/* * AD714X CapTouch Programmable Controller driver supporting AD7142/3/7/8/7A * * Copyright 2009-2011 Analog Devices Inc. * * Licensed under the GPL-2 or later. */ #include #include #include #include #include #include #include #include "ad714x.h" #define AD714X_PWR_CTRL 0x0 #define AD714X_STG_CAL_EN_REG 0x1 #define AD714X_AMB_COMP_CTRL0_REG 0x2 #define AD714X_PARTID_REG 0x17 #define AD7142_PARTID 0xE620 #define AD7143_PARTID 0xE630 #define AD7147_PARTID 0x1470 #define AD7148_PARTID 0x1480 #define AD714X_STAGECFG_REG 0x80 #define AD714X_SYSCFG_REG 0x0 #define STG_LOW_INT_EN_REG 0x5 #define STG_HIGH_INT_EN_REG 0x6 #define STG_COM_INT_EN_REG 0x7 #define STG_LOW_INT_STA_REG 0x8 #define STG_HIGH_INT_STA_REG 0x9 #define STG_COM_INT_STA_REG 0xA #define CDC_RESULT_S0 0xB #define CDC_RESULT_S1 0xC #define CDC_RESULT_S2 0xD #define CDC_RESULT_S3 0xE #define CDC_RESULT_S4 0xF #define CDC_RESULT_S5 0x10 #define CDC_RESULT_S6 0x11 #define CDC_RESULT_S7 0x12 #define CDC_RESULT_S8 0x13 #define CDC_RESULT_S9 0x14 #define CDC_RESULT_S10 0x15 #define CDC_RESULT_S11 0x16 #define STAGE0_AMBIENT 0xF1 #define STAGE1_AMBIENT 0x115 #define STAGE2_AMBIENT 0x139 #define STAGE3_AMBIENT 0x15D #define STAGE4_AMBIENT 0x181 #define STAGE5_AMBIENT 0x1A5 #define STAGE6_AMBIENT 0x1C9 #define STAGE7_AMBIENT 0x1ED #define STAGE8_AMBIENT 0x211 #define STAGE9_AMBIENT 0x234 #define STAGE10_AMBIENT 0x259 #define STAGE11_AMBIENT 0x27D #define PER_STAGE_REG_NUM 36 #define STAGE_CFGREG_NUM 8 #define SYS_CFGREG_NUM 8 /* * driver information which will be used to maintain the software flow */ enum ad714x_device_state { IDLE, JITTER, ACTIVE, SPACE }; struct ad714x_slider_drv { int highest_stage; int abs_pos; int flt_pos; enum ad714x_device_state state; struct input_dev *input; }; struct ad714x_wheel_drv { int abs_pos; int flt_pos; int pre_highest_stage; int highest_stage; enum ad714x_device_state state; struct input_dev *input; }; struct ad714x_touchpad_drv { int x_highest_stage; int x_flt_pos; int x_abs_pos; int y_highest_stage; int y_flt_pos; int y_abs_pos; int left_ep; int left_ep_val; int right_ep; int right_ep_val; int top_ep; int top_ep_val; int bottom_ep; int bottom_ep_val; enum ad714x_device_state state; struct input_dev *input; }; struct ad714x_button_drv { enum ad714x_device_state state; /* * Unlike slider/wheel/touchpad, all buttons point to * same input_dev instance */ struct input_dev *input; }; struct ad714x_driver_data { struct ad714x_slider_drv *slider; struct ad714x_wheel_drv *wheel; struct ad714x_touchpad_drv *touchpad; struct ad714x_button_drv *button; }; /* * information to integrate all things which will be private data * of spi/i2c device */ static void ad714x_use_com_int(struct ad714x_chip *ad714x, int start_stage, int end_stage) { unsigned short data; unsigned short mask; mask = ((1 << (end_stage + 1)) - 1) - ((1 << start_stage) - 1); ad714x->read(ad714x, STG_COM_INT_EN_REG, &data, 1); data |= 1 << end_stage; ad714x->write(ad714x, STG_COM_INT_EN_REG, data); ad714x->read(ad714x, STG_HIGH_INT_EN_REG, &data, 1); data &= ~mask; ad714x->write(ad714x, STG_HIGH_INT_EN_REG, data); } static void ad714x_use_thr_int(struct ad714x_chip *ad714x, int start_stage, int end_stage) { unsigned short data; unsigned short mask; mask = ((1 << (end_stage + 1)) - 1) - ((1 << start_stage) - 1); ad714x->read(ad714x, STG_COM_INT_EN_REG, &data, 1); data &= ~(1 << end_stage); ad714x->write(ad714x, STG_COM_INT_EN_REG, data); ad714x->read(ad714x, STG_HIGH_INT_EN_REG, &data, 1); data |= mask; ad714x->write(ad714x, STG_HIGH_INT_EN_REG, data); } static int ad714x_cal_highest_stage(struct ad714x_chip *ad714x, int start_stage, int end_stage) { int max_res = 0; int max_idx = 0; int i; for (i = start_stage; i <= end_stage; i++) { if (ad714x->sensor_val[i] > max_res) { max_res = ad714x->sensor_val[i]; max_idx = i; } } return max_idx; } static int ad714x_cal_abs_pos(struct ad714x_chip *ad714x, int start_stage, int end_stage, int highest_stage, int max_coord) { int a_param, b_param; if (highest_stage == start_stage) { a_param = ad714x->sensor_val[start_stage + 1]; b_param = ad714x->sensor_val[start_stage] + ad714x->sensor_val[start_stage + 1]; } else if (highest_stage == end_stage) { a_param = ad714x->sensor_val[end_stage] * (end_stage - start_stage) + ad714x->sensor_val[end_stage - 1] * (end_stage - start_stage - 1); b_param = ad714x->sensor_val[end_stage] + ad714x->sensor_val[end_stage - 1]; } else { a_param = ad714x->sensor_val[highest_stage] * (highest_stage - start_stage) + ad714x->sensor_val[highest_stage - 1] * (highest_stage - start_stage - 1) + ad714x->sensor_val[highest_stage + 1] * (highest_stage - start_stage + 1); b_param = ad714x->sensor_val[highest_stage] + ad714x->sensor_val[highest_stage - 1] + ad714x->sensor_val[highest_stage + 1]; } return (max_coord / (end_stage - start_stage)) * a_param / b_param; } /* * One button can connect to multi positive and negative of CDCs * Multi-buttons can connect to same positive/negative of one CDC */ static void ad714x_button_state_machine(struct ad714x_chip *ad714x, int idx) { struct ad714x_button_plat *hw = &ad714x->hw->button[idx]; struct ad714x_button_drv *sw = &ad714x->sw->button[idx]; switch (sw->state) { case IDLE: if (((ad714x->h_state & hw->h_mask) == hw->h_mask) && ((ad714x->l_state & hw->l_mask) == hw->l_mask)) { dev_dbg(ad714x->dev, "button %d touched\n", idx); input_report_key(sw->input, hw->keycode, 1); input_sync(sw->input); sw->state = ACTIVE; } break; case ACTIVE: if (((ad714x->h_state & hw->h_mask) != hw->h_mask) || ((ad714x->l_state & hw->l_mask) != hw->l_mask)) { dev_dbg(ad714x->dev, "button %d released\n", idx); input_report_key(sw->input, hw->keycode, 0); input_sync(sw->input); sw->state = IDLE; } break; default: break; } } /* * The response of a sensor is defined by the absolute number of codes * between the current CDC value and the ambient value. */ static void ad714x_slider_cal_sensor_val(struct ad714x_chip *ad714x, int idx) { struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; int i; ad714x->read(ad714x, CDC_RESULT_S0 + hw->start_stage, &ad714x->adc_reg[hw->start_stage], hw->end_stage - hw->start_stage + 1); for (i = hw->start_stage; i <= hw->end_stage; i++) { ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM, &ad714x->amb_reg[i], 1); ad714x->sensor_val[i] = abs(ad714x->adc_reg[i] - ad714x->amb_reg[i]); } } static void ad714x_slider_cal_highest_stage(struct ad714x_chip *ad714x, int idx) { struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx]; sw->highest_stage = ad714x_cal_highest_stage(ad714x, hw->start_stage, hw->end_stage); dev_dbg(ad714x->dev, "slider %d highest_stage:%d\n", idx, sw->highest_stage); } /* * The formulae are very straight forward. It uses the sensor with the * highest response and the 2 adjacent ones. * When Sensor 0 has the highest response, only sensor 0 and sensor 1 * are used in the calculations. Similarly when the last sensor has the * highest response, only the last sensor and the second last sensors * are used in the calculations. * * For i= idx_of_peak_Sensor-1 to i= idx_of_peak_Sensor+1 * v += Sensor response(i)*i * w += Sensor response(i) * POS=(Number_of_Positions_Wanted/(Number_of_Sensors_Used-1)) *(v/w) */ static void ad714x_slider_cal_abs_pos(struct ad714x_chip *ad714x, int idx) { struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx]; sw->abs_pos = ad714x_cal_abs_pos(ad714x, hw->start_stage, hw->end_stage, sw->highest_stage, hw->max_coord); dev_dbg(ad714x->dev, "slider %d absolute position:%d\n", idx, sw->abs_pos); } /* * To minimise the Impact of the noise on the algorithm, ADI developed a * routine that filters the CDC results after they have been read by the * host processor. * The filter used is an Infinite Input Response(IIR) filter implemented * in firmware and attenuates the noise on the CDC results after they've * been read by the host processor. * Filtered_CDC_result = (Filtered_CDC_result * (10 - Coefficient) + * Latest_CDC_result * Coefficient)/10 */ static void ad714x_slider_cal_flt_pos(struct ad714x_chip *ad714x, int idx) { struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx]; sw->flt_pos = (sw->flt_pos * (10 - 4) + sw->abs_pos * 4)/10; dev_dbg(ad714x->dev, "slider %d filter position:%d\n", idx, sw->flt_pos); } static void ad714x_slider_use_com_int(struct ad714x_chip *ad714x, int