/* * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores * * Integrated Consumer Infrared Controller * * Copyright (C) 2010 Andy Walls * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ #include #include #include #include #include #include "cx25840-core.h" static unsigned int ir_debug; module_param(ir_debug, int, 0644); MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages"); #define CX25840_IR_REG_BASE 0x200 #define CX25840_IR_CNTRL_REG 0x200 #define CNTRL_WIN_3_3 0x00000000 #define CNTRL_WIN_4_3 0x00000001 #define CNTRL_WIN_3_4 0x00000002 #define CNTRL_WIN_4_4 0x00000003 #define CNTRL_WIN 0x00000003 #define CNTRL_EDG_NONE 0x00000000 #define CNTRL_EDG_FALL 0x00000004 #define CNTRL_EDG_RISE 0x00000008 #define CNTRL_EDG_BOTH 0x0000000C #define CNTRL_EDG 0x0000000C #define CNTRL_DMD 0x00000010 #define CNTRL_MOD 0x00000020 #define CNTRL_RFE 0x00000040 #define CNTRL_TFE 0x00000080 #define CNTRL_RXE 0x00000100 #define CNTRL_TXE 0x00000200 #define CNTRL_RIC 0x00000400 #define CNTRL_TIC 0x00000800 #define CNTRL_CPL 0x00001000 #define CNTRL_LBM 0x00002000 #define CNTRL_R 0x00004000 #define CX25840_IR_TXCLK_REG 0x204 #define TXCLK_TCD 0x0000FFFF #define CX25840_IR_RXCLK_REG 0x208 #define RXCLK_RCD 0x0000FFFF #define CX25840_IR_CDUTY_REG 0x20C #define CDUTY_CDC 0x0000000F #define CX25840_IR_STATS_REG 0x210 #define STATS_RTO 0x00000001 #define STATS_ROR 0x00000002 #define STATS_RBY 0x00000004 #define STATS_TBY 0x00000008 #define STATS_RSR 0x00000010 #define STATS_TSR 0x00000020 #define CX25840_IR_IRQEN_REG 0x214 #define IRQEN_RTE 0x00000001 #define IRQEN_ROE 0x00000002 #define IRQEN_RSE 0x00000010 #define IRQEN_TSE 0x00000020 #define IRQEN_MSK 0x00000033 #define CX25840_IR_FILTR_REG 0x218 #define FILTR_LPF 0x0000FFFF #define CX25840_IR_FIFO_REG 0x23C #define FIFO_RXTX 0x0000FFFF #define FIFO_RXTX_LVL 0x00010000 #define FIFO_RXTX_RTO 0x0001FFFF #define FIFO_RX_NDV 0x00020000 #define FIFO_RX_DEPTH 8 #define FIFO_TX_DEPTH 8 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */ #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2) /* * We use this union internally for convenience, but callers to tx_write * and rx_read will be expecting records of type struct ir_raw_event. * Always ensure the size of this union is dictated by struct ir_raw_event. */ union cx25840_ir_fifo_rec { u32 hw_fifo_data; struct ir_raw_event ir_core_data; }; #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec)) #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec)) struct cx25840_ir_state { struct i2c_client *c; struct v4l2_subdev_ir_parameters rx_params; struct mutex rx_params_lock; /* protects Rx parameter settings cache */ atomic_t rxclk_divider; atomic_t rx_invert; struct kfifo rx_kfifo; spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */ struct v4l2_subdev_ir_parameters tx_params; struct mutex tx_params_lock; /* protects Tx parameter settings cache */ atomic_t txclk_divider; }; static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd) { struct cx25840_state *state = to_state(sd); return state ? state->ir_state : NULL; } /* * Rx and Tx Clock Divider register computations * * Note the largest clock divider value of 0xffff corresponds to: * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns * which fits in 21 bits, so we'll use unsigned int for time arguments. */ static inline u16 count_to_clock_divider(unsigned int d) { if (d > RXCLK_RCD + 1) d = RXCLK_RCD; else if (d < 2) d = 1; else d--; return (u16) d; } static inline u16 ns_to_clock_divider(unsigned int ns) { return count_to_clock_divider( DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); } static inline unsigned int clock_divider_to_ns(unsigned int divider) { /* Period of the Rx or Tx clock in ns */ return DIV_ROUND_CLOSEST((divider + 1) * 1000, CX25840_IR_REFCLK_FREQ / 1000000); } static inline u16 carrier_freq_to_clock_divider(unsigned int freq) { return count_to_clock_divider( DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16)); } static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider) { return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16); } static inline u16 