ATA_ID_CFA_MODES] |= i << 6; } if (!drive->init_speed) drive->init_speed = speed; drive->current_speed = speed; return error; } /* * This should get invoked any time we exit the driver to * wait for an interrupt response from a drive. handler() points * at the appropriate code to handle the next interrupt, and a * timer is started to prevent us from waiting forever in case * something goes wrong (see the ide_timer_expiry() handler later on). * * See also ide_execute_command */ void __ide_set_handler(ide_drive_t *drive, ide_handler_t *handler, unsigned int timeout) { ide_hwif_t *hwif = drive->hwif; BUG_ON(hwif->handler); hwif->handler = handler; hwif->timer.expires = jiffies + timeout; hwif->req_gen_timer = hwif->req_gen; add_timer(&hwif->timer); } void ide_set_handler(ide_drive_t *drive, ide_handler_t *handler, unsigned int timeout) { ide_hwif_t *hwif = drive->hwif; unsigned long flags; spin_lock_irqsave(&hwif->lock, flags); __ide_set_handler(drive, handler, timeout); spin_unlock_irqrestore(&hwif->lock, flags); } EXPORT_SYMBOL(ide_set_handler); /** * ide_execute_command - execute an IDE command * @drive: IDE drive to issue the command against * @cmd: command * @handler: handler for next phase * @timeout: timeout for command * * Helper function to issue an IDE command. This handles the * atomicity requirements, command timing and ensures that the * handler and IRQ setup do not race. All IDE command kick off * should go via this function or do equivalent locking. */ void ide_execute_command(ide_drive_t *drive, struct ide_cmd *cmd, ide_handler_t *handler, unsigned timeout) { ide_hwif_t *hwif = drive->hwif; unsigned long flags; spin_lock_irqsave(&hwif->lock, flags); if ((cmd->protocol != ATAPI_PROT_DMA && cmd->protocol != ATAPI_PROT_PIO) || (drive->atapi_flags & IDE_AFLAG_DRQ_INTERRUPT)) __ide_set_handler(drive, handler, timeout); hwif->tp_ops->exec_command(hwif, cmd->tf.command); /* * Drive takes 400nS to respond, we must avoid the IRQ being * serviced before that. * * FIXME: we could skip this delay with care on non shared devices */ ndelay(400); spin_unlock_irqrestore(&hwif->lock, flags); } /* * ide_wait_not_busy() waits for the currently selected device on the hwif * to report a non-busy status, see comments in ide_probe_port(). */ int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout) { u8 stat = 0; while (timeout--) { /* * Turn this into a schedule() sleep once I'm sure * about locking issues (2.5 work ?). */ mdelay(1); stat = hwif->tp_ops->read_status(hwif); if ((stat & ATA_BUSY) == 0) return 0; /* * Assume a value of 0xff means nothing is connected to * the interface and it doesn't implement the pull-down * resistor on D7. */ if (stat == 0xff) return -ENODEV; touch_softlockup_watchdog(); touch_nmi_watchdog(); } return -EBUSY; }