idx) { struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; ad714x_use_com_int(ad714x, hw->start_stage, hw->end_stage); } static void ad714x_slider_use_thr_int(struct ad714x_chip *ad714x, int idx) { struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; ad714x_use_thr_int(ad714x, hw->start_stage, hw->end_stage); } static void ad714x_slider_state_machine(struct ad714x_chip *ad714x, int idx) { struct ad714x_slider_plat *hw = &ad714x->hw->slider[idx]; struct ad714x_slider_drv *sw = &ad714x->sw->slider[idx]; unsigned short h_state, c_state; unsigned short mask; mask = ((1 << (hw->end_stage + 1)) - 1) - ((1 << hw->start_stage) - 1); h_state = ad714x->h_state & mask; c_state = ad714x->c_state & mask; switch (sw->state) { case IDLE: if (h_state) { sw->state = JITTER; /* In End of Conversion interrupt mode, the AD714X * continuously generates hardware interrupts. */ ad714x_slider_use_com_int(ad714x, idx); dev_dbg(ad714x->dev, "slider %d touched\n", idx); } break; case JITTER: if (c_state == mask) { ad714x_slider_cal_sensor_val(ad714x, idx); ad714x_slider_cal_highest_stage(ad714x, idx); ad714x_slider_cal_abs_pos(ad714x, idx); sw->flt_pos = sw->abs_pos; sw->state = ACTIVE; } break; case ACTIVE: if (c_state == mask) { if (h_state) { ad714x_slider_cal_sensor_val(ad714x, idx); ad714x_slider_cal_highest_stage(ad714x, idx); ad714x_slider_cal_abs_pos(ad714x, idx); ad714x_slider_cal_flt_pos(ad714x, idx); input_report_abs(sw->input, ABS_X, sw->flt_pos); input_report_key(sw->input, BTN_TOUCH, 1); } else { /* When the user lifts off the sensor, configure * the AD714X back to threshold interrupt mode. */ ad714x_slider_use_thr_int(ad714x, idx); sw->state = IDLE; input_report_key(sw->input, BTN_TOUCH, 0); dev_dbg(ad714x->dev, "slider %d released\n", idx); } input_sync(sw->input); } break; default: break; } } /* * When the scroll wheel is activated, we compute the absolute position based * on the sensor values. To calculate the position, we first determine the * sensor that has the greatest response among the 8 sensors that constitutes * the scrollwheel. Then we determined the 2 sensors on either sides of the * sensor with the highest response and we apply weights to these sensors. */ static void ad714x_wheel_cal_highest_stage(struct ad714x_chip *ad714x, int idx) { struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx]; sw->pre_highest_stage = sw->highest_stage; sw->highest_stage = ad714x_cal_highest_stage(ad714x, hw->start_stage, hw->end_stage); dev_dbg(ad714x->dev, "wheel %d highest_stage:%d\n", idx, sw->highest_stage); } static void ad714x_wheel_cal_sensor_val(struct ad714x_chip *ad714x, int idx) { struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; int i; ad714x->read(ad714x, CDC_RESULT_S0 + hw->start_stage, &ad714x->adc_reg[hw->start_stage], hw->end_stage - hw->start_stage + 1); for (i = hw->start_stage; i <= hw->end_stage; i++) { ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM, &ad714x->amb_reg[i], 1); if (ad714x->adc_reg[i] > ad714x->amb_reg[i]) ad714x->sensor_val[i] = ad714x->adc_reg[i] - ad714x->amb_reg[i]; else ad714x->sensor_val[i] = 0; } } /* * When the scroll wheel is activated, we compute the absolute position based * on the sensor values. To calculate the position, we first determine the * sensor that has the greatest response among the sensors that constitutes * the scrollwheel. Then we determined the sensors on either sides of the * sensor with the highest response and we apply weights to these sensors. The * result of this computation gives us the mean value. */ static void ad714x_wheel_cal_abs_pos(struct ad714x_chip *ad714x, int idx) { struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx]; int stage_num = hw->end_stage - hw->start_stage + 1; int first_before, highest, first_after; int a_param, b_param; first_before = (sw->highest_stage + stage_num - 1) % stage_num; highest = sw->highest_stage; first_after = (sw->highest_stage + stage_num + 1) % stage_num; a_param = ad714x->sensor_val[highest] * (highest - hw->start_stage) + ad714x->sensor_val[first_before] * (highest - hw->start_stage - 1) + ad714x->sensor_val[first_after] * (highest - hw->start_stage + 1); b_param = ad714x->sensor_val[highest] + ad714x->sensor_val[first_before] + ad714x->sensor_val[first_after]; sw->abs_pos = ((hw->max_coord / (hw->end_stage - hw->start_stage)) * a_param) / b_param; if (sw->abs_pos > hw->max_coord) sw->abs_pos = hw->max_coord; else if (sw->abs_pos < 0) sw->abs_pos = 0; } static void ad714x_wheel_cal_flt_pos(struct ad714x_chip *ad714x, int idx) { struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx]; if (((sw->pre_highest_stage == hw->end_stage) && (sw->highest_stage == hw->start_stage)) || ((sw->pre_highest_stage == hw->start_stage) && (sw->highest_stage == hw->end_stage))) sw->flt_pos = sw->abs_pos; else sw->flt_pos = ((sw->flt_pos * 30) + (sw->abs_pos * 71)) / 100; if (sw->flt_pos > hw->max_coord) sw->flt_pos = hw->max_coord; } static void ad714x_wheel_use_com_int(struct ad714x_chip *ad714x, int idx) { struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; ad714x_use_com_int(ad714x, hw->start_stage, hw->end_stage); } static void ad714x_wheel_use_thr_int(struct ad714x_chip *ad714x, int idx) { struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; ad714x_use_thr_int(ad714x, hw->start_stage, hw->end_stage); } static void ad714x_wheel_state_machine(struct ad714x_chip *ad714x, int idx) { struct ad714x_wheel_plat *hw = &ad714x->hw->wheel[idx]; struct ad714x_wheel_drv *sw = &ad714x->sw->wheel[idx]; unsigned short h_state, c_state; unsigned short mask; mask = ((1 << (hw->end_stage + 1)) - 1) - ((1 << hw->start_stage) - 1); h_state = ad714x->h_state & mask; c_state = ad714x->c_state & mask; switch (sw->state) { case IDLE: if (h_state) { sw->state = JITTER; /* In End of Conversion interrupt mode, the AD714X * continuously generates hardware interrupts. */ ad714x_wheel_use_com_int(ad714x, idx); dev_dbg(ad714x->dev, "wheel %d touched\n", idx); } break; case JITTER: if (c_state == mask) { ad714x_wheel_cal_sensor_val(ad714x, idx); ad714x_wheel_cal_highest_stage(ad714x, idx); ad714x_wheel_cal_abs_pos(ad714x, idx); sw->flt_pos = sw->abs_pos; sw->state = ACTIVE; } break; case ACTIVE: if (c_state == mask) { if (h_state) { ad714x_wheel_cal_sensor_val(ad714x, idx); ad714x_wheel_cal_highest_stage(ad714x, idx); ad714x_wheel_cal_abs_pos(ad714x, idx); ad714x_wheel_cal_flt_pos(ad714x, idx); input_report_abs(sw->input, ABS_WHEEL, sw->flt_pos); input_report_key(sw->input, BTN_TOUCH, 1); } else { /* When the user lifts off the sensor, configure * the AD714X back to threshold interrupt mode. */ ad714x_wheel_use_thr_int(ad714x, idx); sw->state = IDLE; input_report_key(sw->input, BTN_TOUCH, 0); dev_dbg(ad714x->dev, "wheel %d released\n", idx); } input_sync(sw->input); } break; default: break; } } static void touchpad_cal_sensor_val(struct ad714x_chip *ad714x, int idx) { struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; int i; ad714x->read(ad714x, CDC_RESULT_S0 + hw->x_start_stage, &ad714x->adc_reg[hw->x_start_stage], hw->x_end_stage - hw->x_start_stage + 1); for (i = hw->x_start_stage; i <= hw->x_end_stage; i++) { ad714x->read(ad714x, STAGE0_AMBIENT + i * PER_STAGE_REG_NUM, &ad714x->amb_reg[i], 1); if (ad714x->adc_reg[i] > ad714x->amb_reg[i]) ad714x->sensor_val[i] = ad714x->adc_reg[i] - ad714x->amb_reg[i]; else ad714x->sensor_val[i] = 0; } } static void touchpad_cal_highest_stage(struct ad714x_chip *ad714x, int idx) { struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; sw->x_highest_stage = ad714x_cal_highest_stage(ad714x, hw->x_start_stage, hw->x_end_stage); sw->y_highest_stage = ad714x_cal_highest_stage(ad714x, hw->y_start_stage, hw->y_end_stage); dev_dbg(ad714x->dev, "touchpad %d x_highest_stage:%d, y_highest_stage:%d\n", idx, sw->x_highest_stage, sw->y_highest_stage); } /* * If 2 fingers are touching the sensor then 2 peaks can be observed in the * distribution. * The arithmetic doesn't support to get absolute coordinates for multi-touch * yet. */ static int touchpad_check_second_peak(struct ad714x_chip *ad714x, int idx) { struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; int i; for (i = hw->x_start_stage; i < sw->x_highest_stage; i++) { if ((ad714x->sensor_val[i] - ad714x->sensor_val[i + 1]) > (ad714x->sensor_val[i + 1] / 10)) return 1; } for (i = sw->x_highest_stage; i < hw->x_end_stage; i++) { if ((ad714x->sensor_val[i + 