freq_to_clock_divider(unsigned int freq, unsigned int rollovers) { return count_to_clock_divider( DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers)); } static inline unsigned int clock_divider_to_freq(unsigned int divider, unsigned int rollovers) { return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * rollovers); } /* * Low Pass Filter register calculations * * Note the largest count value of 0xffff corresponds to: * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns * which fits in 21 bits, so we'll use unsigned int for time arguments. */ static inline u16 count_to_lpf_count(unsigned int d) { if (d > FILTR_LPF) d = FILTR_LPF; else if (d < 4) d = 0; return (u16) d; } static inline u16 ns_to_lpf_count(unsigned int ns) { return count_to_lpf_count( DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000)); } static inline unsigned int lpf_count_to_ns(unsigned int count) { /* Duration of the Low Pass Filter rejection window in ns */ return DIV_ROUND_CLOSEST(count * 1000, CX25840_IR_REFCLK_FREQ / 1000000); } static inline unsigned int lpf_count_to_us(unsigned int count) { /* Duration of the Low Pass Filter rejection window in us */ return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000); } /* * FIFO register pulse width count compuations */ static u32 clock_divider_to_resolution(u16 divider) { /* * Resolution is the duration of 1 tick of the readable portion of * of the pulse width counter as read from the FIFO. The two lsb's are * not readable, hence the << 2. This function returns ns. */ return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000, CX25840_IR_REFCLK_FREQ / 1000000); } static u64 pulse_width_count_to_ns(u16 count, u16 divider) { u64 n; u32 rem; /* * The 2 lsb's of the pulse width timer count are not readable, hence * the (count << 2) | 0x3 */ n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */ rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */ if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) n++; return n; } #if 0 /* Keep as we will need this for Transmit functionality */ static u16 ns_to_pulse_width_count(u32 ns, u16 divider) { u64 n; u32 d; u32 rem; /* * The 2 lsb's of the pulse width timer count are not accessible, hence * the (1 << 2) */ n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */ d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */ rem = do_div(n, d); if (rem >= d / 2) n++; if (n > FIFO_RXTX) n = FIFO_RXTX; else if (n == 0) n = 1; return (u16) n; } #endif static unsigned int pulse_width_count_to_us(u16 count, u16 divider) { u64 n; u32 rem; /* * The 2 lsb's of the pulse width timer count are not readable, hence * the (count << 2) | 0x3 */ n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */ rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */ if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2) n++; return (unsigned int) n; } /* * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts * * The total pulse clock count is an 18 bit pulse width timer count as the most * significant part and (up to) 16 bit clock divider count as a modulus. * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse * width timer count's least significant bit. */ static u64 ns_to_pulse_clocks(u32 ns) { u64 clocks; u32 rem; clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */ rem = do_div(clocks, 1000); /* /1000 = cycles */ if (rem >= 1000 / 2) clocks++; return clocks; } static u16 pulse_clocks_to_clock_divider(u64 count) { u32 rem; rem = do_div(count, (FIFO_RXTX << 2) | 0x3); /* net result needs to be rounded down and decremented by 1 */ if (count > RXCLK_RCD + 1) count = RXCLK_RCD; else if (count < 2) count = 1; else count--; return (u16) count; } /* * IR Control Register helpers */ enum tx_fifo_watermark { TX_FIFO_HALF_EMPTY = 0, TX_FIFO_EMPTY = CNTRL_TIC, }; enum rx_fifo_watermark { RX_FIFO_HALF_FULL = 0, RX_FIFO_NOT_EMPTY = CNTRL_RIC, }; static inline void control_tx_irq_watermark(struct i2c_client *c, enum tx_fifo_watermark level) { cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level); } static inline void control_rx_irq_watermark(struct i2c_client *c, enum