/* * tda18271c2dd: Driver for the TDA18271C2 tuner * * Copyright (C) 2010 Digital Devices GmbH * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 only, as published by the Free Software Foundation. * * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA * Or, point your browser to http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include #include "dvb_frontend.h" struct SStandardParam { s32 m_IFFrequency; u32 m_BandWidth; u8 m_EP3_4_0; u8 m_EB22; }; struct SMap { u32 m_Frequency; u8 m_Param; }; struct SMapI { u32 m_Frequency; s32 m_Param; }; struct SMap2 { u32 m_Frequency; u8 m_Param1; u8 m_Param2; }; struct SRFBandMap { u32 m_RF_max; u32 m_RF1_Default; u32 m_RF2_Default; u32 m_RF3_Default; }; enum ERegister { ID = 0, TM, PL, EP1, EP2, EP3, EP4, EP5, CPD, CD1, CD2, CD3, MPD, MD1, MD2, MD3, EB1, EB2, EB3, EB4, EB5, EB6, EB7, EB8, EB9, EB10, EB11, EB12, EB13, EB14, EB15, EB16, EB17, EB18, EB19, EB20, EB21, EB22, EB23, NUM_REGS }; struct tda_state { struct i2c_adapter *i2c; u8 adr; u32 m_Frequency; u32 IF; u8 m_IFLevelAnalog; u8 m_IFLevelDigital; u8 m_IFLevelDVBC; u8 m_IFLevelDVBT; u8 m_EP4; u8 m_EP3_Standby; bool m_bMaster; s32 m_SettlingTime; u8 m_Regs[NUM_REGS]; /* Tracking filter settings for band 0..6 */ u32 m_RF1[7]; s32 m_RF_A1[7]; s32 m_RF_B1[7]; u32 m_RF2[7]; s32 m_RF_A2[7]; s32 m_RF_B2[7]; u32 m_RF3[7]; u8 m_TMValue_RFCal; /* Calibration temperatur */ bool m_bFMInput; /* true to use Pin 8 for FM Radio */ }; static int PowerScan(struct tda_state *state, u8 RFBand, u32 RF_in, u32 *pRF_Out, bool *pbcal); static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len) { struct i2c_msg msgs[1] = {{.addr = adr, .flags = I2C_M_RD, .buf = data, .len = len} }; return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1; } static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, int len) { struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len}; if (i2c_transfer(adap, &msg, 1) != 1) { printk(KERN_ERR "tda18271c2dd: i2c write error at addr %i\n", adr); return -1; } return 0; } static int WriteRegs(struct tda_state *state, u8 SubAddr, u8 *Regs, u16 nRegs) { u8 data[nRegs+1]; data[0] = SubAddr; memcpy(data + 1, Regs, nRegs); return i2c_write(state->i2c, state->adr, data, nRegs+1); } static int WriteReg(struct tda_state *state, u8 SubAddr, u8 Reg) { u8 msg[2] = {SubAddr, Reg}; return i2c_write(state->i2c, state->adr, msg, 2); } static int Read(struct tda_state *state, u8 * Regs) { return i2c_readn(state->i2c, state->adr, Regs, 16); } static int ReadExtented(struct tda_state *state, u8 * Regs) { return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS); } static int UpdateRegs(struct tda_state *state, u8 RegFrom, u8 RegTo) { return WriteRegs(state, RegFrom, &state->m_Regs[RegFrom], RegTo-RegFrom+1); } static int UpdateReg(struct tda_state *state, u8 Reg) { return WriteReg(state, Reg, state->m_Regs[Reg]); } #include "tda18271c2dd_maps.h" static void reset(struct tda_state *state) { u32 ulIFLevelAnalog = 0; u32 ulIFLevelDigital = 2; u32 ulIFLevelDVBC = 7; u32 ulIFLevelDVBT = 6; u32 ulXTOut = 0; u32 ulStandbyMode = 0x06; /* Send in stdb, but leave osc on */ u32 ulSlave = 0; u32 ulFMInput = 0; u32 ulSettlingTime = 100; state->m_Frequency = 0; state->m_SettlingTime = 100; state->m_IFLevelAnalog = (ulIFLevelAnalog & 0x07) << 2; state->m_IFLevelDigital = (ulIFLevelDigital & 0x07) << 