1] - ad714x->sensor_val[i]) > (ad714x->sensor_val[i] / 10)) return 1; } for (i = hw->y_start_stage; i < sw->y_highest_stage; i++) { if ((ad714x->sensor_val[i] - ad714x->sensor_val[i + 1]) > (ad714x->sensor_val[i + 1] / 10)) return 1; } for (i = sw->y_highest_stage; i < hw->y_end_stage; i++) { if ((ad714x->sensor_val[i + 1] - ad714x->sensor_val[i]) > (ad714x->sensor_val[i] / 10)) return 1; } return 0; } /* * If only one finger is used to activate the touch pad then only 1 peak will be * registered in the distribution. This peak and the 2 adjacent sensors will be * used in the calculation of the absolute position. This will prevent hand * shadows to affect the absolute position calculation. */ static void touchpad_cal_abs_pos(struct ad714x_chip *ad714x, int idx) { struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; sw->x_abs_pos = ad714x_cal_abs_pos(ad714x, hw->x_start_stage, hw->x_end_stage, sw->x_highest_stage, hw->x_max_coord); sw->y_abs_pos = ad714x_cal_abs_pos(ad714x, hw->y_start_stage, hw->y_end_stage, sw->y_highest_stage, hw->y_max_coord); dev_dbg(ad714x->dev, "touchpad %d absolute position:(%d, %d)\n", idx, sw->x_abs_pos, sw->y_abs_pos); } static void touchpad_cal_flt_pos(struct ad714x_chip *ad714x, int idx) { struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; sw->x_flt_pos = (sw->x_flt_pos * (10 - 4) + sw->x_abs_pos * 4)/10; sw->y_flt_pos = (sw->y_flt_pos * (10 - 4) + sw->y_abs_pos * 4)/10; dev_dbg(ad714x->dev, "touchpad %d filter position:(%d, %d)\n", idx, sw->x_flt_pos, sw->y_flt_pos); } /* * To prevent distortion from showing in the absolute position, it is * necessary to detect the end points. When endpoints are detected, the * driver stops updating the status variables with absolute positions. * End points are detected on the 4 edges of the touchpad sensor. The * method to detect them is the same for all 4. * To detect the end points, the firmware computes the difference in * percent between the sensor on the edge and the adjacent one. The * difference is calculated in percent in order to make the end point * detection independent of the pressure. */ #define LEFT_END_POINT_DETECTION_LEVEL 550 #define RIGHT_END_POINT_DETECTION_LEVEL 750 #define LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL 850 #define TOP_END_POINT_DETECTION_LEVEL 550 #define BOTTOM_END_POINT_DETECTION_LEVEL 950 #define TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL 700 static int touchpad_check_endpoint(struct ad714x_chip *ad714x, int idx) { struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; int percent_sensor_diff; /* left endpoint detect */ percent_sensor_diff = (ad714x->sensor_val[hw->x_start_stage] - ad714x->sensor_val[hw->x_start_stage + 1]) * 100 / ad714x->sensor_val[hw->x_start_stage + 1]; if (!sw->left_ep) { if (percent_sensor_diff >= LEFT_END_POINT_DETECTION_LEVEL) { sw->left_ep = 1; sw->left_ep_val = ad714x->sensor_val[hw->x_start_stage + 1]; } } else { if ((percent_sensor_diff < LEFT_END_POINT_DETECTION_LEVEL) && (ad714x->sensor_val[hw->x_start_stage + 1] > LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL + sw->left_ep_val)) sw->left_ep = 0; } /* right endpoint detect */ percent_sensor_diff = (ad714x->sensor_val[hw->x_end_stage] - ad714x->sensor_val[hw->x_end_stage - 1]) * 100 / ad714x->sensor_val[hw->x_end_stage - 1]; if (!sw->right_ep) { if (percent_sensor_diff >= RIGHT_END_POINT_DETECTION_LEVEL) { sw->right_ep = 1; sw->right_ep_val = ad714x->sensor_val[hw->x_end_stage - 1]; } } else { if ((percent_sensor_diff < RIGHT_END_POINT_DETECTION_LEVEL) && (ad714x->sensor_val[hw->x_end_stage - 1] > LEFT_RIGHT_END_POINT_DEAVTIVALION_LEVEL + sw->right_ep_val)) sw->right_ep = 0; } /* top endpoint detect */ percent_sensor_diff = (ad714x->sensor_val[hw->y_start_stage] - ad714x->sensor_val[hw->y_start_stage + 1]) * 100 / ad714x->sensor_val[hw->y_start_stage + 1]; if (!sw->top_ep) { if (percent_sensor_diff >= TOP_END_POINT_DETECTION_LEVEL) { sw->top_ep = 1; sw->top_ep_val = ad714x->sensor_val[hw->y_start_stage + 1]; } } else { if ((percent_sensor_diff < TOP_END_POINT_DETECTION_LEVEL) && (ad714x->sensor_val[hw->y_start_stage + 1] > TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL + sw->top_ep_val)) sw->top_ep = 