rx_fifo_watermark level) { cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level); } static inline void control_tx_enable(struct i2c_client *c, bool enable) { cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE), enable ? (CNTRL_TXE | CNTRL_TFE) : 0); } static inline void control_rx_enable(struct i2c_client *c, bool enable) { cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE), enable ? (CNTRL_RXE | CNTRL_RFE) : 0); } static inline void control_tx_modulation_enable(struct i2c_client *c, bool enable) { cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD, enable ? CNTRL_MOD : 0); } static inline void control_rx_demodulation_enable(struct i2c_client *c, bool enable) { cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD, enable ? CNTRL_DMD : 0); } static inline void control_rx_s_edge_detection(struct i2c_client *c, u32 edge_types) { cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH, edge_types & CNTRL_EDG_BOTH); } static void control_rx_s_carrier_window(struct i2c_client *c, unsigned int carrier, unsigned int *carrier_range_low, unsigned int *carrier_range_high) { u32 v; unsigned int c16 = carrier * 16; if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) { v = CNTRL_WIN_3_4; *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4); } else { v = CNTRL_WIN_3_3; *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3); } if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) { v |= CNTRL_WIN_4_3; *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4); } else { v |= CNTRL_WIN_3_3; *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3); } cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v); } static inline void control_tx_polarity_invert(struct i2c_client *c, bool invert) { cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL, invert ? CNTRL_CPL : 0); } /* * IR Rx & Tx Clock Register helpers */ static unsigned int txclk_tx_s_carrier(struct i2c_client *c, unsigned int freq, u16 *divider) { *divider = carrier_freq_to_clock_divider(freq); cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); return clock_divider_to_carrier_freq(*divider); } static unsigned int rxclk_rx_s_carrier(struct i2c_client *c, unsigned int freq, u16 *divider) { *divider = carrier_freq_to_clock_divider(freq); cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); return clock_divider_to_carrier_freq(*divider); } static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns, u16 *divider) { u64 pulse_clocks; if (ns > IR_MAX_DURATION) ns = IR_MAX_DURATION; pulse_clocks = ns_to_pulse_clocks(ns); *divider = pulse_clocks_to_clock_divider(pulse_clocks); cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider); return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); } static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns, u16 *divider) { u64 pulse_clocks; if (ns > IR_MAX_DURATION) ns = IR_MAX_DURATION; pulse_clocks = ns_to_pulse_clocks(ns); *divider = pulse_clocks_to_clock_divider(pulse_clocks); cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider); return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider); } /* * IR Tx Carrier Duty Cycle register helpers */ static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c, unsigned int duty_cycle) { u32 n; n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */ if (n != 0) n--; if (n > 15) n = 15; cx25840_write4(c, CX25840_IR_CDUTY_REG, n); return DIV_ROUND_CLOSEST((n + 1) * 100, 16); } /* * IR Filter Register helpers */ static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns) { u32 count = ns_to_lpf_count(min_width_ns); cx25840_write4(c, CX25840_IR_FILTR_REG, count); return lpf_count_to_ns(count); } /* * IR IRQ Enable Register helpers */ static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask) { struct cx25840_state *state = to_state(sd); if (is_cx23885(state) || is_cx23887(state)) mask ^= IRQEN_MSK; mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE); cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask); } static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask) { struct cx25840_state *state = to_state(sd); if (is_cx23885(state) || is_cx23887(state)) mask ^= IRQEN_MSK; mask &= IRQEN_TSE; cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask); } /* * V4L2 Subdevice IR Ops */ int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) { struct cx25840_state *state = to_state(sd); struct cx25840_ir_state *ir_state = to_ir_state(sd); struct i2c_client *c = NULL; unsigned long flags; union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH]; unsigned int i, j, k; u32 events, v; int tsr, rsr, rto, ror, tse, rse, rte, roe, kror; u32 cntrl, irqen, stats; *handled = false; if (ir_state == NULL) return -ENODEV; c = ir_state->c; /* Only support the IR controller for the CX2388[57] AV Core for now */ if (!(is_cx23885(state) || is_cx23887(state))) return -ENODEV; cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); if (is_cx23885(state) || is_cx23887(state)) irqen ^= IRQEN_MSK; stats = cx25840_read4(c, CX25840_IR_STATS_REG); tsr = stats & STATS_TSR; /* Tx FIFO Service Request */ rsr = stats & STATS_RSR; /* Rx FIFO Service Request */ rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */ ror = stats & STATS_ROR; /* Rx FIFO Over Run */ tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */ rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */ rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */ roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */ v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n", tsr ? "tsr" : " ", rsr ? "rsr" : " ", rto ? "rto" : " ", ror ? "ror" : " ", stats & STATS_TBY ? "tby" : " ", stats & STATS_RBY ? "rby" : " "); v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n", tse ? "tse" : " ", rse ? "rse" : " ", rte ? "rte" : " ", roe ? "roe" : " "); /* * Transmitter interrupt service */ if (tse && tsr) { /* * TODO: * Check the watermark threshold setting * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo * Push the data to the hardware FIFO. * If there was nothing more to send in the tx_kfifo, disable * the TSR IRQ and notify the v4l2_device. * If there was something in the tx_kfifo, check the tx_kfifo * level and notify the v4l2_device, if it is low. */ /* For now, inhibit TSR interrupt until Tx is implemented */ irqenable_tx(sd, 0); events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ; v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events); *handled = true; } /* * Receiver interrupt service */ kror = 0; if ((rse && rsr) || (rte && rto)) { /* * Receive data on RSR to clear the STATS_RSR. * Receive data on RTO, since we may not have yet hit the RSR * watermark when we receive the RTO. */ for (i = 0, v = FIFO_RX_NDV; (v & FIFO_RX_NDV) && !kror; i = 0) { for (j = 0; (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) { v = cx25840_read4(c, CX25840_IR_FIFO_REG); rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV; i++; } if (i == 0) break; j = i * sizeof(union cx25840_ir_fifo_rec); k = kfifo_in_locked(&ir_state->rx_kfifo, (unsigned char *) rx_data, j, &ir_state->rx_kfifo_lock); if (k != j) kror++; /* rx_kfifo over run */ } *handled = true; } events = 0; v = 0; if (kror) { events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN; v4l2_err(sd, "IR receiver software FIFO overrun\n"); } if (roe && ror) { /* * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear * the Rx FIFO Over Run status (STATS_ROR) */ v |= CNTRL_RFE; events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN; v4l2_err(sd, "IR receiver hardware FIFO overrun\n"); } if (rte && rto) { /* * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear * the Rx Pulse Width Timer Time Out (STATS_RTO) */ v |= CNTRL_RXE; events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED; } if (v) { /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */ cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v); cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl); *handled = true; } spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2) events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ; spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); if (events) v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events); return 0; } /* Receiver */ static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count, ssize_t *num) { struct cx25840_ir_state *ir_state = to_ir_state(sd); bool invert; u16 divider; unsigned int i, n; union cx25840_ir_fifo_rec *p; unsigned u, v, w; if (ir_state == NULL) return -ENODEV; invert = (bool) atomic_read(&ir_state->rx_invert); divider = (u16) atomic_read(&ir_state->rxclk_divider); n = count / sizeof(union cx25840_ir_fifo_rec) * sizeof(union cx25840_ir_fifo_rec); if (n == 0) { *num = 0; return 0; } n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n, &ir_state->rx_kfifo_lock); n /= sizeof(union cx25840_ir_fifo_rec); *num = n * sizeof(union cx25840_ir_fifo_rec); for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) { if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) { /* Assume RTO was because of no IR light input */ u = 0; w = 1; } else { u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0; if (invert) u = u ? 0 : 1; w = 0; } v = (unsigned) pulse_width_count_to_ns( (u16) (p->hw_fifo_data & FIFO_RXTX), divider); if (v > IR_MAX_DURATION) v = IR_MAX_DURATION; init_ir_raw_event(&p->ir_core_data); p->ir_core_data.pulse = u; p->ir_core_data.duration = v; p->ir_core_data.timeout = w; v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s %s\n", v, u ? "mark" : "space", w ? "(timed out)" : ""); if (w) v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n"); } return 0; } static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters *p) { struct cx25840_ir_state *ir_state = to_ir_state(sd); if (ir_state == NULL) return -ENODEV; mutex_lock(&ir_state->rx_params_lock); memcpy(p, &ir_state->rx_params, sizeof(struct v4l2_subdev_ir_parameters)); mutex_unlock(&ir_state->rx_params_lock); return 0; } static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd) { struct cx25840_ir_state *ir_state = to_ir_state(sd); struct i2c_client *c; if (ir_state == NULL) return -ENODEV; c = ir_state->c; mutex_lock(&ir_state->rx_params_lock); /* Disable or slow down all IR Rx circuits and counters */ irqenable_rx(sd, 0); control_rx_enable(c, false); control_rx_demodulation_enable(c, false); control_rx_s_edge_detection(c, CNTRL_EDG_NONE); filter_rx_s_min_width(c, 0); cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD); ir_state->rx_params.shutdown = true; mutex_unlock(&ir_state->rx_params_lock); return 0; } static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters *p) { struct cx25840_ir_state *ir_state = to_ir_state(sd); struct i2c_client *c; struct v4l2_subdev_ir_parameters *o; u16 rxclk_divider; if (ir_state == NULL) return -ENODEV; if (p->shutdown) return cx25840_ir_rx_shutdown(sd); if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) return -ENOSYS; c = ir_state->c; o = &ir_state->rx_params; mutex_lock(&ir_state->rx_params_lock); o->shutdown = p->shutdown; p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; o->mode = p->mode; p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec); o->bytes_per_data_element = p->bytes_per_data_element; /* Before we tweak the hardware, we have to disable the receiver */ irqenable_rx(sd, 0); control_rx_enable(c, false); control_rx_demodulation_enable(c, p->modulation); o->modulation = p->modulation; if (p->modulation) { p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq, &rxclk_divider); o->carrier_freq = p->carrier_freq; p->duty_cycle = 50; o->duty_cycle = p->duty_cycle; control_rx_s_carrier_window(c, p->carrier_freq, &p->carrier_range_lower, &p->carrier_range_upper); o->carrier_range_lower = p->carrier_range_lower; o->carrier_range_upper = p->carrier_range_upper; p->max_pulse_width = (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider); } else { p->max_pulse_width = rxclk_rx_s_max_pulse_width(c, p->max_pulse_width, &rxclk_divider); } o->max_pulse_width = p->max_pulse_width; atomic_set(&ir_state->rxclk_divider, rxclk_divider); p->noise_filter_min_width = filter_rx_s_min_width(c, p->noise_filter_min_width); o->noise_filter_min_width = p->noise_filter_min_width; p->resolution = clock_divider_to_resolution(rxclk_divider); o->resolution = p->resolution; /* FIXME - make this dependent on resolution for better performance */ control_rx_irq_watermark(c, RX_FIFO_HALF_FULL); control_rx_s_edge_detection(c, CNTRL_EDG_BOTH); o->invert_level = p->invert_level; atomic_set(&ir_state->rx_invert, p->invert_level); o->interrupt_enable = p->interrupt_enable; o->enable = p->enable; if (p->enable) { unsigned long flags; spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags); kfifo_reset(&ir_state->rx_kfifo); spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags); if (p->interrupt_enable) irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE); control_rx_enable(c, p->enable); } mutex_unlock(&ir_state->rx_params_lock); return 0; } /* Transmitter */ static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count, ssize_t *num) { struct cx25840_ir_state *ir_state = to_ir_state(sd); struct i2c_client *c; if (ir_state == NULL) return -ENODEV; c = ir_state->c; #if 0 /* * FIXME - the code below is an incomplete and untested sketch of what * may need to be done. The critical part is to get 4 (or 8) pulses * from the tx_kfifo, or converted from ns to the proper units from the * input, and push them off to the hardware Tx FIFO right away, if the * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in * a less critical timeframe. Also watch out for overruning the * tx_kfifo - don't let it happen and let the caller know not all his * pulses were written. */ u32 *ns_pulse = (u32 *) buf; unsigned int n; u32 fifo_pulse[FIFO_TX_DEPTH]; u32 mark; /* Compute how much we can fit in the tx kfifo */ n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo); n = min(n, (unsigned int) count); n /= sizeof(u32); /* FIXME - turn on Tx Fifo service interrupt * check hardware fifo level, and other stuff */ for (i = 0; i < n; ) { for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) { mark = ns_pulse[i] & LEVEL_MASK; fifo_pulse[j] = ns_to_pulse_width_count( ns_pulse[i] & ~LEVEL_MASK, ir_state->txclk_divider); if (mark) fifo_pulse[j] &= FIFO_RXTX_LVL; i++; } kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse, j * sizeof(u32)); } *num = n * sizeof(u32); #else /* For now enable the Tx FIFO Service interrupt & pretend we did work */ irqenable_tx(sd, IRQEN_TSE); *num = count; #endif return 0; } static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters *p) { struct cx25840_ir_state *ir_state = to_ir_state(sd); if (ir_state == NULL) return -ENODEV; mutex_lock(&ir_state->tx_params_lock); memcpy(p, &ir_state->tx_params, sizeof(struct v4l2_subdev_ir_parameters)); mutex_unlock(&ir_state->tx_params_lock); return 0; } static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd) { struct cx25840_ir_state *ir_state = to_ir_state(sd); struct i2c_client *c; if (ir_state == NULL) return -ENODEV; c = ir_state->c; mutex_lock(&ir_state->tx_params_lock); /* Disable or slow down all IR Tx circuits and counters */ irqenable_tx(sd, 0); control_tx_enable(c, false); control_tx_modulation_enable(c, false); cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD); ir_state->tx_params.shutdown = true; mutex_unlock(&ir_state->tx_params_lock); return 0; } static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd, struct v4l2_subdev_ir_parameters *p) { struct cx25840_ir_state *ir_state = to_ir_state(sd); struct i2c_client *c; struct v4l2_subdev_ir_parameters *o; u16 txclk_divider; if (ir_state == NULL) return -ENODEV; if (p->shutdown) return cx25840_ir_tx_shutdown(sd); if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH) return -ENOSYS; c = ir_state->c; o = &ir_state->tx_params; mutex_lock(&ir_state->tx_params_lock); o->shutdown = p->shutdown; p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH; o->mode = p->mode; p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec); o->bytes_per_data_element = p->bytes_per_data_element; /* Before we tweak the hardware, we have to disable the transmitter */ irqenable_tx(sd, 0); control_tx_enable(c, false); control_tx_modulation_enable(c, p->modulation); o->modulation = p->modulation; if (p->modulation) { p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq, &txclk_divider); o->carrier_freq = p->carrier_freq; p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle); o->duty_cycle = p->duty_cycle; p->max_pulse_width = (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider); } else { p->max_pulse_width = txclk_tx_s_max_pulse_width(c, p->max_pulse_width, &txclk_divider); } o->max_pulse_width = p->max_pulse_width; atomic_set(&ir_state->txclk_divider, txclk_divider); p->resolution = clock_divider_to_resolution(txclk_divider); o->resolution = p->resolution; /* FIXME - make this dependent on resolution for better performance */ control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY); control_tx_polarity_invert(c, p->invert_carrier_sense); o->invert_carrier_sense = p->invert_carrier_sense; /* * FIXME: we don't have hardware help for IO pin level inversion * here like we have on the CX23888. * Act on this with some mix of logical inversion of data levels, * carrier polarity, and carrier duty cycle. */ o->invert_level = p->invert_level; o->interrupt_enable = p->interrupt_enable; o->enable = p->enable; if (p->enable) { /* reset tx_fifo here */ if (p->interrupt_enable) irqenable_tx(sd, IRQEN_TSE); control_tx_enable(c, p->enable); } mutex_unlock(&ir_state->tx_params_lock); return 0; } /* * V4L2 Subdevice Core Ops support */ int cx25840_ir_log_status(struct v4l2_subdev *sd) { struct cx25840_state *state = to_state(sd); struct i2c_client *c = state->c; char *s; int i, j; u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr; /* The CX23888 chip doesn't have an IR controller on the A/V core */ if (is_cx23888(state)) return 0; cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG); txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD; rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD; cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC; stats = cx25840_read4(c, CX25840_IR_STATS_REG); irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG); if (is_cx23885(state) || is_cx23887(state)) irqen ^= IRQEN_MSK; filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF; v4l2_info(sd, "IR Receiver:\n"); v4l2_info(sd, "\tEnabled: %s\n", cntrl & CNTRL_RXE ? "yes" : "no"); v4l2_info(sd, "\tDemodulation from a carrier: %s\n", cntrl & CNTRL_DMD ? "enabled" : "disabled"); v4l2_info(sd, "\tFIFO: %s\n", cntrl & CNTRL_RFE ? "enabled" : "disabled"); switch (cntrl & CNTRL_EDG) { case CNTRL_EDG_NONE: s = "disabled"; break; case CNTRL_EDG_FALL: s = "falling edge"; break; case CNTRL_EDG_RISE: s = "rising edge"; break; case CNTRL_EDG_BOTH: s = "rising & falling edges"; break; default: s = "??? edge"; break; } v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s); v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n", cntrl & CNTRL_R ? "not loaded" : "overflow marker"); v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", cntrl & CNTRL_RIC ? "not empty" : "half full or greater"); v4l2_info(sd, "\tLoopback mode: %s\n", cntrl & CNTRL_LBM ? "loopback active" : "normal receive"); if (cntrl & CNTRL_DMD) { v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n", clock_divider_to_carrier_freq(rxclk)); switch (cntrl & CNTRL_WIN) { case CNTRL_WIN_3_3: i = 3; j = 3; break; case CNTRL_WIN_4_3: i = 4; j = 3; break; case CNTRL_WIN_3_4: i = 3; j = 4; break; case CNTRL_WIN_4_4: i = 4; j = 4; break; default: i = 0; j = 0; break; } v4l2_info(sd, "\tNext carrier edge window: 16 clocks " "-%1d/+%1d, %u to %u Hz\n", i, j, clock_divider_to_freq(rxclk, 16 + j), clock_divider_to_freq(rxclk, 16 - i)); } v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n", pulse_width_count_to_us(FIFO_RXTX, rxclk), pulse_width_count_to_ns(FIFO_RXTX, rxclk)); v4l2_info(sd, "\tLow pass filter: %s\n", filtr ? "enabled" : "disabled"); if (filtr) v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, " "%u ns\n", lpf_count_to_us(filtr), lpf_count_to_ns(filtr)); v4l2_info(sd, "\tPulse width timer timed-out: %s\n", stats & STATS_RTO ? "yes" : "no"); v4l2_info(sd, "\tPulse width timer time-out intr: %s\n", irqen & IRQEN_RTE ? "enabled" : "disabled"); v4l2_info(sd, "\tFIFO overrun: %s\n", stats & STATS_ROR ? "yes" : "no"); v4l2_info(sd, "\tFIFO overrun interrupt: %s\n", irqen & IRQEN_ROE ? "enabled" : "disabled"); v4l2_info(sd, "\tBusy: %s\n", stats & STATS_RBY ? "yes" : "no"); v4l2_info(sd, "\tFIFO service requested: %s\n", stats & STATS_RSR ? "yes" : "no"); v4l2_info(sd, "\tFIFO service request interrupt: %s\n", irqen & IRQEN_RSE ? "enabled" : "disabled"); v4l2_info(sd, "IR Transmitter:\n"); v4l2_info(sd, "\tEnabled: %s\n", cntrl & CNTRL_TXE ? "yes" : "no"); v4l2_info(sd, "\tModulation onto a carrier: %s\n", cntrl & CNTRL_MOD ? "enabled" : "disabled"); v4l2_info(sd, "\tFIFO: %s\n", cntrl & CNTRL_TFE ? "enabled" : "disabled"); v4l2_info(sd, "\tFIFO interrupt watermark: %s\n", cntrl & CNTRL_TIC ? "not empty" : "half full or less"); v4l2_info(sd, "\tCarrier polarity: %s\n", cntrl & CNTRL_CPL ? "space:burst mark:noburst" : "space:noburst mark:burst"); if (cntrl & CNTRL_MOD) { v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n", clock_divider_to_carrier_freq(txclk)); v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n", cduty + 1); } v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n", pulse_width_count_to_us(FIFO_RXTX, txclk), pulse_width_count_to_ns(FIFO_RXTX, txclk)); v4l2_info(sd, "\tBusy: %s\n", stats & STATS_TBY ? "yes" : "no"); v4l2_info(sd, "\tFIFO service requested: %s\n", stats & STATS_TSR ? "yes" : "no"); v4l2_info(sd, "\tFIFO service request interrupt: %s\n", irqen & IRQEN_TSE ? "enabled" : "disabled"); return 0; } const struct v4l2_subdev_ir_ops cx25840_ir_ops = { .rx_read = cx25840_ir_rx_read, .rx_g_parameters = cx25840_ir_rx_g_parameters, .rx_s_parameters = cx25840_ir_rx_s_parameters, .tx_write = cx25840_ir_tx_write, .tx_g_parameters = cx25840_ir_tx_g_parameters, .tx_s_parameters = cx25840_ir_tx_s_parameters, }; static const struct v4l2_subdev_ir_parameters default_rx_params = { .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec), .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, .enable = false, .interrupt_enable = false, .shutdown = true, .modulation = true, .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */ /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */ /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */ .noise_filter_min_width = 333333, /* ns */ .carrier_range_lower = 35000, .carrier_range_upper = 37000, .invert_level = false, }; static const struct v4l2_subdev_ir_parameters default_tx_params = { .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec), .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH, .enable = false, .interrupt_enable = false, .shutdown = true, .modulation = true, .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */ .duty_cycle = 25, /* 25 % - RC-5 carrier */ .invert_level = false, .invert_carrier_sense = false, }; int cx25840_ir_probe(struct v4l2_subdev *sd) { struct cx25840_state *state = to_state(sd); struct cx25840_ir_state *ir_state; struct v4l2_subdev_ir_parameters default_params; /* Only init the IR controller for the CX2388[57] AV Core for now */ if (!(is_cx23885(state) || is_cx23887(state))) return 0; ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL); if (ir_state == NULL) return -ENOMEM; spin_lock_init(&ir_state->rx_kfifo_lock); if (kfifo_alloc(&ir_state->rx_kfifo, CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) { kfree(ir_state); return -ENOMEM; } ir_state->c = state->c; state->ir_state = ir_state; /* Ensure no interrupts arrive yet */ if (is_cx23885(state) || is_cx23887(state)) cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK); else cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0); mutex_init(&ir_state->rx_params_lock); memcpy(&default_params, &default_rx_params, sizeof(struct v4l2_subdev_ir_parameters)); v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params); mutex_init(&ir_state->tx_params_lock); memcpy(&default_params, &default_tx_params, sizeof(struct v4l2_subdev_ir_parameters)); v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params); return 0; } int cx25840_ir_remove(struct v4l2_subdev *sd) { struct cx25840_state *state = to_state(sd); struct cx25840_ir_state *ir_state = to_ir_state(sd); if (ir_state == NULL) return -ENODEV; cx25840_ir_rx_shutdown(sd); cx25840_ir_tx_shutdown(sd); kfifo_free(&ir_state->rx_kfifo); kfree(ir_state); state->ir_state = NULL; return 0; }