2; state->m_IFLevelDVBC = (ulIFLevelDVBC & 0x07) << 2; state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2; state->m_EP4 = 0x20; if (ulXTOut != 0) state->m_EP4 |= 0x40; state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F; state->m_bMaster = (ulSlave == 0); state->m_SettlingTime = ulSettlingTime; state->m_bFMInput = (ulFMInput == 2); } static bool SearchMap1(struct SMap Map[], u32 Frequency, u8 *pParam) { int i = 0; while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency)) i += 1; if (Map[i].m_Frequency == 0) return false; *pParam = Map[i].m_Param; return true; } static bool SearchMap2(struct SMapI Map[], u32 Frequency, s32 *pParam) { int i = 0; while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency)) i += 1; if (Map[i].m_Frequency == 0) return false; *pParam = Map[i].m_Param; return true; } static bool SearchMap3(struct SMap2 Map[], u32 Frequency, u8 *pParam1, u8 *pParam2) { int i = 0; while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency)) i += 1; if (Map[i].m_Frequency == 0) return false; *pParam1 = Map[i].m_Param1; *pParam2 = Map[i].m_Param2; return true; } static bool SearchMap4(struct SRFBandMap Map[], u32 Frequency, u8 *pRFBand) { int i = 0; while (i < 7 && (Frequency > Map[i].m_RF_max)) i += 1; if (i == 7) return false; *pRFBand = i; return true; } static int ThermometerRead(struct tda_state *state, u8 *pTM_Value) { int status = 0; do { u8 Regs[16]; state->m_Regs[TM] |= 0x10; status = UpdateReg(state, TM); if (status < 0) break; status = Read(state, Regs); if (status < 0) break; if (((Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20) || ((Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00)) { state->m_Regs[TM] ^= 0x20; status = UpdateReg(state, TM); if (status < 0) break; msleep(10); status = Read(state, Regs); if (status < 0) break; } *pTM_Value = (Regs[TM] & 0x20) ? m_Thermometer_Map_2[Regs[TM] & 0x0F] : m_Thermometer_Map_1[Regs[TM] & 0x0F] ; state->m_Regs[TM] &= ~0x10; /* Thermometer off */ status = UpdateReg(state, TM); if (status < 0) break; state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 ????????? */ status = UpdateReg(state, EP4); if (status < 0) break; } while (0); return status; } static int StandBy(struct tda_state *state) { int status = 0; do { state->m_Regs[EB12] &= ~0x20; /* PD_AGC1_Det = 0 */ status = UpdateReg(state, EB12); if (status < 0) break; state->m_Regs[EB18] &= ~0x83; /* AGC1_loop_off = 0, AGC1_Gain = 6 dB */ status = UpdateReg(state, EB18); if (status < 0) break; state->m_Regs[EB21] |= 0x03; /* AGC2_Gain = -6 dB */ state->m_Regs[EP3] = state->m_EP3_Standby; status = UpdateReg(state, EP3); if (status < 0) break; state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LP_Fc[2] = 0 */ status = UpdateRegs(state, EB21, EB23); if (status < 0) break; } while (0); return status; } static int CalcMainPLL(struct tda_state *state, u32 freq) { u8 PostDiv; u8 Div; u64 OscFreq; u32 MainDiv; if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) return -EINVAL; OscFreq = (u64) freq * (u64) Div; OscFreq *= (u64) 16384; do_div(OscFreq, (u64)16000000); MainDiv = OscFreq; state->m_Regs[MPD] = PostDiv & 0x77; state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F); state->m_Regs[MD2] = ((MainDiv >> 8) & 0xFF); state->m_Regs[MD3] = (MainDiv & 0xFF); return UpdateRegs(state, MPD, MD3); } static int CalcCalPLL(struct tda_state *state, u32 