0; } /* bottom endpoint detect */ percent_sensor_diff = (ad714x->sensor_val[hw->y_end_stage] - ad714x->sensor_val[hw->y_end_stage - 1]) * 100 / ad714x->sensor_val[hw->y_end_stage - 1]; if (!sw->bottom_ep) { if (percent_sensor_diff >= BOTTOM_END_POINT_DETECTION_LEVEL) { sw->bottom_ep = 1; sw->bottom_ep_val = ad714x->sensor_val[hw->y_end_stage - 1]; } } else { if ((percent_sensor_diff < BOTTOM_END_POINT_DETECTION_LEVEL) && (ad714x->sensor_val[hw->y_end_stage - 1] > TOP_BOTTOM_END_POINT_DEAVTIVALION_LEVEL + sw->bottom_ep_val)) sw->bottom_ep = 0; } return sw->left_ep || sw->right_ep || sw->top_ep || sw->bottom_ep; } static void touchpad_use_com_int(struct ad714x_chip *ad714x, int idx) { struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; ad714x_use_com_int(ad714x, hw->x_start_stage, hw->x_end_stage); } static void touchpad_use_thr_int(struct ad714x_chip *ad714x, int idx) { struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; ad714x_use_thr_int(ad714x, hw->x_start_stage, hw->x_end_stage); ad714x_use_thr_int(ad714x, hw->y_start_stage, hw->y_end_stage); } static void ad714x_touchpad_state_machine(struct ad714x_chip *ad714x, int idx) { struct ad714x_touchpad_plat *hw = &ad714x->hw->touchpad[idx]; struct ad714x_touchpad_drv *sw = &ad714x->sw->touchpad[idx]; unsigned short h_state, c_state; unsigned short mask; mask = (((1 << (hw->x_end_stage + 1)) - 1) - ((1 << hw->x_start_stage) - 1)) + (((1 << (hw->y_end_stage + 1)) - 1) - ((1 << hw->y_start_stage) - 1)); h_state = ad714x->h_state & mask; c_state = ad714x->c_state & mask; switch (sw->state) { case IDLE: if (h_state) { sw->state = JITTER; /* In End of Conversion interrupt mode, the AD714X * continuously generates hardware interrupts. */ touchpad_use_com_int(ad714x, idx); dev_dbg(ad714x->dev, "touchpad %d touched\n", idx); } break; case JITTER: if (c_state == mask) { touchpad_cal_sensor_val(ad714x, idx); touchpad_cal_highest_stage(ad714x, idx); if ((!touchpad_check_second_peak(ad714x, idx)) && (!touchpad_check_endpoint(ad714x, idx))) { dev_dbg(ad714x->dev, "touchpad%d, 2 fingers or endpoint\n", idx); touchpad_cal_abs_pos(ad714x, idx); sw->x_flt_pos = sw->x_abs_pos; sw->y_flt_pos = sw->y_abs_pos; sw->state = ACTIVE; } } break; case ACTIVE: if (c_state == mask) { if (h_state) { touchpad_cal_sensor_val(ad714x, idx); touchpad_cal_highest_stage(ad714x, idx); if ((!touchpad_check_second_peak(ad714x, idx)) && (!touchpad_check_endpoint(ad714x, idx))) { touchpad_cal_abs_pos(ad714x, idx); touchpad_cal_flt_pos(ad714x, idx); input_report_abs(sw->input, ABS_X, sw->x_flt_pos); input_report_abs(sw->input, ABS_Y, sw->y_flt_pos); input_report_key(sw->input, BTN_TOUCH, 1); } } else { /* When the user lifts off the sensor, configure * the AD714X back to threshold interrupt mode. */ touchpad_use_thr_int(ad714x, idx); sw->state = IDLE; input_report_key(sw->input, BTN_TOUCH, 0); dev_dbg(ad714x->dev, "touchpad %d released\n", idx); } input_sync(sw->input); } break; default: break; } } static int ad714x_hw_detect(struct ad714x_chip *ad714x) { unsigned short data; ad714x->read(ad714x, AD714X_PARTID_REG, &data, 1); switch (data & 0xFFF0) { case AD7142_PARTID: ad714x->product = 0x7142; ad714x->version = data & 0xF; dev_info(ad714x->dev, "found AD7142 captouch, rev:%d\n", ad714x->version); return 0; case AD7143_PARTID: ad714x->product = 0x7143; ad714x->version = data & 0xF; dev_info(ad714x->dev, "found AD7143 captouch, rev:%d\n", ad714x->version); return 0; case AD7147_PARTID: ad714x->product = 0x7147; ad714x->version = data & 0xF; dev_info(ad714x->dev, "found AD7147(A) captouch, rev:%d\n", ad714x->version); return 0; case AD7148_PARTID: ad714x->product = 0x7148; ad714x->version = data & 0xF; dev_info(ad714x->dev, "found AD7148 captouch, rev:%d\n", ad714x->version); return 0; default: dev_err(ad714x->dev, "fail to detect AD714X captouch, read ID is %04x\n", data); return -ENODEV; } } static void ad714x_hw_init(struct ad714x_chip *ad714x) { int i, j; unsigned short reg_base; unsigned short data; /* configuration CDC and interrupts */ for (i = 0; i < STAGE_NUM; i++) { reg_base = AD714X_STAGECFG_REG + i * STAGE_CFGREG_NUM; for (j = 0; j < STAGE_CFGREG_NUM; j++) ad714x->write(ad714x, reg_base + j, ad714x->hw->stage_cfg_reg[i][j]); } for (i = 0; i < SYS_CFGREG_NUM; i++) ad714x->write(ad714x, AD714X_SYSCFG_REG + i, ad714x->hw->sys_cfg_reg[i]); for (i = 0; i < SYS_CFGREG_NUM; i++) ad714x->read(ad714x, AD714X_SYSCFG_REG + i, &data, 1); ad714x->write(ad714x, AD714X_STG_CAL_EN_REG, 0xFFF); /* clear all interrupts */ ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3); } static irqreturn_t ad714x_interrupt_thread(int irq, void *data) { struct ad714x_chip *ad714x = data; int i; mutex_lock(&ad714x->mutex); ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3); for (i = 0; i < ad714x->hw->button_num; i++) ad714x_button_state_machine(ad714x, i); for (i = 0; i < ad714x->hw->slider_num; i++) ad714x_slider_state_machine(ad714x, i); for (i = 0; i < ad714x->hw->wheel_num; i++) ad714x_wheel_state_machine(ad714x, i); for (i = 0; i < ad714x->hw->touchpad_num; i++) ad714x_touchpad_state_machine(ad714x, i); mutex_unlock(&ad714x->mutex); return IRQ_HANDLED; } #define MAX_DEVICE_NUM 8 struct ad714x_chip *ad714x_probe(struct device *dev, u16 bus_type, int irq, ad714x_read_t read, ad714x_write_t write) { int i, alloc_idx; int error; struct input_dev *input[MAX_DEVICE_NUM]; struct ad714x_platform_data *plat_data = dev->platform_data; struct ad714x_chip *ad714x; void *drv_mem; struct ad714x_button_drv *bt_drv; struct ad714x_slider_drv *sd_drv; struct ad714x_wheel_drv *wl_drv; struct ad714x_touchpad_drv *tp_drv; if (irq <= 0) { dev_err(dev, "IRQ not configured!\n"); error = -EINVAL; goto err_out; } if (dev->platform_data == NULL) { dev_err(dev, "platform data for ad714x doesn't exist\n"); error = -EINVAL; goto err_out; } ad714x = kzalloc(sizeof(*ad714x) + sizeof(*ad714x->sw) + sizeof(*sd_drv) * plat_data->slider_num + sizeof(*wl_drv) * plat_data->wheel_num + sizeof(*tp_drv) * plat_data->touchpad_num + sizeof(*bt_drv) * plat_data->button_num, GFP_KERNEL); if (!ad714x) { error = -ENOMEM; goto err_out; } ad714x->hw = plat_data; drv_mem = ad714x + 1; ad714x->sw = drv_mem; drv_mem += sizeof(*ad714x->sw); ad714x->sw->slider = sd_drv = drv_mem; drv_mem += sizeof(*sd_drv) * ad714x->hw->slider_num; ad714x->sw->wheel = wl_drv = drv_mem; drv_mem += sizeof(*wl_drv) * ad714x->hw->wheel_num; ad714x->sw->touchpad = tp_drv = drv_mem; drv_mem += sizeof(*tp_drv) * ad714x->hw->touchpad_num; ad714x->sw->button = bt_drv = drv_mem; drv_mem += sizeof(*bt_drv) * ad714x->hw->button_num; ad714x->read = read; ad714x->write = write; ad714x->irq = irq; ad714x->dev = dev; error = ad714x_hw_detect(ad714x); if (error) goto err_free_mem; /* initialize and request sw/hw resources */ ad714x_hw_init(ad714x); mutex_init(&ad714x->mutex); /* * Allocate and register AD714X input device */ alloc_idx = 0; /* a slider uses one input_dev instance */ if (ad714x->hw->slider_num > 0) { struct ad714x_slider_plat *sd_plat = ad714x->hw->slider; for (i = 0; i < ad714x->hw->slider_num; i++) { sd_drv[i].input = input[alloc_idx] = input_allocate_device(); if (!input[alloc_idx]) { error = -ENOMEM; goto err_free_dev; } __set_bit(EV_ABS, input[alloc_idx]->evbit); __set_bit(EV_KEY, input[alloc_idx]->evbit); __set_bit(ABS_X, input[alloc_idx]->absbit); __set_bit(BTN_TOUCH, input[alloc_idx]->keybit); input_set_abs_params(input[alloc_idx], ABS_X, 0, sd_plat->max_coord, 0, 0); input[alloc_idx]->id.bustype = bus_type; input[alloc_idx]->id.product = ad714x->product; input[alloc_idx]->id.version = ad714x->version; input[alloc_idx]->name = "ad714x_captouch_slider"; input[alloc_idx]->dev.parent = dev; error = input_register_device(input[alloc_idx]); if (error) goto err_free_dev; alloc_idx++; } } /* a wheel uses one input_dev instance */ if (ad714x->hw->wheel_num > 0) { struct ad714x_wheel_plat *wl_plat = ad714x->hw->wheel; for (i = 0; i < ad714x->hw->wheel_num; i++) { wl_drv[i].input = input[alloc_idx] = input_allocate_device(); if (!input[alloc_idx]) { error = -ENOMEM; goto err_free_dev; } __set_bit(EV_KEY, input[alloc_idx]->evbit); __set_bit(EV_ABS, input[alloc_idx]->evbit); __set_bit(ABS_WHEEL, input[alloc_idx]->absbit); __set_bit(BTN_TOUCH, input[alloc_idx]->keybit); input_set_abs_params(input[alloc_idx], ABS_WHEEL, 0, wl_plat->max_coord, 0, 0); input[alloc_idx]->id.bustype = bus_type; input[alloc_idx]->id.product = ad714x->product; input[alloc_idx]->id.version = ad714x->version; input[alloc_idx]->name = "ad714x_captouch_wheel"; input[alloc_idx]->dev.parent = dev; error = input_register_device(input[alloc_idx]); if (error) goto err_free_dev; alloc_idx++; } } /* a touchpad uses one input_dev instance */ if (ad714x->hw->touchpad_num > 0) { struct ad714x_touchpad_plat *tp_plat = ad714x->hw->touchpad; for (i = 0; i < ad714x->hw->touchpad_num; i++) { tp_drv[i].input = input[alloc_idx] = input_allocate_device(); if (!input[alloc_idx]) { error = -ENOMEM; goto err_free_dev; } __set_bit(EV_ABS, input[alloc_idx]->evbit); __set_bit(EV_KEY, input[alloc_idx]->evbit); __set_bit(ABS_X, input[alloc_idx]->absbit); __set_bit(ABS_Y, input[alloc_idx]->absbit); __set_bit(BTN_TOUCH, input[alloc_idx]->keybit); input_set_abs_params(input[alloc_idx], ABS_X, 0, tp_plat->x_max_coord, 0, 0); input_set_abs_params(input[alloc_idx], ABS_Y, 0, tp_plat->y_max_coord, 0, 0); input[alloc_idx]->id.bustype = bus_type; input[alloc_idx]->id.product = ad714x->product; input[alloc_idx]->id.version = ad714x->version; input[alloc_idx]->name = "ad714x_captouch_pad"; input[alloc_idx]->dev.parent = dev; error = input_register_device(input[alloc_idx]); if (error) goto err_free_dev; alloc_idx++; } } /* all buttons use one input node */ if (ad714x->hw->button_num > 0) { struct ad714x_button_plat *bt_plat = ad714x->hw->button; input[alloc_idx] = input_allocate_device(); if (!input[alloc_idx]) { error = -ENOMEM; goto err_free_dev; } __set_bit(EV_KEY, input[alloc_idx]->evbit); for (i = 0; i < ad714x->hw->button_num; i++) { bt_drv[i].input = input[alloc_idx]; __set_bit(bt_plat[i].keycode, input[alloc_idx]->keybit); } input[alloc_idx]->id.bustype = bus_type; input[alloc_idx]->id.product = ad714x->product; input[alloc_idx]->id.version = ad714x->version; input[alloc_idx]->name = "ad714x_captouch_button"; input[alloc_idx]->dev.parent = dev; error = input_register_device(input[alloc_idx]); if (error) goto err_free_dev; alloc_idx++; } error = request_threaded_irq(ad714x->irq, NULL, ad714x_interrupt_thread, plat_data->irqflags ? plat_data->irqflags : IRQF_TRIGGER_FALLING, "ad714x_captouch", ad714x); if (error) { dev_err(dev, "can't allocate irq %d\n", ad714x->irq); goto err_unreg_dev; } return ad714x; err_free_dev: dev_err(dev, "failed to setup AD714x input device %i\n", alloc_idx); input_free_device(input[alloc_idx]); err_unreg_dev: while (--alloc_idx >= 0) input_unregister_device(input[alloc_idx]); err_free_mem: kfree(ad714x); err_out: return ERR_PTR(error); } EXPORT_SYMBOL(ad714x_probe); void ad714x_remove(struct ad714x_chip *ad714x) { struct ad714x_platform_data *hw = ad714x->hw; struct ad714x_driver_data *sw = ad714x->sw; int i; free_irq(ad714x->irq, ad714x); /* unregister and free all input devices */ for (i = 0; i < hw->slider_num; i++) input_unregister_device(sw->slider[i].input); for (i = 0; i < hw->wheel_num; i++) input_unregister_device(sw->wheel[i].input); for (i = 0; i < hw->touchpad_num; i++) input_unregister_device(sw->touchpad[i].input); if (hw->button_num) input_unregister_device(sw->button[0].input); kfree(ad714x); } EXPORT_SYMBOL(ad714x_remove); #ifdef CONFIG_PM int ad714x_disable(struct ad714x_chip *ad714x) { unsigned short data; dev_dbg(ad714x->dev, "%s enter\n", __func__); mutex_lock(&ad714x->mutex); data = ad714x->hw->sys_cfg_reg[AD714X_PWR_CTRL] | 0x3; ad714x->write(ad714x, AD714X_PWR_CTRL, data); mutex_unlock(&ad714x->mutex); return 0; } EXPORT_SYMBOL(ad714x_disable); int ad714x_enable(struct ad714x_chip *ad714x) { dev_dbg(ad714x->dev, "%s enter\n", __func__); mutex_lock(&ad714x->mutex); /* resume to non-shutdown mode */ ad714x->write(ad714x, AD714X_PWR_CTRL, ad714x->hw->sys_cfg_reg[AD714X_PWR_CTRL]); /* make sure the interrupt output line is not low level after resume, * otherwise we will get no chance to enter falling-edge irq again */ ad714x->read(ad714x, STG_LOW_INT_STA_REG, &ad714x->l_state, 3); mutex_unlock(&ad714x->mutex); return 0; } EXPORT_SYMBOL(ad714x_enable); #endif MODULE_DESCRIPTION("Analog Devices AD714X Capacitance Touch Sensor Driver"); MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>"); MODULE_LICENSE("GPL");