/* * stv0900_core.c * * Driver for ST STV0900 satellite demodulator IC. * * Copyright (C) ST Microelectronics. * Copyright (C) 2009 NetUP Inc. * Copyright (C) 2009 Igor M. Liplianin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "stv0900.h" #include "stv0900_reg.h" #include "stv0900_priv.h" #include "stv0900_init.h" int stvdebug = 1; module_param_named(debug, stvdebug, int, 0644); /* internal params node */ struct stv0900_inode { /* pointer for internal params, one for each pair of demods */ struct stv0900_internal *internal; struct stv0900_inode *next_inode; }; /* first internal params */ static struct stv0900_inode *stv0900_first_inode; /* find chip by i2c adapter and i2c address */ static struct stv0900_inode *find_inode(struct i2c_adapter *i2c_adap, u8 i2c_addr) { struct stv0900_inode *temp_chip = stv0900_first_inode; if (temp_chip != NULL) { /* Search of the last stv0900 chip or find it by i2c adapter and i2c address */ while ((temp_chip != NULL) && ((temp_chip->internal->i2c_adap != i2c_adap) || (temp_chip->internal->i2c_addr != i2c_addr))) temp_chip = temp_chip->next_inode; } return temp_chip; } /* deallocating chip */ static void remove_inode(struct stv0900_internal *internal) { struct stv0900_inode *prev_node = stv0900_first_inode; struct stv0900_inode *del_node = find_inode(internal->i2c_adap, internal->i2c_addr); if (del_node != NULL) { if (del_node == stv0900_first_inode) { stv0900_first_inode = del_node->next_inode; } else { while (prev_node->next_inode != del_node) prev_node = prev_node->next_inode; if (del_node->next_inode == NULL) prev_node->next_inode = NULL; else prev_node->next_inode = prev_node->next_inode->next_inode; } kfree(del_node); } } /* allocating new chip */ static struct stv0900_inode *append_internal(struct stv0900_internal *internal) { struct stv0900_inode *new_node = stv0900_first_inode; if (new_node == NULL) { new_node = kmalloc(sizeof(struct stv0900_inode), GFP_KERNEL); stv0900_first_inode = new_node; } else { while (new_node->next_inode != NULL) new_node = new_node->next_inode; new_node->next_inode = kmalloc(sizeof(struct stv0900_inode), GFP_KERNEL); if (new_node->next_inode != NULL) new_node = new_node->next_inode; else new_node = NULL; } if (new_node != NULL) { new_node->internal = internal; new_node->next_inode = NULL; } return new_node; } s32 ge2comp(s32 a, s32 width) { if (width == 32) return a; else return (a >= (1 << (width - 1))) ? (a - (1 << width)) : a; } void stv0900_write_reg(struct stv0900_internal *intp, u16 reg_addr, u8 reg_data) { u8 data[3]; int ret; struct i2c_msg i2cmsg = { .addr = intp->i2c_addr, .flags = 0, .len = 3, .buf = data, }; data[0] = MSB(reg_addr); data[1] = LSB(reg_addr); data[2] = reg_data; ret = i2c_transfer(intp->i2c_adap, &i2cmsg, 1); if (ret != 1) dprintk("%s: i2c error %d\n", __func__, ret); } u8 stv0900_read_reg(struct stv0900_internal *intp, u16 reg) { int ret; u8 b0[] = { MSB(reg), LSB(reg) }; u8 buf = 0; struct i2c_msg msg[] = { { .addr = intp->i2c_addr, .flags = 0, .buf = b0, .len = 2, }, { .addr = intp->i2c_addr, .flags = I2C_M_RD, .buf = &buf, .len = 1, }, }; ret = i2c_transfer(intp->i2c_adap, msg, 2); if (ret != 2) dprintk("%s: i2c error %d, reg[0x%02x]\n", __func__, ret, reg); return buf; } static void extract_mask_pos(u32 label, u8 *mask, u8 *pos) { u8 position = 0, i = 0; (*mask) = label & 0xff; while ((position == 0) && (i < 8)) { position = ((*mask) >> i) & 0x01; i++; } (*pos) = (i - 1); } void stv0900_write_bits(struct stv0900_internal *intp, u32 label, u8 val) { u8 reg, mask, pos; reg = stv0900_read_reg(intp, (label >> 16) & 0xffff); extract_mask_pos(label, &mask, &pos); val = mask & (val << pos); reg = (reg & (~mask)) | val; stv0900_write_reg(intp, (label >> 16) & 0xffff, reg); } u8 stv0900_get_bits(struct stv0900_internal *intp, u32 label) { u8 val = 0xff; u8 mask, pos; extract_mask_pos(label, &mask, &pos); val = stv0900_read_reg(intp, label >> 16); val = (val & mask) >> pos; return val; } static enum fe_stv0900_error stv0900_initialize(struct stv0900_internal *intp) { s32 i; if (intp == NULL) return STV0900_INVALID_HANDLE; intp->chip_id = stv0900_read_reg(intp, R0900_MID); if (intp->errs != STV0900_NO_ERROR) return intp->errs; /*Startup sequence*/ stv0900_write_reg(intp, R0900_P1_DMDISTATE, 0x5c); stv0900_write_reg(intp, R0900_P2_DMDISTATE, 0x5c); msleep(3); stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x6c); stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x6f); stv0900_write_reg(intp, R0900_P1_I2CRPT, 0x20); stv0900_write_reg(intp, R0900_P2_I2CRPT, 0x20); stv0900_write_reg(intp, R0900_NCOARSE, 0x13); msleep(3); stv0900_write_reg(intp, R0900_I2CCFG, 0x08); switch (intp->clkmode) { case 0: case 2: stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | intp->clkmode); break; default: /* preserve SELOSCI bit */ i = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL); stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | i); break; } msleep(3); for (i = 0; i < 181; i++) stv0900_write_reg(intp, STV0900_InitVal[i][0], STV0900_InitVal[i][1]); if (stv0900_read_reg(intp, R0900_MID) >= 0x20) { stv0900_write_reg(intp, R0900_TSGENERAL, 0x0c); for (i = 0; i < 32; i++) stv0900_write_reg(intp, STV0900_Cut20_AddOnVal[i][0], STV0900_Cut20_AddOnVal[i][1]); } stv0900_write_reg(intp, R0900_P1_FSPYCFG, 0x6c); stv0900_write_reg(intp, R0900_P2_FSPYCFG, 0x6c); stv0900_write_reg(intp, R0900_P1_PDELCTRL2, 0x01); stv0900_write_reg(intp, R0900_P2_PDELCTRL2, 0x21); stv0900_write_reg(intp, R0900_P1_PDELCTRL3, 0x20); stv0900_write_reg(intp, R0900_P2_PDELCTRL3, 0x20); stv0900_write_reg(intp, R0900_TSTRES0, 0x80); stv0900_write_reg(intp, R0900_TSTRES0, 0x00); return STV0900_NO_ERROR; } static u32 stv0900_get_mclk_freq(struct stv0900_internal *intp, u32 ext_clk) { u32 mclk = 90000000, div = 0, ad_div = 0; div = stv0900_get_bits(intp, F0900_M_DIV); ad_div = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6); mclk = (div + 1) * ext_clk / ad_div; dprintk("%s: Calculated Mclk = %d\n", __func__, mclk); return mclk; } static enum fe_stv0900_error stv0900_set_mclk(struct stv0900_internal *intp, u32 mclk) { u32 m_div, clk_sel; dprintk("%s: Mclk set to %d, Quartz = %d\n", __func__, mclk, intp->quartz); if (intp == NULL) return STV0900_INVALID_HANDLE; if (intp->errs) return STV0900_I2C_ERROR; clk_sel = ((stv0900_get_bits(intp, F0900_SELX1RATIO) == 1) ? 