freq) { u8 PostDiv; u8 Div; u64 OscFreq; u32 CalDiv; if (!SearchMap3(m_Cal_PLL_Map, freq, &PostDiv, &Div)) return -EINVAL; OscFreq = (u64)freq * (u64)Div; /* CalDiv = u32( OscFreq * 16384 / 16000000 ); */ OscFreq *= (u64)16384; do_div(OscFreq, (u64)16000000); CalDiv = OscFreq; state->m_Regs[CPD] = PostDiv; state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF); state->m_Regs[CD2] = ((CalDiv >> 8) & 0xFF); state->m_Regs[CD3] = (CalDiv & 0xFF); return UpdateRegs(state, CPD, CD3); } static int CalibrateRF(struct tda_state *state, u8 RFBand, u32 freq, s32 *pCprog) { int status = 0; u8 Regs[NUM_REGS]; do { u8 BP_Filter = 0; u8 GainTaper = 0; u8 RFC_K = 0; u8 RFC_M = 0; state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 */ status = UpdateReg(state, EP4); if (status < 0) break; state->m_Regs[EB18] |= 0x03; /* AGC1_Gain = 3 */ status = UpdateReg(state, EB18); if (status < 0) break; /* Switching off LT (as datasheet says) causes calibration on C1 to fail */ /* (Readout of Cprog is allways 255) */ if (state->m_Regs[ID] != 0x83) /* C1: ID == 83, C2: ID == 84 */ state->m_Regs[EP3] |= 0x40; /* SM_LT = 1 */ if (!(SearchMap1(m_BP_Filter_Map, freq, &BP_Filter) && SearchMap1(m_GainTaper_Map, freq, &GainTaper) && SearchMap3(m_KM_Map, freq, &RFC_K, &RFC_M))) return -EINVAL; state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter; state->m_Regs[EP2] = (RFBand << 5) | GainTaper; state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2); status = UpdateRegs(state, EP1, EP3); if (status < 0) break; status = UpdateReg(state, EB13); if (status < 0) break; state->m_Regs[EB4] |= 0x20; /* LO_ForceSrce = 1 */ status = UpdateReg(state, EB4); if (status < 0) break; state->m_Regs[EB7] |= 0x20; /* CAL_ForceSrce = 1 */ status = UpdateReg(state, EB7); if (status < 0) break; state->m_Regs[EB14] = 0; /* RFC_Cprog = 0 */ status = UpdateReg(state, EB14); if (status < 0) break; state->m_Regs[EB20] &= ~0x20; /* ForceLock = 0; */ status = UpdateReg(state, EB20); if (status < 0) break; state->m_Regs[EP4] |= 0x03; /* CAL_Mode = 3 */ status = UpdateRegs(state, EP4, EP5); if (status < 0) break; status = CalcCalPLL(state, freq); if (status < 0) break; status = CalcMainPLL(state, freq + 1000000); if (status < 0) break; msleep(5); status = UpdateReg(state, EP2); if (status < 0) break; status = UpdateReg(state, EP1); if (status < 0) break; status = UpdateReg(state, EP2); if (status < 0) break; status = UpdateReg(state, EP1); if (status < 0) break; state->m_Regs[EB4] &= ~0x20; /* LO_ForceSrce = 0 */ status = UpdateReg(state, EB4); if (status < 0) break; state->m_Regs[EB7] &= ~0x20; /* CAL_ForceSrce = 0 */ status = UpdateReg(state, EB7); if (status < 0) break; msleep(10); state->m_Regs[EB20] |= 0x20; /* ForceLock = 1; */ status = UpdateReg(state, EB20); if (status < 0) break; msleep(60); state->m_Regs[EP4] &= ~0x03; /* CAL_Mode = 0 */ state->m_Regs[EP3] &= ~0x40; /* SM_LT = 0 */ state->m_Regs[EB18] &= ~0x03; /* AGC1_Gain = 0 */ status = UpdateReg(state, EB18); if (status < 0) break; status = UpdateRegs(state, EP3, EP4); if (status < 0) break; status = UpdateReg(state, EP1); if (status < 0) break; status = ReadExtented(state, Regs); if (status < 0) break; *pCprog = Regs[EB14]; } while (0); return status; } static int RFTrackingFiltersInit(struct tda_state *state, u8 RFBand) { int status = 0; u32 RF1 = m_RF_Band_Map[RFBand].m_RF1_Default; u32 