/* * STMicroelectronics accelerometers driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca * * Licensed under the GPL-2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "st_accel.h" /* DEFAULT VALUE FOR SENSORS */ #define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28 #define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a #define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c /* FULLSCALE */ #define ST_ACCEL_FS_AVL_2G 2 #define ST_ACCEL_FS_AVL_4G 4 #define ST_ACCEL_FS_AVL_6G 6 #define ST_ACCEL_FS_AVL_8G 8 #define ST_ACCEL_FS_AVL_16G 16 /* CUSTOM VALUES FOR SENSOR 1 */ #define ST_ACCEL_1_WAI_EXP 0x33 #define ST_ACCEL_1_ODR_ADDR 0x20 #define ST_ACCEL_1_ODR_MASK 0xf0 #define ST_ACCEL_1_ODR_AVL_1HZ_VAL 0x01 #define ST_ACCEL_1_ODR_AVL_10HZ_VAL 0x02 #define ST_ACCEL_1_ODR_AVL_25HZ_VAL 0x03 #define ST_ACCEL_1_ODR_AVL_50HZ_VAL 0x04 #define ST_ACCEL_1_ODR_AVL_100HZ_VAL 0x05 #define ST_ACCEL_1_ODR_AVL_200HZ_VAL 0x06 #define ST_ACCEL_1_ODR_AVL_400HZ_VAL 0x07 #define ST_ACCEL_1_ODR_AVL_1600HZ_VAL 0x08 #define ST_ACCEL_1_FS_ADDR 0x23 #define ST_ACCEL_1_FS_MASK 0x30 #define ST_ACCEL_1_FS_AVL_2_VAL 0x00 #define ST_ACCEL_1_FS_AVL_4_VAL 0x01 #define ST_ACCEL_1_FS_AVL_8_VAL 0x02 #define ST_ACCEL_1_FS_AVL_16_VAL 0x03 #define ST_ACCEL_1_FS_AVL_2_GAIN IIO_G_TO_M_S_2(1000) #define ST_ACCEL_1_FS_AVL_4_GAIN IIO_G_TO_M_S_2(2000) #define ST_ACCEL_1_FS_AVL_8_GAIN IIO_G_TO_M_S_2(4000) #define ST_ACCEL_1_FS_AVL_16_GAIN IIO_G_TO_M_S_2(12000) #define ST_ACCEL_1_BDU_ADDR 0x23 #define ST_ACCEL_1_BDU_MASK 0x80 #define ST_ACCEL_1_DRDY_IRQ_ADDR 0x22 #define ST_ACCEL_1_DRDY_IRQ_MASK 0x10 #define ST_ACCEL_1_MULTIREAD_BIT true /* CUSTOM VALUES FOR SENSOR 2 */ #define ST_ACCEL_2_WAI_EXP 0x32 #define ST_ACCEL_2_ODR_ADDR 0x20 #define ST_ACCEL_2_ODR_MASK 0x18 #define ST_ACCEL_2_ODR_AVL_50HZ_VAL 0x00 #define ST_ACCEL_2_ODR_AVL_100HZ_VAL 0x01 #define ST_ACCEL_2_ODR_AVL_400HZ_VAL 0x02 #define ST_ACCEL_2_ODR_AVL_1000HZ_VAL 0x03 #define ST_ACCEL_2_PW_ADDR 0x20 #define ST_ACCEL_2_PW_MASK 0xe0 #define ST_ACCEL_2_FS_ADDR 0x23 #define ST_ACCEL_2_FS_MASK 0x30 #define ST_ACCEL_2_FS_AVL_2_VAL 0X00 #define ST_ACCEL_2_FS_AVL_4_VAL 0X01 #define ST_ACCEL_2_FS_AVL_8_VAL 0x03 #define ST_ACCEL_2_FS_AVL_2_GAIN IIO_G_TO_M_S_2(1000) #define ST_ACCEL_2_FS_AVL_4_GAIN IIO_G_TO_M_S_2(2000) #define ST_ACCEL_2_FS_AVL_8_GAIN IIO_G_TO_M_S_2(3900) #define ST_ACCEL_2_BDU_ADDR 0x23 #define ST_ACCEL_2_BDU_MASK 0x80 #define ST_ACCEL_2_DRDY_IRQ_ADDR 0x22 #define ST_ACCEL_2_DRDY_IRQ_MASK 0x02 #define ST_ACCEL_2_MULTIREAD_BIT true /* CUSTOM VALUES FOR SENSOR 3 */ #define