4 : 6); m_div = ((clk_sel * mclk) / intp->quartz) - 1; stv0900_write_bits(intp, F0900_M_DIV, m_div); intp->mclk = stv0900_get_mclk_freq(intp, intp->quartz); /*Set the DiseqC frequency to 22KHz */ /* Formula: DiseqC_TX_Freq= MasterClock/(32*F22TX_Reg) DiseqC_RX_Freq= MasterClock/(32*F22RX_Reg) */ m_div = intp->mclk / 704000; stv0900_write_reg(intp, R0900_P1_F22TX, m_div); stv0900_write_reg(intp, R0900_P1_F22RX, m_div); stv0900_write_reg(intp, R0900_P2_F22TX, m_div); stv0900_write_reg(intp, R0900_P2_F22RX, m_div); if ((intp->errs)) return STV0900_I2C_ERROR; return STV0900_NO_ERROR; } static u32 stv0900_get_err_count(struct stv0900_internal *intp, int cntr, enum fe_stv0900_demod_num demod) { u32 lsb, msb, hsb, err_val; switch (cntr) { case 0: default: hsb = stv0900_get_bits(intp, ERR_CNT12); msb = stv0900_get_bits(intp, ERR_CNT11); lsb = stv0900_get_bits(intp, ERR_CNT10); break; case 1: hsb = stv0900_get_bits(intp, ERR_CNT22); msb = stv0900_get_bits(intp, ERR_CNT21); lsb = stv0900_get_bits(intp, ERR_CNT20); break; } err_val = (hsb << 16) + (msb << 8) + (lsb); return err_val; } static int stv0900_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *intp = state->internal; enum fe_stv0900_demod_num demod = state->demod; stv0900_write_bits(intp, I2CT_ON, enable); return 0; } static void stv0900_set_ts_parallel_serial(struct stv0900_internal *intp, enum fe_stv0900_clock_type path1_ts, enum fe_stv0900_clock_type path2_ts) { dprintk("%s\n", __func__); if (intp->chip_id >= 0x20) { switch (path1_ts) { case STV0900_PARALLEL_PUNCT_CLOCK: case STV0900_DVBCI_CLOCK: switch (path2_ts) { case STV0900_SERIAL_PUNCT_CLOCK: case STV0900_SERIAL_CONT_CLOCK: default: stv0900_write_reg(intp, R0900_TSGENERAL, 0x00); break; case STV0900_PARALLEL_PUNCT_CLOCK: case STV0900_DVBCI_CLOCK: stv0900_write_reg(intp, R0900_TSGENERAL, 0x06); stv0900_write_bits(intp, F0900_P1_TSFIFO_MANSPEED, 3); stv0900_write_bits(intp, F0900_P2_TSFIFO_MANSPEED, 0); stv0900_write_reg(intp, R0900_P1_TSSPEED, 0x14); stv0900_write_reg(intp, R0900_P2_TSSPEED, 0x28); break; } break; case STV0900_SERIAL_PUNCT_CLOCK: case STV0900_SERIAL_CONT_CLOCK: default: switch (path2_ts) { case STV0900_SERIAL_PUNCT_CLOCK: case STV0900_SERIAL_CONT_CLOCK: default: stv0900_write_reg(intp, R0900_TSGENERAL, 0x0C); break; case STV0900_PARALLEL_PUNCT_CLOCK: case STV0900_DVBCI_CLOCK: stv0900_write_reg(intp, R0900_TSGENERAL, 0x0A); dprintk("%s: 0x0a\n", __func__); break; } break; } } else { switch (path1_ts) { case STV0900_PARALLEL_PUNCT_CLOCK: case STV0900_DVBCI_CLOCK: switch (path2_ts) { case STV0900_SERIAL_PUNCT_CLOCK: case STV0900_SERIAL_CONT_CLOCK: default: stv0900_write_reg(intp, R0900_TSGENERAL1X, 0x10); break; case STV0900_PARALLEL_PUNCT_CLOCK: case STV0900_DVBCI_CLOCK: stv0900_write_reg(intp, R0900_TSGENERAL1X, 0x16); stv0900_write_bits(intp, F0900_P1_TSFIFO_MANSPEED, 3); stv0900_write_bits(intp, F0900_P2_TSFIFO_MANSPEED, 0); stv0900_write_reg(intp, R0900_P1_TSSPEED, 0x14); stv0900_write_reg(intp, R0900_P2_TSSPEED, 0x28); break; } break; case STV0900_SERIAL_PUNCT_CLOCK: case STV0900_SERIAL_CONT_CLOCK: default: switch (path2_ts) { case STV0900_SERIAL_PUNCT_CLOCK: case STV0900_SERIAL_CONT_CLOCK: default: stv0900_write_reg(intp, R0900_TSGENERAL1X, 0x14); break; case STV0900_PARALLEL_PUNCT_CLOCK: case STV0900_DVBCI_CLOCK: stv0900_write_reg(intp, R0900_TSGENERAL1X, 0x12); dprintk("%s: 0x12\n", __func__); break; } break; } } switch (path1_ts) { case STV0900_PARALLEL_PUNCT_CLOCK: stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00); stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00); break; case STV0900_DVBCI_CLOCK: stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x00); stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01); break; case STV0900_SERIAL_PUNCT_CLOCK: stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01); stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x00); break; case STV0900_SERIAL_CONT_CLOCK: stv0900_write_bits(intp, F0900_P1_TSFIFO_SERIAL, 0x01); stv0900_write_bits(intp, F0900_P1_TSFIFO_DVBCI, 0x01); break; default: break; } switch (path2_ts) { case STV0900_PARALLEL_PUNCT_CLOCK: stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00); stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00); break; case STV0900_DVBCI_CLOCK: stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x00); stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01); break; case STV0900_SERIAL_PUNCT_CLOCK: stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01); stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x00); break; case STV0900_SERIAL_CONT_CLOCK: stv0900_write_bits(intp, F0900_P2_TSFIFO_SERIAL, 0x01); stv0900_write_bits(intp, F0900_P2_TSFIFO_DVBCI, 0x01); break; default: break; } stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1); stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0); stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1); stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0); } void stv0900_set_tuner(struct dvb_frontend *fe, u32 frequency, u32 bandwidth) { struct dvb_frontend_ops *frontend_ops = NULL; struct dvb_tuner_ops *tuner_ops = NULL; if (&fe->ops) frontend_ops = &fe->ops; if (&frontend_ops->tuner_ops) tuner_ops = &frontend_ops->tuner_ops; if (tuner_ops->set_frequency) { if ((tuner_ops->set_frequency(fe, frequency)) < 0) dprintk("%s: Invalid parameter\n", __func__); else dprintk("%s: Frequency=%d\n", __func__, frequency); } if (tuner_ops->set_bandwidth) { if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0) dprintk("%s: Invalid parameter\n", __func__); else dprintk("%s: Bandwidth=%d\n", __func__, bandwidth); } } void stv0900_set_bandwidth(struct dvb_frontend *fe, u32 bandwidth) { struct dvb_frontend_ops *frontend_ops = NULL; struct dvb_tuner_ops *tuner_ops = NULL; if (&fe->ops) frontend_ops = &fe->ops; if (&frontend_ops->tuner_ops) tuner_ops = &frontend_ops->tuner_ops; if (tuner_ops->set_bandwidth) { if ((tuner_ops->set_bandwidth(fe, bandwidth)) < 0) dprintk("%s: Invalid parameter\n", __func__); else dprintk("%s: Bandwidth=%d\n", __func__, bandwidth); } } u32 stv0900_get_freq_auto(struct stv0900_internal *intp, int demod) { u32 freq, round; /* Formulat : Tuner_Frequency(MHz) = Regs / 64 Tuner_granularity(MHz) = Regs / 2048 real_Tuner_Frequency = Tuner_Frequency(MHz) - Tuner_granularity(MHz) */ freq = (stv0900_get_bits(intp, TUN_RFFREQ2) << 10) + (stv0900_get_bits(intp, TUN_RFFREQ1) << 2) + stv0900_get_bits(intp, TUN_RFFREQ0); freq = (freq * 1000) / 64; round = (stv0900_get_bits(intp, TUN_RFRESTE1) >> 2) + stv0900_get_bits(intp, TUN_RFRESTE0); round = (round * 1000) / 2048; return freq + round; } void stv0900_set_tuner_auto(struct stv0900_internal *intp, u32 Frequency, u32 Bandwidth, int demod) { u32 tunerFrequency; /* Formulat: Tuner_frequency_reg= Frequency(MHz)*64 */ tunerFrequency = (Frequency * 64) / 1000; stv0900_write_bits(intp, TUN_RFFREQ2, (tunerFrequency >> 10)); stv0900_write_bits(intp, TUN_RFFREQ1, (tunerFrequency >> 2) & 0xff); stv0900_write_bits(intp, TUN_RFFREQ0, (tunerFrequency & 0x03)); /* Low Pass Filter = BW /2 (MHz)*/ stv0900_write_bits(intp, TUN_BW, Bandwidth / 2000000); /* Tuner Write trig */ stv0900_write_reg(intp, TNRLD, 1); } static s32 stv0900_get_rf_level(struct stv0900_internal *intp, const struct stv0900_table *lookup, enum fe_stv0900_demod_num demod) { s32 agc_gain = 0, imin, imax, i, rf_lvl = 0; dprintk("%s\n", __func__); if ((lookup == NULL) || (lookup->size <= 0)) return 0; agc_gain = MAKEWORD(stv0900_get_bits(intp, AGCIQ_VALUE1), stv0900_get_bits(intp, AGCIQ_VALUE0)); imin = 0; imax = lookup->size - 1; if (INRANGE(lookup->table[imin].regval, agc_gain, lookup->table[imax].regval)) { while ((imax - imin) > 1) { i = (imax + imin) >> 1; if (INRANGE(lookup->table[imin].regval, agc_gain, lookup->table[i].regval)) imax = i; else imin = i; } rf_lvl = (s32)agc_gain - lookup->table[imin].regval; rf_lvl *= (lookup->table[imax].realval - lookup->table[imin].realval); rf_lvl /= (lookup->table[imax].regval - lookup->table[imin].regval); rf_lvl += lookup->table[imin].realval; } else if (agc_gain > lookup->table[0].regval) rf_lvl = 5; else if (agc_gain < lookup->table[lookup->size-1].regval) rf_lvl = -100; dprintk("%s: RFLevel = %d\n", __func__, rf_lvl); return rf_lvl; } static int stv0900_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *internal = state->internal; s32 rflevel = stv0900_get_rf_level(internal, &stv0900_rf, state->demod); rflevel = (rflevel + 100) * (65535 / 70); if (rflevel < 0) rflevel = 0; if (rflevel > 65535) rflevel = 65535; *strength = rflevel; return 0; } static s32 stv0900_carr_get_quality(struct dvb_frontend *fe, const struct stv0900_table *lookup) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *intp = state->internal; enum fe_stv0900_demod_num demod = state->demod; s32 c_n = -100, regval, imin, imax, i, noise_field1, noise_field0; dprintk("%s\n", __func__); if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) { noise_field1 = NOSPLHT_NORMED1; noise_field0 = NOSPLHT_NORMED0; } else { noise_field1 = NOSDATAT_NORMED1; noise_field0 = NOSDATAT_NORMED0; } if (stv0900_get_bits(intp, LOCK_DEFINITIF)) { if ((lookup != NULL) && lookup->size) { regval = 0; msleep(5); for (i = 0; i < 16; i++) { regval += MAKEWORD(stv0900_get_bits(intp, noise_field1), stv0900_get_bits(intp, noise_field0)); msleep(1); } regval /= 16; imin = 0; imax = lookup->size - 1; if (INRANGE(lookup->table[imin].regval, regval, lookup->table[imax].regval)) { while ((imax - imin) > 1) { i = (imax + imin) >> 1; if (INRANGE(lookup->table[imin].regval, regval, lookup->table[i].regval)) imax = i; else imin = i; } c_n = ((regval - lookup->table[imin].regval) * (lookup->table[imax].realval - lookup->table[imin].realval) / (lookup->table[imax].regval - lookup->table[imin].regval)) + lookup->table[imin].realval; } else if (regval < lookup->table[imin].regval) c_n = 1000; } } return c_n; } static int stv0900_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *intp = state->internal; enum fe_stv0900_demod_num demod = state->demod; u8 err_val1, err_val0; u32 header_err_val = 0; *ucblocks = 0x0; if (stv0900_get_standard(fe, demod) == STV0900_DVBS2_STANDARD) { /* DVB-S2 delineator errors count */ /* retreiving number for errnous headers */ err_val1 = stv0900_read_reg(intp, BBFCRCKO1); err_val0 = stv0900_read_reg(intp, BBFCRCKO0); header_err_val = (err_val1 << 8) | err_val0; /* retreiving number for errnous packets */ err_val1 = stv0900_read_reg(intp, UPCRCKO1); err_val0 = stv0900_read_reg(intp, UPCRCKO0); *ucblocks = (err_val1 << 8) | err_val0; *ucblocks += header_err_val; } return 0; } static int stv0900_read_snr(struct dvb_frontend *fe, u16 *snr) { s32 snrlcl = stv0900_carr_get_quality(fe, (const struct stv0900_table *)&stv0900_s2_cn); snrlcl = (snrlcl + 30) * 384; if (snrlcl < 0) snrlcl = 0; if (snrlcl > 65535) snrlcl = 65535; *snr = snrlcl; return 0; } static u32 stv0900_get_ber(struct stv0900_internal *intp, enum fe_stv0900_demod_num demod) { u32 ber = 10000000, i; s32 