RF2 = m_RF_Band_Map[RFBand].m_RF2_Default; u32 RF3 = m_RF_Band_Map[RFBand].m_RF3_Default; bool bcal = false; s32 Cprog_cal1 = 0; s32 Cprog_table1 = 0; s32 Cprog_cal2 = 0; s32 Cprog_table2 = 0; s32 Cprog_cal3 = 0; s32 Cprog_table3 = 0; state->m_RF_A1[RFBand] = 0; state->m_RF_B1[RFBand] = 0; state->m_RF_A2[RFBand] = 0; state->m_RF_B2[RFBand] = 0; do { status = PowerScan(state, RFBand, RF1, &RF1, &bcal); if (status < 0) break; if (bcal) { status = CalibrateRF(state, RFBand, RF1, &Cprog_cal1); if (status < 0) break; } SearchMap2(m_RF_Cal_Map, RF1, &Cprog_table1); if (!bcal) Cprog_cal1 = Cprog_table1; state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1; /* state->m_RF_A1[RF_Band] = ???? */ if (RF2 == 0) break; status = PowerScan(state, RFBand, RF2, &RF2, &bcal); if (status < 0) break; if (bcal) { status = CalibrateRF(state, RFBand, RF2, &Cprog_cal2); if (status < 0) break; } SearchMap2(m_RF_Cal_Map, RF2, &Cprog_table2); if (!bcal) Cprog_cal2 = Cprog_table2; state->m_RF_A1[RFBand] = (Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) / ((s32)(RF2) - (s32)(RF1)); if (RF3 == 0) break; status = PowerScan(state, RFBand, RF3, &RF3, &bcal); if (status < 0) break; if (bcal) { status = CalibrateRF(state, RFBand, RF3, &Cprog_cal3); if (status < 0) break; } SearchMap2(m_RF_Cal_Map, RF3, &Cprog_table3); if (!bcal) Cprog_cal3 = Cprog_table3; state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3) - (s32)(RF2)); state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2; } while (0); state->m_RF1[RFBand] = RF1; state->m_RF2[RFBand] = RF2; state->m_RF3[RFBand] = RF3; #if 0 printk(KERN_ERR "tda18271c2dd: %s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __func__, RFBand, RF1, state->m_RF_A1[RFBand], state->m_RF_B1[RFBand], RF2, state->m_RF_A2[RFBand], state->m_RF_B2[RFBand], RF3); #endif return status; } static int PowerScan(struct tda_state *state, u8 RFBand, u32 RF_in, u32 *pRF_Out, bool *pbcal) { int status = 0; do { u8 Gain_Taper = 0; s32 RFC_Cprog = 0; u8 CID_Target = 0; u8 CountLimit = 0; u32 freq_MainPLL; u8 Regs[NUM_REGS]; u8 CID_Gain; s32 Count = 0; int sign = 1; bool wait = false; if (!(SearchMap2(m_RF_Cal_Map, RF_in, &RFC_Cprog) && SearchMap1(m_GainTaper_Map, RF_in, &Gain_Taper) && SearchMap3(m_CID_Target_Map, RF_in, &CID_Target, &CountLimit))) { printk(KERN_ERR "tda18271c2dd: %s Search map failed\n", __func__); return -EINVAL; } state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper; state->m_Regs[EB14] = (RFC_Cprog); status = UpdateReg(state, EP2); if (status < 0) break; status = UpdateReg(state, EB14); if (status < 0) break; freq_MainPLL = RF_in + 1000000; status = CalcMainPLL(state, freq_MainPLL); if (status < 0) break; msleep(5); state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1; /* CAL_mode = 1 */ status = UpdateReg(state, EP4); if (status < 0) break; status = UpdateReg(state, EP2); /* Launch power measurement */ if (status < 0) break; status = ReadExtented(state, Regs); if (status < 0) break; CID_Gain = Regs[EB10] & 0x3F; state->m_Regs[ID] = Regs[ID]; /* Chip version, (needed for C1 workarround in CalibrateRF) */ *pRF_Out = RF_in; while (CID_Gain < CID_Target) { freq_MainPLL = RF_in + sign * Count + 1000000; status = CalcMainPLL(state, freq_MainPLL); if (status < 0) break; msleep(wait ? 