ST_ACCEL_3_WAI_EXP 0x40 #define ST_ACCEL_3_ODR_ADDR 0x20 #define ST_ACCEL_3_ODR_MASK 0xf0 #define ST_ACCEL_3_ODR_AVL_3HZ_VAL 0x01 #define ST_ACCEL_3_ODR_AVL_6HZ_VAL 0x02 #define ST_ACCEL_3_ODR_AVL_12HZ_VAL 0x03 #define ST_ACCEL_3_ODR_AVL_25HZ_VAL 0x04 #define ST_ACCEL_3_ODR_AVL_50HZ_VAL 0x05 #define ST_ACCEL_3_ODR_AVL_100HZ_VAL 0x06 #define ST_ACCEL_3_ODR_AVL_200HZ_VAL 0x07 #define ST_ACCEL_3_ODR_AVL_400HZ_VAL 0x08 #define ST_ACCEL_3_ODR_AVL_800HZ_VAL 0x09 #define ST_ACCEL_3_ODR_AVL_1600HZ_VAL 0x0a #define ST_ACCEL_3_FS_ADDR 0x24 #define ST_ACCEL_3_FS_MASK 0x38 #define ST_ACCEL_3_FS_AVL_2_VAL 0X00 #define ST_ACCEL_3_FS_AVL_4_VAL 0X01 #define ST_ACCEL_3_FS_AVL_6_VAL 0x02 #define ST_ACCEL_3_FS_AVL_8_VAL 0x03 #define ST_ACCEL_3_FS_AVL_16_VAL 0x04 #define ST_ACCEL_3_FS_AVL_2_GAIN IIO_G_TO_M_S_2(61) #define ST_ACCEL_3_FS_AVL_4_GAIN IIO_G_TO_M_S_2(122) #define ST_ACCEL_3_FS_AVL_6_GAIN IIO_G_TO_M_S_2(183) #define ST_ACCEL_3_FS_AVL_8_GAIN IIO_G_TO_M_S_2(244) #define ST_ACCEL_3_FS_AVL_16_GAIN IIO_G_TO_M_S_2(732) #define ST_ACCEL_3_BDU_ADDR 0x20 #define ST_ACCEL_3_BDU_MASK 0x08 #define ST_ACCEL_3_DRDY_IRQ_ADDR 0x23 #define ST_ACCEL_3_DRDY_IRQ_MASK 0x80 #define ST_ACCEL_3_IG1_EN_ADDR 0x23 #define ST_ACCEL_3_IG1_EN_MASK 0x08 #define ST_ACCEL_3_MULTIREAD_BIT false static const struct iio_chan_spec st_accel_12bit_channels[] = { ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, ST_SENSORS_SCAN_X, IIO_MOD_X, IIO_LE, ST_SENSORS_DEFAULT_12_REALBITS, ST_ACCEL_DEFAULT_OUT_X_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, ST_SENSORS_SCAN_Y, IIO_MOD_Y, IIO_LE, ST_SENSORS_DEFAULT_12_REALBITS, ST_ACCEL_DEFAULT_OUT_Y_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, ST_SENSORS_SCAN_Z, IIO_MOD_Z, IIO_LE, ST_SENSORS_DEFAULT_12_REALBITS, ST_ACCEL_DEFAULT_OUT_Z_L_ADDR), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct iio_chan_spec st_accel_16bit_channels[] = { ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, ST_SENSORS_SCAN_X, IIO_MOD_X, IIO_LE, ST_SENSORS_DEFAULT_16_REALBITS, ST_ACCEL_DEFAULT_OUT_X_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, ST_SENSORS_SCAN_Y, IIO_MOD_Y, IIO_LE, ST_SENSORS_DEFAULT_16_REALBITS, ST_ACCEL_DEFAULT_OUT_Y_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_ACCEL, ST_SENSORS_SCAN_Z, IIO_MOD_Z, IIO_LE, ST_SENSORS_DEFAULT_16_REALBITS, ST_ACCEL_DEFAULT_OUT_Z_L_ADDR), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct st_sensors st_accel_sensors[] = { { .wai = ST_ACCEL_1_WAI_EXP, .sensors_supported = { [0] = LIS3DH_ACCEL_DEV_NAME, [1] = LSM303DLHC_ACCEL_DEV_NAME, [2] = LSM330D_ACCEL_DEV_NAME, [3] = LSM330DL_ACCEL_DEV_NAME, [4] = LSM330DLC_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = ST_ACCEL_1_ODR_ADDR, .mask = ST_ACCEL_1_ODR_MASK, .odr_avl = { { 1, ST_ACCEL_1_ODR_AVL_1HZ_VAL, }, { 10, ST_ACCEL_1_ODR_AVL_10HZ_VAL, }, { 25, ST_ACCEL_1_ODR_AVL_25HZ_VAL, }, { 50, ST_ACCEL_1_ODR_AVL_50HZ_VAL, }, { 100, ST_ACCEL_1_ODR_AVL_100HZ_VAL, }, { 200, ST_ACCEL_1_ODR_AVL_200HZ_VAL, }, { 400, ST_ACCEL_1_ODR_AVL_400HZ_VAL, }, { 1600, ST_ACCEL_1_ODR_AVL_1600HZ_VAL, }, }, }, .pw = { .addr = ST_ACCEL_1_ODR_ADDR, .mask = ST_ACCEL_1_ODR_MASK, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = ST_ACCEL_1_FS_ADDR, .mask = ST_ACCEL_1_FS_MASK, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = ST_ACCEL_1_FS_AVL_2_VAL, .gain = ST_ACCEL_1_FS_AVL_2_GAIN, }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = ST_ACCEL_1_FS_AVL_4_VAL, .gain = ST_ACCEL_1_FS_AVL_4_GAIN, }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = ST_ACCEL_1_FS_AVL_8_VAL, .gain = ST_ACCEL_1_FS_AVL_8_GAIN, }, [3] = { .num = ST_ACCEL_FS_AVL_16G, .value = ST_ACCEL_1_FS_AVL_16_VAL, .gain = ST_ACCEL_1_FS_AVL_16_GAIN, }, }, }, .bdu = { .addr = ST_ACCEL_1_BDU_ADDR, .mask = ST_ACCEL_1_BDU_MASK, }, .drdy_irq = { .addr = ST_ACCEL_1_DRDY_IRQ_ADDR, .mask = ST_ACCEL_1_DRDY_IRQ_MASK, }, .multi_read_bit = ST_ACCEL_1_MULTIREAD_BIT, .bootime = 2, }, { .wai = ST_ACCEL_2_WAI_EXP, .sensors_supported = { [0] = LIS331DLH_ACCEL_DEV_NAME, [1] = LSM303DL_ACCEL_DEV_NAME, [2] = LSM303DLH_ACCEL_DEV_NAME, [3] = LSM303DLM_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_12bit_channels, .odr = { .addr = ST_ACCEL_2_ODR_ADDR, .mask = ST_ACCEL_2_ODR_MASK, .odr_avl = { { 50, ST_ACCEL_2_ODR_AVL_50HZ_VAL, }, { 100, ST_ACCEL_2_ODR_AVL_100HZ_VAL, }, { 400, ST_ACCEL_2_ODR_AVL_400HZ_VAL, }, { 1000, ST_ACCEL_2_ODR_AVL_1000HZ_VAL, }, }, }, .pw = { .addr = ST_ACCEL_2_PW_ADDR, .mask = ST_ACCEL_2_PW_MASK, .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = ST_ACCEL_2_FS_ADDR, .mask = ST_ACCEL_2_FS_MASK, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = ST_ACCEL_2_FS_AVL_2_VAL, .gain = ST_ACCEL_2_FS_AVL_2_GAIN, }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = ST_ACCEL_2_FS_AVL_4_VAL, .gain = ST_ACCEL_2_FS_AVL_4_GAIN, }, [2] = { .num = ST_ACCEL_FS_AVL_8G, .value = ST_ACCEL_2_FS_AVL_8_VAL, .gain = ST_ACCEL_2_FS_AVL_8_GAIN, }, }, }, .bdu = { .addr = ST_ACCEL_2_BDU_ADDR, .mask = ST_ACCEL_2_BDU_MASK, }, .drdy_irq = { .addr = ST_ACCEL_2_DRDY_IRQ_ADDR, .mask = ST_ACCEL_2_DRDY_IRQ_MASK, }, .multi_read_bit = ST_ACCEL_2_MULTIREAD_BIT, .bootime = 2, }, { .wai = ST_ACCEL_3_WAI_EXP, .sensors_supported = { [0] = LSM330_ACCEL_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_accel_16bit_channels, .odr = { .addr = ST_ACCEL_3_ODR_ADDR, .mask = ST_ACCEL_3_ODR_MASK, .odr_avl = { { 3, ST_ACCEL_3_ODR_AVL_3HZ_VAL }, { 6, ST_ACCEL_3_ODR_AVL_6HZ_VAL, }, { 12, ST_ACCEL_3_ODR_AVL_12HZ_VAL, }, { 25, ST_ACCEL_3_ODR_AVL_25HZ_VAL, }, { 50, ST_ACCEL_3_ODR_AVL_50HZ_VAL, }, { 100, ST_ACCEL_3_ODR_AVL_100HZ_VAL, }, { 200, ST_ACCEL_3_ODR_AVL_200HZ_VAL, }, { 400, ST_ACCEL_3_ODR_AVL_400HZ_VAL, }, { 800, ST_ACCEL_3_ODR_AVL_800HZ_VAL, }, { 1600, ST_ACCEL_3_ODR_AVL_1600HZ_VAL, }, }, }, .pw = { .addr = ST_ACCEL_3_ODR_ADDR, .mask = ST_ACCEL_3_ODR_MASK, .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE, }, .enable_axis = { .addr = ST_SENSORS_DEFAULT_AXIS_ADDR, .mask = ST_SENSORS_DEFAULT_AXIS_MASK, }, .fs = { .addr = ST_ACCEL_3_FS_ADDR, .mask = ST_ACCEL_3_FS_MASK, .fs_avl = { [0] = { .num = ST_ACCEL_FS_AVL_2G, .value = ST_ACCEL_3_FS_AVL_2_VAL, .gain = ST_ACCEL_3_FS_AVL_2_GAIN, }, [1] = { .num = ST_ACCEL_FS_AVL_4G, .value = ST_ACCEL_3_FS_AVL_4_VAL, .gain = ST_ACCEL_3_FS_AVL_4_GAIN, }, [2] = { .num = ST_ACCEL_FS_AVL_6G, .value = ST_ACCEL_3_FS_AVL_6_VAL, .gain = ST_ACCEL_3_FS_AVL_6_GAIN, }, [3] = { .num = ST_ACCEL_FS_AVL_8G, .value = ST_ACCEL_3_FS_AVL_8_VAL, .gain = ST_ACCEL_3_FS_AVL_8_GAIN, }, [4] = { .num = ST_ACCEL_FS_AVL_16G, .value = ST_ACCEL_3_FS_AVL_16_VAL, .gain = ST_ACCEL_3_FS_AVL_16_GAIN, }, }, }, .bdu = { .addr = ST_ACCEL_3_BDU_ADDR, .mask = ST_ACCEL_3_BDU_MASK, }, .drdy_irq = { .addr = ST_ACCEL_3_DRDY_IRQ_ADDR, .mask = ST_ACCEL_3_DRDY_IRQ_MASK, .ig1 = { .en_addr = ST_ACCEL_3_IG1_EN_ADDR, .en_mask = ST_ACCEL_3_IG1_EN_MASK, }, }, .multi_read_bit = ST_ACCEL_3_MULTIREAD_BIT, .bootime = 2, }, }; static int st_accel_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { int err; struct st_sensor_data *adata = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: err = st_sensors_read_info_raw(indio_dev, ch, val); if (err < 0) goto read_error; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = adata->current_fullscale->gain; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } read_error: return err; } static int st_accel_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int err; switch (mask) { case IIO_CHAN_INFO_SCALE: err = st_sensors_set_fullscale_by_gain(indio_dev, val2); break; default: return -EINVAL; } return err; } static ST_SENSOR_DEV_ATTR_SAMP_FREQ(); static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL(); static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available); static