demod_state; demod_state = stv0900_get_bits(intp, HEADER_MODE); switch (demod_state) { case STV0900_SEARCH: case STV0900_PLH_DETECTED: default: ber = 10000000; break; case STV0900_DVBS_FOUND: ber = 0; for (i = 0; i < 5; i++) { msleep(5); ber += stv0900_get_err_count(intp, 0, demod); } ber /= 5; if (stv0900_get_bits(intp, PRFVIT)) { ber *= 9766; ber = ber >> 13; } break; case STV0900_DVBS2_FOUND: ber = 0; for (i = 0; i < 5; i++) { msleep(5); ber += stv0900_get_err_count(intp, 0, demod); } ber /= 5; if (stv0900_get_bits(intp, PKTDELIN_LOCK)) { ber *= 9766; ber = ber >> 13; } break; } return ber; } static int stv0900_read_ber(struct dvb_frontend *fe, u32 *ber) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *internal = state->internal; *ber = stv0900_get_ber(internal, state->demod); return 0; } int stv0900_get_demod_lock(struct stv0900_internal *intp, enum fe_stv0900_demod_num demod, s32 time_out) { s32 timer = 0, lock = 0; enum fe_stv0900_search_state dmd_state; while ((timer < time_out) && (lock == 0)) { dmd_state = stv0900_get_bits(intp, HEADER_MODE); dprintk("Demod State = %d\n", dmd_state); switch (dmd_state) { case STV0900_SEARCH: case STV0900_PLH_DETECTED: default: lock = 0; break; case STV0900_DVBS2_FOUND: case STV0900_DVBS_FOUND: lock = stv0900_get_bits(intp, LOCK_DEFINITIF); break; } if (lock == 0) msleep(10); timer += 10; } if (lock) dprintk("DEMOD LOCK OK\n"); else dprintk("DEMOD LOCK FAIL\n"); return lock; } void stv0900_stop_all_s2_modcod(struct stv0900_internal *intp, enum fe_stv0900_demod_num demod) { s32 regflist, i; dprintk("%s\n", __func__); regflist = MODCODLST0; for (i = 0; i < 16; i++) stv0900_write_reg(intp, regflist + i, 0xff); } void stv0900_activate_s2_modcod(struct stv0900_internal *intp, enum fe_stv0900_demod_num demod) { u32 matype, mod_code, fmod, reg_index, field_index; dprintk("%s\n", __func__); if (intp->chip_id <= 0x11) { msleep(5); mod_code = stv0900_read_reg(intp, PLHMODCOD); matype = mod_code & 0x3; mod_code = (mod_code & 0x7f) >> 2; reg_index = MODCODLSTF - mod_code / 2; field_index = mod_code % 2; switch (matype) { case 0: default: fmod = 14; break; case 1: fmod = 13; break; case 2: fmod = 11; break; case 3: fmod = 7; break; } if ((INRANGE(STV0900_QPSK_12, mod_code, STV0900_8PSK_910)) && (matype <= 1)) { if (field_index == 0) stv0900_write_reg(intp, reg_index, 0xf0 | fmod); else stv0900_write_reg(intp, reg_index, (fmod << 4) | 0xf); } } else if (intp->chip_id >= 0x12) { for (reg_index = 0; reg_index < 7; reg_index++) stv0900_write_reg(intp, MODCODLST0 + reg_index, 0xff); stv0900_write_reg(intp, MODCODLSTE, 0xff); stv0900_write_reg(intp, MODCODLSTF, 0xcf); for (reg_index = 0; reg_index < 8; reg_index++) stv0900_write_reg(intp, MODCODLST7 + reg_index, 0xcc); } } void stv0900_activate_s2_modcod_single(struct stv0900_internal *intp, enum fe_stv0900_demod_num demod) { u32 reg_index; dprintk("%s\n", __func__); stv0900_write_reg(intp, MODCODLST0, 0xff); stv0900_write_reg(intp, MODCODLST1, 0xf0); stv0900_write_reg(intp, MODCODLSTF, 0x0f); for (reg_index = 0; reg_index < 13; reg_index++) stv0900_write_reg(intp, MODCODLST2 + reg_index, 0); } static enum dvbfe_algo stv0900_frontend_algo(struct dvb_frontend *fe) { return DVBFE_ALGO_CUSTOM; } static int stb0900_set_property(struct dvb_frontend *fe, struct dtv_property *tvp) { dprintk("%s(..)\n", __func__); return 0; } static int stb0900_get_property(struct dvb_frontend *fe, struct dtv_property *tvp) { dprintk("%s(..)\n", __func__); return 0; } void stv0900_start_search(struct stv0900_internal *intp, enum fe_stv0900_demod_num demod) { u32 freq; s16 freq_s16 ; stv0900_write_bits(intp, DEMOD_MODE, 0x1f); if (intp->chip_id == 0x10) stv0900_write_reg(intp, CORRELEXP, 0xaa); if (intp->chip_id < 0x20) stv0900_write_reg(intp, CARHDR, 0x55); if (intp->chip_id <= 0x20) { if (intp->symbol_rate[0] <= 5000000) { stv0900_write_reg(intp, CARCFG, 0x44); stv0900_write_reg(intp, CFRUP1, 0x0f); stv0900_write_reg(intp, CFRUP0, 0xff); stv0900_write_reg(intp, CFRLOW1, 0xf0); stv0900_write_reg(intp, CFRLOW0, 0x00); stv0900_write_reg(intp, RTCS2, 0x68); } else { stv0900_write_reg(intp, CARCFG, 0xc4); stv0900_write_reg(intp, RTCS2, 0x44); } } else { /*cut 3.0 above*/ if (intp->symbol_rate[demod] <= 5000000) stv0900_write_reg(intp, RTCS2, 0x68); else stv0900_write_reg(intp, RTCS2, 0x44); stv0900_write_reg(intp, CARCFG, 0x46); if (intp->srch_algo[demod] == STV0900_WARM_START) { freq = 1000 << 16; freq /= (intp->mclk / 1000); freq_s16 = (s16)freq; } else { freq = (intp->srch_range[demod] / 2000); if (intp->symbol_rate[demod] <= 5000000) freq += 80; else freq += 600; freq = freq << 16; freq /= (intp->mclk / 1000); freq_s16 = (s16)freq; } stv0900_write_bits(intp, CFR_UP1, MSB(freq_s16)); stv0900_write_bits(intp, CFR_UP0, LSB(freq_s16)); freq_s16 *= (-1); stv0900_write_bits(intp, CFR_LOW1, MSB(freq_s16)); stv0900_write_bits(intp, CFR_LOW0, LSB(freq_s16)); } stv0900_write_reg(intp, CFRINIT1, 0); stv0900_write_reg(intp, CFRINIT0, 0); if (intp->chip_id >= 0x20) { stv0900_write_reg(intp, EQUALCFG, 0x41); stv0900_write_reg(intp, FFECFG, 0x41); if ((intp->srch_standard[demod] == STV0900_SEARCH_DVBS1) || (intp->srch_standard[demod] == STV0900_SEARCH_DSS) || (intp->srch_standard[demod] == STV0900_AUTO_SEARCH)) { stv0900_write_reg(intp, VITSCALE, 0x82); stv0900_write_reg(intp, VAVSRVIT, 0x0); } } stv0900_write_reg(intp, SFRSTEP, 0x00); stv0900_write_reg(intp, TMGTHRISE, 0xe0); stv0900_write_reg(intp, TMGTHFALL, 0xc0); stv0900_write_bits(intp, SCAN_ENABLE, 0); stv0900_write_bits(intp, CFR_AUTOSCAN, 0); stv0900_write_bits(intp, S1S2_SEQUENTIAL, 0); stv0900_write_reg(intp, RTC, 0x88); if (intp->chip_id >= 0x20) { if (intp->symbol_rate[demod] < 2000000) { if (intp->chip_id <= 0x20) stv0900_write_reg(intp, CARFREQ, 0x39); else /*cut 3.0*/ stv0900_write_reg(intp, CARFREQ, 0x89); stv0900_write_reg(intp, CARHDR, 0x40); } else if (intp->symbol_rate[demod] < 10000000) { stv0900_write_reg(intp, CARFREQ, 0x4c); stv0900_write_reg(intp, CARHDR, 0x20); } else { stv0900_write_reg(intp, CARFREQ, 0x4b); stv0900_write_reg(intp, CARHDR, 0x20); } } else { if (intp->symbol_rate[demod] < 10000000) stv0900_write_reg(intp, CARFREQ, 0xef); else stv0900_write_reg(intp, CARFREQ, 0xed); } switch (intp->srch_algo[demod]) { case STV0900_WARM_START: stv0900_write_reg(intp, DMDISTATE, 0x1f); stv0900_write_reg(intp, DMDISTATE, 0x18); break; case STV0900_COLD_START: stv0900_write_reg(intp, DMDISTATE, 0x1f); stv0900_write_reg(intp, DMDISTATE, 0x15); break; default: break; } } u8 stv0900_get_optim_carr_loop(s32 srate, enum fe_stv0900_modcode modcode, s32 pilot, u8 chip_id) { u8 aclc_value = 0x29; s32 i; const struct stv0900_car_loop_optim *cls2, *cllqs2, *cllas2; dprintk("%s\n", __func__); if (chip_id <= 0x12) { cls2 = FE_STV0900_S2CarLoop; cllqs2 = FE_STV0900_S2LowQPCarLoopCut30; cllas2 = FE_STV0900_S2APSKCarLoopCut30; } else if (chip_id == 0x20) { cls2 = FE_STV0900_S2CarLoopCut20; cllqs2 = FE_STV0900_S2LowQPCarLoopCut20; cllas2 = FE_STV0900_S2APSKCarLoopCut20; } else { cls2 = FE_STV0900_S2CarLoopCut30; cllqs2 = FE_STV0900_S2LowQPCarLoopCut30; cllas2 = FE_STV0900_S2APSKCarLoopCut30; } if (modcode < STV0900_QPSK_12) { i = 0; while ((i < 3) && (modcode != cllqs2[i].modcode)) i++; if (i >= 3) i = 2; } else { i = 0; while ((i < 14) && (modcode != cls2[i].modcode)) i++; if (i >= 14) { i = 0; while ((i < 11) && (modcode != cllas2[i].modcode)) i++; if (i >= 11) i = 10; } } if (modcode <= STV0900_QPSK_25) { if (pilot) { if (srate <= 3000000) aclc_value = cllqs2[i].car_loop_pilots_on_2; else if (srate <= 7000000) aclc_value = cllqs2[i].car_loop_pilots_on_5; else if (srate <= 15000000) aclc_value = cllqs2[i].car_loop_pilots_on_10; else if (srate <= 25000000) aclc_value = cllqs2[i].car_loop_pilots_on_20; else aclc_value = cllqs2[i].car_loop_pilots_on_30; } else { if (srate <= 3000000) aclc_value = cllqs2[i].car_loop_pilots_off_2; else if (srate <= 7000000) aclc_value = cllqs2[i].car_loop_pilots_off_5; else if (srate <= 15000000) aclc_value = cllqs2[i].car_loop_pilots_off_10; else if (srate <= 25000000) aclc_value = cllqs2[i].car_loop_pilots_off_20; else aclc_value = cllqs2[i].car_loop_pilots_off_30; } } else if (modcode <= STV0900_8PSK_910) { if (pilot) { if (srate <= 3000000) aclc_value = cls2[i].car_loop_pilots_on_2; else if (srate <= 7000000) aclc_value = cls2[i].car_loop_pilots_on_5; else if (srate <= 15000000) aclc_value = cls2[i].car_loop_pilots_on_10; else if (srate <= 25000000) aclc_value = cls2[i].car_loop_pilots_on_20; else aclc_value = cls2[i].car_loop_pilots_on_30; } else { if (srate <= 3000000) aclc_value = cls2[i].car_loop_pilots_off_2; else if (srate <= 7000000) aclc_value = cls2[i].car_loop_pilots_off_5; else if (srate <= 15000000) aclc_value = cls2[i].car_loop_pilots_off_10; else if (srate <= 25000000) aclc_value = cls2[i].car_loop_pilots_off_20; else aclc_value = cls2[i].car_loop_pilots_off_30; } } else { if (srate <= 3000000) aclc_value = cllas2[i].car_loop_pilots_on_2; else if (srate <= 7000000) aclc_value = cllas2[i].car_loop_pilots_on_5; else if (srate <= 15000000) aclc_value = cllas2[i].car_loop_pilots_on_10; else if (srate <= 25000000) aclc_value = cllas2[i].car_loop_pilots_on_20; else aclc_value = cllas2[i].car_loop_pilots_on_30; } return aclc_value; } u8 stv0900_get_optim_short_carr_loop(s32 srate, enum fe_stv0900_modulation modulation, u8 chip_id) { const struct stv0900_short_frames_car_loop_optim *s2scl; const struct stv0900_short_frames_car_loop_optim_vs_mod *s2sclc30; s32 mod_index = 0; u8 aclc_value = 0x0b; dprintk("%s\n", __func__); s2scl = FE_STV0900_S2ShortCarLoop; s2sclc30 = FE_STV0900_S2ShortCarLoopCut30; switch (modulation) { case STV0900_QPSK: default: mod_index = 0; break; case STV0900_8PSK: mod_index = 1; break; case STV0900_16APSK: mod_index = 2; break; case STV0900_32APSK: mod_index = 3; break; } if (chip_id >= 0x30) { if (srate <= 3000000) aclc_value = s2sclc30[mod_index].car_loop_2; else if (srate <= 7000000) aclc_value = s2sclc30[mod_index].car_loop_5; else if (srate <= 15000000) aclc_value = s2sclc30[mod_index].car_loop_10; else if (srate <= 25000000) aclc_value = s2sclc30[mod_index].car_loop_20; else aclc_value = s2sclc30[mod_index].car_loop_30; } else if (chip_id >= 0x20) { if (srate <= 3000000) aclc_value = s2scl[mod_index].car_loop_cut20_2; else if (srate <= 7000000) aclc_value = s2scl[mod_index].car_loop_cut20_5; else if (srate <= 15000000) aclc_value = s2scl[mod_index].car_loop_cut20_10; else if (srate <= 25000000) aclc_value = s2scl[mod_index].car_loop_cut20_20; else aclc_value = s2scl[mod_index].car_loop_cut20_30; } else { if (srate <= 3000000) aclc_value = s2scl[mod_index].car_loop_cut12_2; else if (srate <= 7000000) aclc_value = s2scl[mod_index].car_loop_cut12_5; else if (srate <= 15000000) aclc_value = s2scl[mod_index].car_loop_cut12_10; else if (srate <= 25000000) aclc_value = s2scl[mod_index].car_loop_cut12_20; else aclc_value = s2scl[mod_index].car_loop_cut12_30; } return aclc_value; } static enum fe_stv0900_error stv0900_st_dvbs2_single(struct stv0900_internal *intp, enum fe_stv0900_demod_mode LDPC_Mode, enum fe_stv0900_demod_num demod) { enum fe_stv0900_error error = STV0900_NO_ERROR; s32 reg_ind; dprintk("%s\n", __func__); switch (LDPC_Mode) { case STV0900_DUAL: default: if ((intp->demod_mode != STV0900_DUAL) || (stv0900_get_bits(intp, F0900_DDEMOD) != 1)) { stv0900_write_reg(intp, R0900_GENCFG, 0x1d); intp->demod_mode = STV0900_DUAL; stv0900_write_bits(intp, F0900_FRESFEC, 1); stv0900_write_bits(intp, F0900_FRESFEC, 0); for (reg_ind = 0; reg_ind < 7; reg_ind++) stv0900_write_reg(intp, R0900_P1_MODCODLST0 + reg_ind, 0xff); for (reg_ind = 0; reg_ind < 8; reg_ind++) stv0900_write_reg(intp, R0900_P1_MODCODLST7 + reg_ind, 0xcc); stv0900_write_reg(intp, R0900_P1_MODCODLSTE, 0xff); stv0900_write_reg(intp, R0900_P1_MODCODLSTF, 0xcf); for (reg_ind = 0; reg_ind < 7; reg_ind++) stv0900_write_reg(intp, R0900_P2_MODCODLST0 + reg_ind, 0xff); for (reg_ind = 0; reg_ind < 8; reg_ind++) stv0900_write_reg(intp, R0900_P2_MODCODLST7 + reg_ind, 0xcc); stv0900_write_reg(intp, R0900_P2_MODCODLSTE, 0xff); stv0900_write_reg(intp, R0900_P2_MODCODLSTF, 0xcf); } break; case STV0900_SINGLE: if (demod == STV0900_DEMOD_2) { stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_1); stv0900_activate_s2_modcod_single(intp, STV0900_DEMOD_2); stv0900_write_reg(intp, R0900_GENCFG, 0x06); } else { stv0900_stop_all_s2_modcod(intp, STV0900_DEMOD_2); stv0900_activate_s2_modcod_single(intp, STV0900_DEMOD_1); stv0900_write_reg(intp, R0900_GENCFG, 0x04); } intp->demod_mode = STV0900_SINGLE; stv0900_write_bits(intp, F0900_FRESFEC, 1); stv0900_write_bits(intp, F0900_FRESFEC, 0); stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 1); stv0900_write_bits(intp, F0900_P1_ALGOSWRST, 0); stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 1); stv0900_write_bits(intp, F0900_P2_ALGOSWRST, 0); break; } return error; } static enum fe_stv0900_error stv0900_init_internal(struct dvb_frontend *fe, struct stv0900_init_params *p_init) { struct stv0900_state *state = fe->demodulator_priv; enum fe_stv0900_error error = STV0900_NO_ERROR; enum fe_stv0900_error demodError = STV0900_NO_ERROR; struct stv0900_internal *intp = NULL; int selosci, i; struct stv0900_inode *temp_int = find_inode(state->i2c_adap, state->config->demod_address); dprintk("%s\n", __func__); if ((temp_int != NULL) && (p_init->demod_mode == STV0900_DUAL)) { state->internal = temp_int->internal; (state->internal->dmds_used)++; dprintk("%s: Find Internal Structure!\n", __func__); return STV0900_NO_ERROR; } else { state->internal = kmalloc(sizeof(struct stv0900_internal), GFP_KERNEL); if (state->internal == NULL) return STV0900_INVALID_HANDLE; temp_int = append_internal(state->internal); if (temp_int == NULL) { kfree(state->internal); state->internal = NULL; return STV0900_INVALID_HANDLE; } state->internal->dmds_used = 1; state->internal->i2c_adap = state->i2c_adap; state->internal->i2c_addr = state->config->demod_address; state->internal->clkmode = state->config->clkmode; state->internal->errs = STV0900_NO_ERROR; dprintk("%s: Create New Internal Structure!\n", __func__); } if (state->internal == NULL) { error = STV0900_INVALID_HANDLE; return error; } demodError = stv0900_initialize(state->internal); if (demodError == STV0900_NO_ERROR) { error = STV0900_NO_ERROR; } else { if (demodError == STV0900_INVALID_HANDLE) error = STV0900_INVALID_HANDLE; else error = STV0900_I2C_ERROR; return error; } intp = state->internal; intp->demod_mode = p_init->demod_mode; stv0900_st_dvbs2_single(intp, intp->demod_mode, STV0900_DEMOD_1); intp->chip_id = stv0900_read_reg(intp, R0900_MID); intp->rolloff = p_init->rolloff; intp->quartz = p_init->dmd_ref_clk; stv0900_write_bits(intp, F0900_P1_ROLLOFF_CONTROL, p_init->rolloff); stv0900_write_bits(intp, F0900_P2_ROLLOFF_CONTROL, p_init->rolloff); intp->ts_config = p_init->ts_config; if (intp->ts_config == NULL) stv0900_set_ts_parallel_serial(intp, p_init->path1_ts_clock, p_init->path2_ts_clock); else { for (i = 0; intp->ts_config[i].addr != 0xffff; i++) stv0900_write_reg(intp, intp->ts_config[i].addr, intp->ts_config[i].val); stv0900_write_bits(intp, F0900_P2_RST_HWARE, 1); stv0900_write_bits(intp, F0900_P2_RST_HWARE, 0); stv0900_write_bits(intp, F0900_P1_RST_HWARE, 1); stv0900_write_bits(intp, F0900_P1_RST_HWARE, 0); } intp->tuner_type[0] = p_init->tuner1_type; intp->tuner_type[1] = p_init->tuner2_type; /* tuner init */ switch (p_init->tuner1_type) { case 3: /*FE_AUTO_STB6100:*/ stv0900_write_reg(intp, R0900_P1_TNRCFG, 0x3c); stv0900_write_reg(intp, R0900_P1_TNRCFG2, 0x86); stv0900_write_reg(intp, R0900_P1_TNRCFG3, 0x18); stv0900_write_reg(intp, R0900_P1_TNRXTAL, 27); /* 27MHz */ stv0900_write_reg(intp, R0900_P1_TNRSTEPS, 0x05); stv0900_write_reg(intp, R0900_P1_TNRGAIN, 0x17); stv0900_write_reg(intp, R0900_P1_TNRADJ, 0x1f); stv0900_write_reg(intp, R0900_P1_TNRCTL2, 0x0); stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 3); break; /* case FE_SW_TUNER: */ default: stv0900_write_bits(intp, F0900_P1_TUN_TYPE, 6); break; } stv0900_write_bits(intp, F0900_P1_TUN_MADDRESS, p_init->tun1_maddress); switch (p_init->tuner1_adc) { case 1: stv0900_write_reg(intp, R0900_TSTTNR1, 0x26); break; default: break; } stv0900_write_reg(intp, R0900_P1_TNRLD, 1); /* hw tuner */ /* tuner init */ switch (p_init->tuner2_type) { case 3: /*FE_AUTO_STB6100:*/ stv0900_write_reg(intp, R0900_P2_TNRCFG, 0x3c); stv0900_write_reg(intp, R0900_P2_TNRCFG2, 0x86); stv0900_write_reg(intp, R0900_P2_TNRCFG3, 0x18); stv0900_write_reg(intp, R0900_P2_TNRXTAL, 27); /* 27MHz */ stv0900_write_reg(intp, R0900_P2_TNRSTEPS, 0x05); stv0900_write_reg(intp, R0900_P2_TNRGAIN, 0x17); stv0900_write_reg(intp, R0900_P2_TNRADJ, 0x1f); stv0900_write_reg(intp, R0900_P2_TNRCTL2, 0x0); stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 3); break; /* case FE_SW_TUNER: */ default: stv0900_write_bits(intp, F0900_P2_TUN_TYPE, 6); break; } stv0900_write_bits(intp, F0900_P2_TUN_MADDRESS, p_init->tun2_maddress); switch (p_init->tuner2_adc) { case 1: stv0900_write_reg(intp, R0900_TSTTNR3, 0x26); break; default: break; } stv0900_write_reg(intp, R0900_P2_TNRLD, 1); /* hw tuner */ stv0900_write_bits(intp, F0900_P1_TUN_IQSWAP, p_init->tun1_iq_inv); stv0900_write_bits(intp, F0900_P2_TUN_IQSWAP, p_init->tun2_iq_inv); stv0900_set_mclk(intp, 135000000); msleep(3); switch (intp->clkmode) { case 