5 : 1); wait = false; status = UpdateReg(state, EP2); /* Launch power measurement */ if (status < 0) break; status = ReadExtented(state, Regs); if (status < 0) break; CID_Gain = Regs[EB10] & 0x3F; Count += 200000; if (Count < CountLimit * 100000) continue; if (sign < 0) break; sign = -sign; Count = 200000; wait = true; } status = status; if (status < 0) break; if (CID_Gain >= CID_Target) { *pbcal = true; *pRF_Out = freq_MainPLL - 1000000; } else *pbcal = false; } while (0); return status; } static int PowerScanInit(struct tda_state *state) { int status = 0; do { state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12; state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); /* If level = 0, Cal mode = 0 */ status = UpdateRegs(state, EP3, EP4); if (status < 0) break; state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03); /* AGC 1 Gain = 0 */ status = UpdateReg(state, EB18); if (status < 0) break; state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03); /* AGC 2 Gain = 0 (Datasheet = 3) */ state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06); /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ status = UpdateRegs(state, EB21, EB23); if (status < 0) break; } while (0); return status; } static int CalcRFFilterCurve(struct tda_state *state) { int status = 0; do { msleep(200); /* Temperature stabilisation */ status = PowerScanInit(state); if (status < 0) break; status = RFTrackingFiltersInit(state, 0); if (status < 0) break; status = RFTrackingFiltersInit(state, 1); if (status < 0) break; status = RFTrackingFiltersInit(state, 2); if (status < 0) break; status = RFTrackingFiltersInit(state, 3); if (status < 0) break; status = RFTrackingFiltersInit(state, 4); if (status < 0) break; status = RFTrackingFiltersInit(state, 5); if (status < 0) break; status = RFTrackingFiltersInit(state, 6); if (status < 0) break; status = ThermometerRead(state, &state->m_TMValue_RFCal); /* also switches off Cal mode !!! */ if (status < 0) break; } while (0); return status; } static int FixedContentsI2CUpdate(struct tda_state *state) { static u8 InitRegs[] = { 0x08, 0x80, 0xC6, 0xDF, 0x16, 0x60, 0x80, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFC, 0x01, 0x84, 0x41, 0x01, 0x84, 0x40, 0x07, 0x00, 0x00, 0x96, 0x3F, 0xC1, 0x00, 0x8F, 0x00, 0x00, 0x8C, 0x00, 0x20, 0xB3, 0x48, 0xB0, }; int status = 0; memcpy(&state->m_Regs[TM], InitRegs, EB23 - TM + 1); do { status = UpdateRegs(state, TM, EB23); if (status < 0) break; /* AGC1 gain setup */ state->m_Regs[EB17] = 0x00; status = UpdateReg(state, EB17); if (status < 0) break; state->m_Regs[EB17] = 0x03; status = UpdateReg(state, EB17); if (status < 0) break; state->m_Regs[EB17] = 0x43; status = UpdateReg(state, EB17); if (status < 0) break; state->m_Regs[EB17] = 0x4C; status = UpdateReg(state, EB17); if (status < 0) break; /* IRC Cal Low band */ state->m_Regs[EP3] = 0x1F; state->m_Regs[EP4] = 0x66; state->m_Regs[EP5] = 0x81; state->m_Regs[CPD] = 0xCC; state->m_Regs[CD1] = 0x6C; state->m_Regs[CD2] = 0x00; state->m_Regs[CD3] = 0x00; state->m_Regs[MPD] = 0xC5; state->m_Regs[MD1] = 0x77; state->m_Regs[MD2] = 0x08; state->m_Regs[MD3] = 0x00; status = UpdateRegs(state, EP2, MD3); /* diff between sw and datasheet (ep3-md3) */ if (status < 0) break; #if 0 state->m_Regs[EB4] = 0x61; /* missing in sw */ status = UpdateReg(state, EB4); if (status < 0) break; msleep(1); state->m_Regs[EB4] = 0x41; status = UpdateReg(state, EB4); if (status < 0) break; #endif msleep(5); status = UpdateReg(state, EP1); if (status < 0) break; msleep(5); state->m_Regs[EP5] = 0x85; state->m_Regs[CPD] = 0xCB; state->m_Regs[CD1] = 0x66; state->m_Regs[CD2] = 0x70; status = UpdateRegs(state, EP3, CD3); if (status < 0) break; msleep(5); status = UpdateReg(state, EP2); if (status < 0) break; msleep(30); /* IRC Cal mid band */ state->m_Regs[EP5] = 0x82; state->m_Regs[CPD] = 0xA8; state->m_Regs[CD2] = 0x00; state->m_Regs[MPD] = 0xA1; /* Datasheet = 0xA9 */ state->m_Regs[MD1] = 0x73; state->m_Regs[MD2] = 0x1A; status = UpdateRegs(state, EP3, MD3); if (status < 0) break; msleep(5); status = UpdateReg(state, EP1); if (status < 0) break; msleep(5); state->m_Regs[EP5] = 0x86; state->m_Regs[CPD] = 0xA8; state->m_Regs[CD1] = 0x66; state->m_Regs[CD2] = 0xA0; status = UpdateRegs(state, EP3, CD3); if (status < 0) break; msleep(5); status = UpdateReg(state, EP2); if (status < 0) break; msleep(30); /* IRC Cal high band */ state->m_Regs[EP5] = 0x83; state->m_Regs[CPD] = 0x98; state->m_Regs[CD1] = 0x65; state->m_Regs[CD2] = 0x00; state->m_Regs[MPD] = 0x91; /* Datasheet = 0x91 */ state->m_Regs[MD1] = 0x71; state->m_Regs[MD2] = 0xCD; status = UpdateRegs(state, EP3, MD3); if (status < 0) break; msleep(5); status = UpdateReg(state, EP1); if (status < 0) break; msleep(5); state->m_Regs[EP5] = 0x87; state->m_Regs[CD1] = 0x65; state->m_Regs[CD2] = 0x50; status = UpdateRegs(state, EP3, CD3); if (status < 0) break; msleep(5); status = UpdateReg(state, EP2); if (status < 0) break; msleep(30); /* Back to normal */ state->m_Regs[EP4] = 0x64; status = UpdateReg(state, EP4); if (status < 0) break; status = UpdateReg(state, EP1); if (status < 0) break; } while (0); return status; } static int InitCal(struct tda_state *state) { int status = 0; do { status = FixedContentsI2CUpdate(state); if (status < 0) break; status = CalcRFFilterCurve(state); if (status < 0) break; status = StandBy(state); if (status < 0) break; /* m_bInitDone = true; */ } while (0); return status; }; static int RFTrackingFiltersCorrection(struct tda_state *state, u32 Frequency) { int status = 0; s32 Cprog_table; u8 RFBand; u8 dCoverdT; if (!SearchMap2(m_RF_Cal_Map, Frequency, &Cprog_table) || !SearchMap4(m_RF_Band_Map, Frequency, &RFBand) || !SearchMap1(m_RF_Cal_DC_Over_DT_Map, Frequency, &dCoverdT)) return -EINVAL; do { u8 TMValue_Current; u32 RF1 = state->m_RF1[RFBand]; u32 RF2 = state->m_RF1[RFBand]; u32 RF3 = state->m_RF1[RFBand]; s32 RF_A1 = state->m_RF_A1[RFBand]; s32 RF_B1 = state->m_RF_B1[RFBand]; s32 RF_A2 = state->m_RF_A2[RFBand]; s32 RF_B2 = state->m_RF_B2[RFBand]; s32 Capprox = 0; int TComp; state->m_Regs[EP3] &= ~0xE0; /* Power up */ status = UpdateReg(state, EP3); if (status < 0) break; status = ThermometerRead(state, &TMValue_Current); if (status < 0) break; if (RF3 == 0 || Frequency < RF2) Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table; else Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table; TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000; Capprox += TComp; if (Capprox < 0) Capprox = 0; else if (Capprox > 255) Capprox = 255; /* TODO Temperature compensation. There is defenitely a scale factor */ /* missing in the datasheet, so leave it out for now. */ state->m_Regs[EB14] = Capprox; status = UpdateReg(state, EB14); if (status < 0) break; } while (0); return status; } static int ChannelConfiguration(struct tda_state *state, u32 Frequency, int Standard) { s32 IntermediateFrequency = m_StandardTable[Standard].m_IFFrequency; int status = 0; u8 BP_Filter = 0; u8 RF_Band = 0; u8 GainTaper = 0; u8 IR_Meas = 0; state->IF = IntermediateFrequency; /* printk("tda18271c2dd: %s Freq = %d Standard = %d IF = %d\n", __func__, Frequency, Standard, IntermediateFrequency); */ /* get values from tables */ if (!