/* * * Stereo and SAP detection for cx88 * * Copyright (c) 2009 Marton Balint * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include "cx88.h" #include "cx88-reg.h" #define INT_PI ((s32)(3.141592653589 * 32768.0)) #define compat_remainder(a, b) \ ((float)(((s32)((a)*100))%((s32)((b)*100)))/100.0) #define baseband_freq(carrier, srate, tone) ((s32)( \ (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI)) /* We calculate the baseband frequencies of the carrier and the pilot tones * based on the the sampling rate of the audio rds fifo. */ #define FREQ_A2_CARRIER baseband_freq(54687.5, 2689.36, 0.0) #define FREQ_A2_DUAL baseband_freq(54687.5, 2689.36, 274.1) #define FREQ_A2_STEREO baseband_freq(54687.5, 2689.36, 117.5) /* The frequencies below are from the reference driver. They probably need * further adjustments, because they are not tested at all. You may even need * to play a bit with the registers of the chip to select the proper signal * for the input of the audio rds fifo, and measure it's sampling rate to * calculate the proper baseband frequencies... */ #define FREQ_A2M_CARRIER ((s32)(2.114516 * 32768.0)) #define FREQ_A2M_DUAL ((s32)(2.754916 * 32768.0)) #define FREQ_A2M_STEREO ((s32)(2.462326 * 32768.0)) #define FREQ_EIAJ_CARRIER ((s32)(1.963495 * 32768.0)) /* 5pi/8 */ #define FREQ_EIAJ_DUAL ((s32)(2.562118 * 32768.0)) #define FREQ_EIAJ_STEREO ((s32)(2.601053 * 32768.0)) #define FREQ_BTSC_DUAL ((s32)(1.963495 * 32768.0)) /* 5pi/8 */ #define FREQ_BTSC_DUAL_REF ((s32)(1.374446 * 32768.0)) /* 7pi/16 */ #define FREQ_BTSC_SAP ((s32)(2.471532 * 32768.0)) #define FREQ_BTSC_SAP_REF ((s32)(1.730072 * 32768.0)) /* The spectrum of the signal should be empty between these frequencies. */ #define FREQ_NOISE_START ((s32)(0.100000 * 32768.0)) #define FREQ_NOISE_END ((s32)(1.200000 * 32768.0)) static unsigned int dsp_debug; module_param(dsp_debug, int, 0644); MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages"); #define dprintk(level, fmt, arg...) if (dsp_debug >= level) \ printk(KERN_DEBUG "%s/0: " fmt, core->name , ## arg) static s32 int_cos(u32 x) { u32 t2, t4, t6, t8; s32 ret; u16 period = x / INT_PI; if (period % 2) return -int_cos(x - INT_PI); x = x % INT_PI; if (x > INT_PI/2) return -int_cos(INT_PI/2 - (x % (INT_PI/2))); /* Now x is between 0 and INT_PI/2. * To calculate cos(x) we use it's Taylor polinom. */ t2 = x*x/32768/2; t4 = t2*x/32768*x/32768/3/4; t6 = t4*x/32768*x/32768/5/6; t8 = t6*x/32768*x/32768/7/8; ret = 32768-t2+t4-t6+t8; return ret; } static u32 int_goertzel(s16 x[], u32 N, u32 freq) { /* We use the Goertzel algorithm to determine the power of the * given frequency in the signal */ s32 s_prev = 0; s32 s_prev2 = 0; s32 coeff = 2*int_cos(freq); u32 i; u64 tmp; u32 divisor; for (i = 0; i < N; i++) { s32 s = x[i] + ((s64)coeff*s_prev/32768) - s_prev2; s_prev2 = s_prev; s_prev = s; } tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev - (s64)coeff * s_prev2 * s_prev / 32768; /* XXX: N must be low enough so that N*N fits in s32. * Else we need two divisions. */ divisor = N * N; do_div(tmp, divisor); return (u32) tmp; } static u32 freq_magnitude(s16 x[], u32 N, u32 freq) { u32 sum = int_goertzel(x, N, freq); return (u32)int_sqrt(sum); } static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end) { int i; u32 sum = 0; u32 freq_step; int samples = 5; if (N > 192) { /* The last 192 samples are enough for noise detection */ x += (N-192); N = 192; } freq_step = (freq_end - freq_start) / (samples - 1); for (i = 0; i < samples; i++) { sum += int_goertzel(x, N, freq_start); freq_start += freq_step; } return (u32)int_sqrt(sum / samples); } static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N) { s32 carrier, stereo, dual, noise; s32 carrier_freq, stereo_freq, dual_freq; s32 ret; switch (core->tvaudio) { case WW_BG: case WW_DK: carrier_freq = FREQ_A2_CARRIER; stereo_freq = FREQ_A2_STEREO; dual_freq = FREQ_A2_DUAL; break; case WW_M: carrier_freq = FREQ_A2M_CARRIER; stereo_freq = FREQ_A2M_STEREO; dual_freq = FREQ_A2M_DUAL; break; case WW_EIAJ: carrier_freq = FREQ_EIAJ_CARRIER; stereo_freq = FREQ_EIAJ_STEREO; dual_freq = FREQ_EIAJ_DUAL; break; default: printk(KERN_WARNING "%s/0: unsupported audio mode %d for %s\n", core->name, core->tvaudio, __func__); return UNSET; } carrier = freq_magnitude(x, N, carrier_freq); stereo = freq_magnitude(x, N, stereo_freq); dual = freq_magnitude(x, N, dual_freq); noise = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END); dprintk(1, "detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, " "noise=%d\n", carrier, stereo, dual, noise); if (stereo > dual) ret = V4L2_TUNER_SUB_STEREO; else ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2; if (core->tvaudio == WW_EIAJ) { /* EIAJ checks may need adjustments */ if ((carrier > max(stereo, dual)*2) && (carrier < max(stereo, dual)*6) && (carrier > 20 && carrier < 200) && (max(stereo, dual) > min(stereo, dual))) { /* For EIAJ the carrier is always present, so we probably don't need noise detection */ return ret; } } else { if ((carrier > max(stereo, dual)*2) && (carrier < max(stereo, dual)*8) && (carrier > 20 && carrier < 200) && (noise < 10) && (max(stereo, dual) > min(stereo, dual)*2)) { return ret; } } return V4L2_TUNER_SUB_MONO; } static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N) { s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF); s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP); s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF); s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL); dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d" "\n", dual_ref, dual, sap_ref, sap); /* FIXME: Currently not supported */ return UNSET; } static s16 *read_rds_samples(struct cx88_core *core, u32 *N) { const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27]; s16 *samples; unsigned int i; unsigned int bpl = srch->fifo_size/AUD_RDS_LINES; unsigned int spl = bpl/4; unsigned int sample_count = spl*(AUD_RDS_LINES-1); u32 current_address = cx_read(srch->ptr1_reg); u32 offset = (current_address - srch->fifo_start + bpl); dprintk(1, "read RDS samples: current_address=%08x (offset=%08x), " "sample_count=%d, aud_intstat=%08x\n", current_address, current_address - srch->fifo_start, sample_count, cx_read(MO_AUD_INTSTAT)); samples = kmalloc(sizeof(s16)*sample_count, GFP_KERNEL); if (!samples) return NULL; *N = sample_count; for (i = 0; i < sample_count; i++) { offset = offset % (AUD_RDS_LINES*bpl); samples[i] = cx_read(srch->fifo_start + offset); offset += 4; } if (dsp_debug >= 2) { dprintk(2, "RDS samples dump: "); for (i = 0; i < sample_count; i++) printk("%hd ", samples[i]); printk(".\n"); } return samples; } s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core) { s16 *samples; u32 N = 0; s32 ret = UNSET; /* If audio RDS fifo is disabled, we can't read the samples */ if (!(cx_read(MO_AUD_DMACNTRL) & 0x04)) return ret; if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS)) return ret; /* Wait at least 500 ms after an audio standard change */ if (time_before(jiffies, core->last_change + msecs_to_jiffies(500))) return ret; samples = read_rds_samples(core, &N); if (!samples) return ret; switch (core->tvaudio) { case WW_BG: case WW_DK: case WW_EIAJ: case WW_M: ret = detect_a2_a2m_eiaj(core, samples, N); break; case WW_BTSC: ret = detect_btsc(core, samples, N); break; case WW_NONE: case WW_I: case WW_L: case WW_I2SPT: case WW_FM: case WW_I2SADC: break; } kfree(samples); if (UNSET != ret) dprintk(1, "stereo/sap detection result:%s%s%s\n", (ret & V4L2_TUNER_SUB_MONO) ? " mono" : "", (ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "", (ret & V4L2_TUNER_SUB_LANG2) ? " dual" : ""); return ret; } EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);