0: case 2: stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | intp->clkmode); break; default: selosci = 0x02 & stv0900_read_reg(intp, R0900_SYNTCTRL); stv0900_write_reg(intp, R0900_SYNTCTRL, 0x20 | selosci); break; } msleep(3); intp->mclk = stv0900_get_mclk_freq(intp, intp->quartz); if (intp->errs) error = STV0900_I2C_ERROR; return error; } static int stv0900_status(struct stv0900_internal *intp, enum fe_stv0900_demod_num demod) { enum fe_stv0900_search_state demod_state; int locked = FALSE; u8 tsbitrate0_val, tsbitrate1_val; s32 bitrate; demod_state = stv0900_get_bits(intp, HEADER_MODE); switch (demod_state) { case STV0900_SEARCH: case STV0900_PLH_DETECTED: default: locked = FALSE; break; case STV0900_DVBS2_FOUND: locked = stv0900_get_bits(intp, LOCK_DEFINITIF) && stv0900_get_bits(intp, PKTDELIN_LOCK) && stv0900_get_bits(intp, TSFIFO_LINEOK); break; case STV0900_DVBS_FOUND: locked = stv0900_get_bits(intp, LOCK_DEFINITIF) && stv0900_get_bits(intp, LOCKEDVIT) && stv0900_get_bits(intp, TSFIFO_LINEOK); break; } dprintk("%s: locked = %d\n", __func__, locked); if (stvdebug) { /* Print TS bitrate */ tsbitrate0_val = stv0900_read_reg(intp, TSBITRATE0); tsbitrate1_val = stv0900_read_reg(intp, TSBITRATE1); /* Formula Bit rate = Mclk * px_tsfifo_bitrate / 16384 */ bitrate = (stv0900_get_mclk_freq(intp, intp->quartz)/1000000) * (tsbitrate1_val << 8 | tsbitrate0_val); bitrate /= 16384; dprintk("TS bitrate = %d Mbit/sec \n", bitrate); }; return locked; } static enum dvbfe_search stv0900_search(struct dvb_frontend *fe, struct dvb_frontend_parameters *params) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *intp = state->internal; enum fe_stv0900_demod_num demod = state->demod; struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct stv0900_search_params p_search; struct stv0900_signal_info p_result = intp->result[demod]; enum fe_stv0900_error error = STV0900_NO_ERROR; dprintk("%s: ", __func__); if (!(INRANGE(100000, c->symbol_rate, 70000000))) return DVBFE_ALGO_SEARCH_FAILED; if (state->config->set_ts_params) state->config->set_ts_params(fe, 0); p_result.locked = FALSE; p_search.path = demod; p_search.frequency = c->frequency; p_search.symbol_rate = c->symbol_rate; p_search.search_range = 10000000; p_search.fec = STV0900_FEC_UNKNOWN; p_search.standard = STV0900_AUTO_SEARCH; p_search.iq_inversion = STV0900_IQ_AUTO; p_search.search_algo = STV0900_BLIND_SEARCH; /* Speeds up DVB-S searching */ if (c->delivery_system == SYS_DVBS) p_search.standard = STV0900_SEARCH_DVBS1; intp->srch_standard[demod] = p_search.standard; intp->symbol_rate[demod] = p_search.symbol_rate; intp->srch_range[demod] = p_search.search_range; intp->freq[demod] = p_search.frequency; intp->srch_algo[demod] = p_search.search_algo; intp->srch_iq_inv[demod] = p_search.iq_inversion; intp->fec[demod] = p_search.fec; if ((stv0900_algo(fe) == STV0900_RANGEOK) && (intp->errs == STV0900_NO_ERROR)) { p_result.locked = intp->result[demod].locked; p_result.standard = intp->result[demod].standard; p_result.frequency = intp->result[demod].frequency; p_result.symbol_rate = intp->result[demod].symbol_rate; p_result.fec = intp->result[demod].fec; p_result.modcode = intp->result[demod].modcode; p_result.pilot = intp->result[demod].pilot; p_result.frame_len = intp->result[demod].frame_len; p_result.spectrum = intp->result[demod].spectrum; p_result.rolloff = intp->result[demod].rolloff; p_result.modulation = intp->result[demod].modulation; } else { p_result.locked = FALSE; switch (intp->err[demod]) { case STV0900_I2C_ERROR: error = STV0900_I2C_ERROR; break; case STV0900_NO_ERROR: default: error = STV0900_SEARCH_FAILED; break; } } if ((p_result.locked == TRUE) && (error == STV0900_NO_ERROR)) { dprintk("Search Success\n"); return DVBFE_ALGO_SEARCH_SUCCESS; } else { dprintk("Search Fail\n"); return DVBFE_ALGO_SEARCH_FAILED; } } static int stv0900_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct stv0900_state *state = fe->demodulator_priv; dprintk("%s: ", __func__); if ((stv0900_status(state->internal, state->demod)) == TRUE) { dprintk("DEMOD LOCK OK\n"); *status = FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; if (state->config->set_lock_led) state->config->set_lock_led(fe, 1); } else { *status = 0; if (state->config->set_lock_led) state->config->set_lock_led(fe, 0); dprintk("DEMOD LOCK FAIL\n"); } return 0; } static int stv0900_track(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { return 0; } static int stv0900_stop_ts(struct dvb_frontend *fe, int stop_ts) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *intp = state->internal; enum fe_stv0900_demod_num demod = state->demod; if (stop_ts == TRUE) stv0900_write_bits(intp, RST_HWARE, 1); else stv0900_write_bits(intp, RST_HWARE, 0); return 0; } static int stv0900_diseqc_init(struct dvb_frontend *fe) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *intp = state->internal; enum fe_stv0900_demod_num demod = state->demod; stv0900_write_bits(intp, DISTX_MODE, state->config->diseqc_mode); stv0900_write_bits(intp, DISEQC_RESET, 1); stv0900_write_bits(intp, DISEQC_RESET, 0); return 0; } static int stv0900_init(struct dvb_frontend *fe) { dprintk("%s\n", __func__); stv0900_stop_ts(fe, 1); stv0900_diseqc_init(fe); return 0; } static int stv0900_diseqc_send(struct stv0900_internal *intp , u8 *data, u32 NbData, enum fe_stv0900_demod_num demod) { s32 i = 0; stv0900_write_bits(intp, DIS_PRECHARGE, 1); while (i < NbData) { while (stv0900_get_bits(intp, FIFO_FULL)) ;/* checkpatch complains */ stv0900_write_reg(intp, DISTXDATA, data[i]); i++; } stv0900_write_bits(intp, DIS_PRECHARGE, 0); i = 0; while ((stv0900_get_bits(intp, TX_IDLE) != 1) && (i < 10)) { msleep(10); i++; } return 0; } static int stv0900_send_master_cmd(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *cmd) { struct