(SearchMap1(m_BP_Filter_Map, Frequency, &BP_Filter) && SearchMap1(m_GainTaper_Map, Frequency, &GainTaper) && SearchMap1(m_IR_Meas_Map, Frequency, &IR_Meas) && SearchMap4(m_RF_Band_Map, Frequency, &RF_Band))) { printk(KERN_ERR "tda18271c2dd: %s SearchMap failed\n", __func__); return -EINVAL; } do { state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0; state->m_Regs[EP3] &= ~0x04; /* switch RFAGC to high speed mode */ /* m_EP4 default for XToutOn, CAL_Mode (0) */ state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax) ? state->m_IFLevelDigital : state->m_IFLevelAnalog); /* state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; */ if (Standard <= HF_AnalogMax) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog; else if (Standard <= HF_ATSC) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT; else if (Standard <= HF_DVBC) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC; else state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; if ((Standard == HF_FM_Radio) && state->m_bFMInput) state->m_Regs[EP4] |= 80; state->m_Regs[MPD] &= ~0x80; if (Standard > HF_AnalogMax) state->m_Regs[MPD] |= 0x80; /* Add IF_notch for digital */ state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22; /* Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM ) */ if (Standard == HF_FM_Radio) state->m_Regs[EB23] |= 0x06; /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */ else state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LPFc[2] = 0 */ status = UpdateRegs(state, EB22, EB23); if (status < 0) break; state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter; /* Dis_Power_level = 1, Filter */ state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas; state->m_Regs[EP2] = (RF_Band << 5) | GainTaper; state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) | (state->m_bMaster ? 0x04 : 0x00); /* CALVCO_FortLOn = MS */ /* AGC1_always_master = 0 */ /* AGC_firstn = 0 */ status = UpdateReg(state, EB1); if (status < 0) break; if (state->m_bMaster) { status = CalcMainPLL(state, Frequency + IntermediateFrequency); if (status < 0) break; status = UpdateRegs(state, TM, EP5); if (status < 0) break; state->m_Regs[EB4] |= 0x20; /* LO_forceSrce = 1 */ status = UpdateReg(state, EB4); if (status < 0) break; msleep(1); state->m_Regs[EB4] &= ~0x20; /* LO_forceSrce = 0 */ status = UpdateReg(state, EB4); if (status < 0) break; } else { u8 PostDiv = 0; u8 Div; status = CalcCalPLL(state, Frequency + IntermediateFrequency); if (status < 0) break; SearchMap3(m_Cal_PLL_Map, Frequency + IntermediateFrequency, &PostDiv, &Div); state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77); status = UpdateReg(state, MPD); if (status < 0) break; status = UpdateRegs(state, TM, EP5); if (status < 0) break; state->m_Regs[EB7] |= 0x20; /* CAL_forceSrce = 1 */ status = UpdateReg(state, EB7); if (status < 0) break; msleep(1); state->m_Regs[EB7] &= ~0x20; /* CAL_forceSrce = 0 */ status = UpdateReg(state, EB7); if (status < 0) break; } msleep(20); if (Standard != HF_FM_Radio) state->m_Regs[EP3] |= 0x04; /* RFAGC to normal mode */ status = UpdateReg(state, EP3); if (status < 0) break; } while (0); return status; } static int sleep(struct dvb_frontend *fe) { struct tda_state *state = fe->tuner_priv; StandBy(state); return 0; } static int init(struct dvb_frontend *fe) { return 0; } static int release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } /* * As defined on EN 300 429 Annex A and on ITU-T J.83 annex A, the DVB-C * roll-off factor is 0.15. * According with the specs, the amount of the needed bandwith is given by: * Bw = Symbol_rate * (1 + 0.15) * As such, the maximum symbol rate supported by 6 MHz is * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds *NOTE: For ITU-T J.83 Annex C, the roll-off factor is 0.13. So: * max_symbol_rate = 6 MHz / 1.13 = 5309735 Baud * That means that an adjustment is needed for Japan, * but, as currently DRX-K is hardcoded to Annex A, let's stick * with 0.15 roll-off factor. */ #define MAX_SYMBOL_RATE_6MHz 5217391 static int set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *params) { struct tda_state *state = fe->tuner_priv; int status = 0; int Standard; state->m_Frequency = params->frequency; if (fe->ops.info.type == FE_OFDM) switch (params->u.ofdm.bandwidth) { case BANDWIDTH_6_MHZ: Standard = HF_DVBT_6MHZ; break; case BANDWIDTH_7_MHZ: Standard = HF_DVBT_7MHZ; break; default: case BANDWIDTH_8_MHZ: Standard = HF_DVBT_8MHZ; break; } else if (fe->ops.info.type == FE_QAM) { if (params->u.qam.symbol_rate <= MAX_SYMBOL_RATE_6MHz) Standard = HF_DVBC_6MHZ; else Standard = HF_DVBC_8MHZ; } else return -EINVAL; do { status = RFTrackingFiltersCorrection(state, params->frequency); if (status < 0) break; status = ChannelConfiguration(state, params->frequency, Standard); if (status < 0) break; msleep(state->m_SettlingTime); /* Allow AGC's to settle down */ } while (0); return status; } #if 0 static int GetSignalStrength(s32 *pSignalStrength, u32 RFAgc, u32 IFAgc) { if (IFAgc < 500) { /* Scale this from 0 to 50000 */ *pSignalStrength = IFAgc * 100; } else { /* Scale range 500-1500 to 50000-80000 */ *pSignalStrength = 50000 + (IFAgc - 500) * 30; } return 0; } #endif static int get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { struct tda_state *state = fe->tuner_priv; *frequency = state->IF; return 0; } static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth) { /* struct tda_state *state = fe->tuner_priv; */ /* *bandwidth = priv->bandwidth; */ return 0; } static struct dvb_tuner_ops tuner_ops = { .info = { .name = "NXP TDA18271C2D", .frequency_min = 47125000, .frequency_max = 865000000, .frequency_step = 62500 }, .init = init, .sleep = sleep, .set_params = set_params, .release = release, .get_if_frequency = get_if_frequency, .get_bandwidth = get_bandwidth, }; struct dvb_frontend *tda18271c2dd_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, u8 adr) { struct tda_state *state; state = kzalloc(sizeof(struct tda_state), GFP_KERNEL); if (!state) return NULL; fe->tuner_priv = state; state->adr = adr; state->i2c = i2c; memcpy(&fe->ops.tuner_ops, &tuner_ops, sizeof(struct dvb_tuner_ops)); reset(state); InitCal(state); return fe; } EXPORT_SYMBOL_GPL(tda18271c2dd_attach); MODULE_DESCRIPTION("TDA18271C2 driver"); MODULE_AUTHOR("DD"); MODULE_LICENSE("GPL");