struct attribute *st_accel_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_accel_scale_available.dev_attr.attr, &iio_dev_attr_sampling_frequency.dev_attr.attr, NULL, }; static const struct attribute_group st_accel_attribute_group = { .attrs = st_accel_attributes, }; static const struct iio_info accel_info = { .driver_module = THIS_MODULE, .attrs = &st_accel_attribute_group, .read_raw = &st_accel_read_raw, .write_raw = &st_accel_write_raw, }; #ifdef CONFIG_IIO_TRIGGER static const struct iio_trigger_ops st_accel_trigger_ops = { .owner = THIS_MODULE, .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE, }; #define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops) #else #define ST_ACCEL_TRIGGER_OPS NULL #endif int st_accel_common_probe(struct iio_dev *indio_dev) { int err; struct st_sensor_data *adata = iio_priv(indio_dev); indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &accel_info; err = st_sensors_check_device_support(indio_dev, ARRAY_SIZE(st_accel_sensors), st_accel_sensors); if (err < 0) goto st_accel_common_probe_error; adata->multiread_bit = adata->sensor->multi_read_bit; indio_dev->channels = adata->sensor->ch; indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS; adata->current_fullscale = (struct st_sensor_fullscale_avl *) &adata->sensor->fs.fs_avl[0]; adata->odr = adata->sensor->odr.odr_avl[0].hz; err = st_sensors_init_sensor(indio_dev); if (err < 0) goto st_accel_common_probe_error; if (adata->get_irq_data_ready(indio_dev) > 0) { err = st_accel_allocate_ring(indio_dev); if (err < 0) goto st_accel_common_probe_error; err = st_sensors_allocate_trigger(indio_dev, ST_ACCEL_TRIGGER_OPS); if (err < 0) goto st_accel_probe_trigger_error; } err = iio_device_register(indio_dev); if (err) goto st_accel_device_register_error; return err; st_accel_device_register_error: if (adata->get_irq_data_ready(indio_dev) > 0) st_sensors_deallocate_trigger(indio_dev); st_accel_probe_trigger_error: if (adata->get_irq_data_ready(indio_dev) > 0) st_accel_deallocate_ring(indio_dev); st_accel_common_probe_error: return err; } EXPORT_SYMBOL(st_accel_common_probe); void st_accel_common_remove(struct iio_dev *indio_dev) { struct st_sensor_data *adata = iio_priv(indio_dev); iio_device_unregister(indio_dev); if (adata->get_irq_data_ready(indio_dev) > 0) { st_sensors_deallocate_trigger(indio_dev); st_accel_deallocate_ring(indio_dev); } iio_device_free(indio_dev); } EXPORT_SYMBOL(st_accel_common_remove); MODULE_AUTHOR("Denis Ciocca "); MODULE_DESCRIPTION("STMicroelectronics accelerometers driver"); MODULE_LICENSE("GPL v2");