stv0900_state *state = fe->demodulator_priv; return stv0900_diseqc_send(state->internal, cmd->msg, cmd->msg_len, state->demod); } static int stv0900_send_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *intp = state->internal; enum fe_stv0900_demod_num demod = state->demod; u8 data; switch (burst) { case SEC_MINI_A: stv0900_write_bits(intp, DISTX_MODE, 3);/* Unmodulated */ data = 0x00; stv0900_diseqc_send(intp, &data, 1, state->demod); break; case SEC_MINI_B: stv0900_write_bits(intp, DISTX_MODE, 2);/* Modulated */ data = 0xff; stv0900_diseqc_send(intp, &data, 1, state->demod); break; } return 0; } static int stv0900_recv_slave_reply(struct dvb_frontend *fe, struct dvb_diseqc_slave_reply *reply) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *intp = state->internal; enum fe_stv0900_demod_num demod = state->demod; s32 i = 0; reply->msg_len = 0; while ((stv0900_get_bits(intp, RX_END) != 1) && (i < 10)) { msleep(10); i++; } if (stv0900_get_bits(intp, RX_END)) { reply->msg_len = stv0900_get_bits(intp, FIFO_BYTENBR); for (i = 0; i < reply->msg_len; i++) reply->msg[i] = stv0900_read_reg(intp, DISRXDATA); } return 0; } static int stv0900_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t toneoff) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *intp = state->internal; enum fe_stv0900_demod_num demod = state->demod; dprintk("%s: %s\n", __func__, ((toneoff == 0) ? "On" : "Off")); switch (toneoff) { case SEC_TONE_ON: /*Set the DiseqC mode to 22Khz _continues_ tone*/ stv0900_write_bits(intp, DISTX_MODE, 0); stv0900_write_bits(intp, DISEQC_RESET, 1); /*release DiseqC reset to enable the 22KHz tone*/ stv0900_write_bits(intp, DISEQC_RESET, 0); break; case SEC_TONE_OFF: /*return diseqc mode to config->diseqc_mode. Usually it's without _continues_ tone */ stv0900_write_bits(intp, DISTX_MODE, state->config->diseqc_mode); /*maintain the DiseqC reset to disable the 22KHz tone*/ stv0900_write_bits(intp, DISEQC_RESET, 1); stv0900_write_bits(intp, DISEQC_RESET, 0); break; default: return -EINVAL; } return 0; } static void stv0900_release(struct dvb_frontend *fe) { struct stv0900_state *state = fe->demodulator_priv; dprintk("%s\n", __func__); if (state->config->set_lock_led) state->config->set_lock_led(fe, 0); if ((--(state->internal->dmds_used)) <= 0) { dprintk("%s: Actually removing\n", __func__); remove_inode(state->internal); kfree(state->internal); } kfree(state); } static int stv0900_sleep(struct dvb_frontend *fe) { struct stv0900_state *state = fe->demodulator_priv; dprintk("%s\n", __func__); if (state->config->set_lock_led) state->config->set_lock_led(fe, 0); return 0; } static int stv0900_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct stv0900_state *state = fe->demodulator_priv; struct stv0900_internal *intp = state->internal; enum fe_stv0900_demod_num demod = state->demod; struct stv0900_signal_info p_result = intp->result[demod]; p->frequency = p_result.locked ? p_result.frequency : 0; p->u.qpsk.symbol_rate = p_result.locked ? p_result.symbol_rate : 0; return 0; } static struct dvb_frontend_ops stv0900_ops = { .info = { .name = "STV0900 frontend", .type = FE_QPSK, .frequency_min = 950000, .frequency_max = 2150000, .frequency_stepsize = 125, .frequency_tolerance = 0, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .symbol_rate_tolerance = 500, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_QPSK | FE_CAN_2G_MODULATION | FE_CAN_FEC_AUTO }, .release = stv0900_release, .init = stv0900_init, .get_frontend = stv0900_get_frontend, .sleep = stv0900_sleep, .get_frontend_algo = stv0900_frontend_algo, .i2c_gate_ctrl = stv0900_i2c_gate_ctrl, .diseqc_send_master_cmd = stv0900_send_master_cmd, .diseqc_send_burst = stv0900_send_burst, .diseqc_recv_slave_reply = stv0900_recv_slave_reply, .set_tone = stv0900_set_tone, .set_property = stb0900_set_property, .get_property = stb0900_get_property, .search = stv0900_search, .track = stv0900_track, .read_status = stv0900_read_status, .read_ber = stv0900_read_ber, .read_signal_strength = stv0900_read_signal_strength, .read_snr = stv0900_read_snr, .read_ucblocks = stv0900_read_ucblocks, }; struct dvb_frontend *stv0900_attach(const struct stv0900_config *config, struct i2c_adapter *i2c, int demod) { struct stv0900_state *state = NULL; struct stv0900_init_params init_params; enum fe_stv0900_error err_stv0900; state = kzalloc(sizeof(struct stv0900_state), GFP_KERNEL); if (state == NULL) goto error; state->demod = demod; state->config = config; state->i2c_adap = i2c; memcpy(&state->frontend.ops, &stv0900_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; switch (demod) { case 0: case 1: init_params.dmd_ref_clk = config->xtal; init_params.demod_mode = config->demod_mode; init_params.rolloff = STV0900_35; init_params.path1_ts_clock = config->path1_mode; init_params.tun1_maddress = config->tun1_maddress; init_params.tun1_iq_inv = STV0900_IQ_NORMAL; init_params.tuner1_adc = config->tun1_adc; init_params.tuner1_type = config->tun1_type; init_params.path2_ts_clock = config->path2_mode; init_params.ts_config = config->ts_config_regs; init_params.tun2_maddress = config->tun2_maddress; init_params.tuner2_adc = config->tun2_adc; init_params.tuner2_type = config->tun2_type; init_params.tun2_iq_inv = STV0900_IQ_SWAPPED; err_stv0900 = stv0900_init_internal(&state->frontend, &init_params); if (err_stv0900) goto error; break; default: goto error; break; } dprintk("%s: Attaching STV0900 demodulator(%d) \n", __func__, demod); return &state->frontend; error: dprintk("%s: Failed to attach STV0900 demodulator(%d) \n", __func__, demod); kfree(state); return NULL; } EXPORT_SYMBOL(stv0900_attach); MODULE_PARM_DESC(debug, "Set debug"); MODULE_AUTHOR("Igor M. Liplianin"); MODULE_DESCRIPTION("ST STV0900 frontend"); MODULE_LICENSE("GPL");